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Abstract1

The proliferation of scientific podcasts has generated an extensive repository of audio content, rich in spe-2

cialized terminology, diverse topics, and expert dialogues. Here, we introduce a computational framework3

designed to enhance large language models (LLMs) by leveraging this informational content from pub-4

licly accessible podcast data across science, technology, engineering, mathematics and medical (STEMM)5

disciplines. This dataset, comprising over 3, 700 hours of audio content, was transcribed to generate over6

42 million text tokens. Our model, PodGPT, integrates this wealth of complex dialogue found in audio7

podcasts to improve understanding of natural language nuances, cultural contexts, as well as scientific and8

medical knowledge. PodGPT also employs retrieval augmented generation (RAG) on a vector database built9

from articles in Creative Commons PubMed Central and The New England Journal of Medicine, enhancing10

STEMM research and education by providing real-time access to emerging scientific literature. Evaluated11

across multiple benchmarks, PodGPT demonstrated an average improvement of 3.51 percentage points over12

standard open-source benchmarks and 3.81 percentage points when augmented with evidence from the RAG13

pipeline. Moreover, it showcased an average improvement of 4.06 percentage points in its zero-shot multi-14

lingual transfer ability, effectively generalizing to different linguistic contexts. By harnessing the untapped15

potential of podcast content, PodGPT advances natural language processing and conversational AI, offering16

enhanced capabilities for STEMM research and education.17
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The rise of generative artificial intelligence (AI), particularly large language models (LLMs), has1

marked a transformative shift in data analysis, interpretation, and content generation. These models, trained2

on extensive textual datasets, have demonstrated the ability to generate contextually accurate and linguisti-3

cally rich outputs, with profound implications for fields such as science and medicine, where models like4

OpenAI’s GPT-4 have shown remarkable aptitude 1–3. However, the full potential of LLMs in science, tech-5

nology, engineering, mathematics, and medicine (STEMM) remains under-explored, particularly in integrat-6

ing non-traditional data modalities such as audio content. Podcasts, which have proliferated across STEMM7

disciplines, present an untapped repository of expert knowledge, diverse terminologies, and emerging topics.8

The conversational nature of these recordings encapsulates domain-specific language and dialogue patterns,9

providing an opportunity to augment language models with rich, real-time, and contextually refined data.10

By integrating this dynamic source of information, language models could achieve greater precision and rel-11

evance within STEMM fields, enhancing their ability to handle complex topics, interdisciplinary discourse,12

and evolving knowledge landscapes inherent to STEMM.13

Recent advances in transcription technologies have facilitated the transformation of spoken STEMM14

content into text suitable for computational analysis 4. These technologies have enabled the development of15

models that could capture linguistic subtleties inherent in STEMM-related discussions and extract valuable16

insights from expert dialogue. By transcribing and processing this informative podcast content, it has become17

feasible to augment LLMs with audio-linguistic data, providing a means of refining their understanding of18

domain-specific language, reasoning, and contextual interactions 5.19

Here we present PodGPT (Fig. 1), a computational framework designed to leverage an extensive cor-20

pus of STEMM-based podcast content. Over 3, 700 hours of audio were transcribed into over 42 million21

text tokens, enabling the model to absorb and learn from diverse expert discussions across multiple scien-22

tific fields. By integrating spoken content, we aim to enhance the model’s understanding of conversational23

language and extend its application to more specialized contexts within STEMM disciplines. To further aug-24

ment the model’s utility, we implemented a retrieval augmented generation (RAG) framework 6, 7 utilizing25

a vector database built from articles in Creative Commons PubMed Central and The New England Journal26

of Medicine (NEJM). This database contained a heterogeneous and high-impact selection of medical and27

scientific literature, grounding PodGPT’s outputs in peer-reviewed knowledge. The RAG approach was op-28

timized by applying hybrid search with binary quantization techniques to improve retrieval effectiveness29

and efficiency, followed by re-ranking to ensure accurate and context-aware responses. This computational30

framework allows PodGPT to retrieve and incorporate relevant scientific evidence into its generative process,31

ensuring linguistically coherent responses grounded by referenced sources.32

The development of PodGPT positions it as a valuable tool for research and educational applications33

within STEMM, particularly in contexts requiring precise domain-specific knowledge. Its capacity to in-34

tegrate complex interdisciplinary conversations into language models highlights the potential of LLMs to35

support knowledge dissemination and professional development across STEMM disciplines. By bridging the36

gap between static text-based corpora and dynamic audio content, PodGPT exemplifies a forward-thinking37

approach to refining the capabilities of language models for scientific inquiry.38
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Methods1

Dataset description We curated a diverse collection of podcasts across STEMM disciplines under the2

Creative Commons Attribution (CC-BY) license as well as content from The New England Journal of3

Medicine (NEJM). The CC-BY license supports content sharing, adaptation, and use for any purpose, pro-4

vided appropriate credit is given. Various versions of the CC-BY license (e.g., 1.0, 2.0, 3.0, and 4.0) outline5

specific attribution requirements and compatibility updates with international copyright standards. The lat-6

est version, CC-BY 4.0, offers enhanced flexibility by allowing sharing and adaptation across jurisdictions,7

making it widely applicable in research and educational contexts, as exemplified by our use of these podcasts8

for training PodGPT.9

Our curated corpus was comprised of podcasts produced by scientific journals, researchers, and clin-10

icians, with topics spanning a multitude of different scientific fields. We filtered these podcasts based on11

the following criteria: (1) podcasts hosted by reputable scientific journals, such as NEJM; (2) podcasts pro-12

duced by individuals with recognized scientific, medical, or research expertise, including medical doctors13

(M.D.) and doctors of philosophy (Ph.D.), that encompassed various STEMM fields. The full set of podcast14

episodes and associated metadata are detailed in Table 1.15

Dataset processing The pretraining corpus for PodGPT consisted of thousands of hours of STEMM16

podcasts, encompassing academic discussions, clinical case studies, and expert interviews. We transcribed17

these audio files using a state-of-the-art automatic speech recognition model, OpenAI Whisper 8. Built18

upon an encoder-decoder Transformer architecture, the Whisper model resampled the input audio to 16, 00019

Hz and performed temporal chunking. Then, these chunks of audio data were represented by 80-channel20

log-magnitude Mel spectrograms with a 25-millisecond window and 10-millisecond stride. Before being21

processed by the Transformer modules, the input underwent a convolutional layer and was augmented with22

the sinusoidal position embeddings to incorporate positional information. Finally, the Transformer decoder23

module interpreted the hidden representation of the audio data and generated textual output through a lan-24

guage head 9. We utilized the latest Whisper series model, the Whisper large-v3, with 1, 550M parameters,25

to specify the spoken language for improved speech recognition. All the podcast transcripts were carefully26

and manually reviewed to maintain content quality.27

Model architecture The Transformer model 10, renowned for its multi-head self-attention mechanism,28

has become the backbone of many state-of-the-art AI models. Unlike traditional methods, the self-attention29

mechanism captures long-range dependencies with efficient parallelization and scalability. Additionally, its30

deep feedforward neural networks enhance the model’s capacity to learn complex patterns in data. We lever-31

aged this architecture to tailor PodGPT specifically for use in STEMM research and educational purposes.32

Built upon state-of-the-art general LLMs, such as Gemma 11 and LLaMA 12, PodGPT was pre-trained on33

a diverse and informative text corpus extracted from STEMM podcast data. By utilizing instruction-tuned34

variants of these models, we aimed to improve instruction-following capabilities and conversational struc-35

ture. To evaluate the effectiveness of our framework, we applied models of varying scales, ranging from 236

to 8 billion parameters.37

Gemma is a series of lightweight open models developed by Google DeepMind. These are text-to-38

text auto-regressive language models, which have pre-trained versions as well as instruction-tuned variants.39
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These models were trained on the textual datasets on a context length of 8, 192 tokens from a wide variety40

of sources. The primary sources include web documents, codes, and mathematical content. Several recent41

advancements have been made to improve the performance and training efficiency of the Transformer model.42

These include multi-query attention 13, rotary positional embeddings (RoPE) 14, and GeGLU activations 15.43

We utilized the Gemma models 2B and 7B to validate our framework across different model sizes. LLaMA is44

a family of advanced general-purpose LLMs released by Meta Research. The LLaMA 3.1 8B was pretrained45

using a context length up to 128K, facilitating longer context understanding with RoPE. Additionally, it46

employs the standard decoder-only architecture with improved efficiency using grouped-query attention47

with 8 key-value heads 16.48

Pre-training is a crucial step in the development of LLMs, during which the model learns from a49

vast body of text data in an auto-regressive manner. This phase generally leverages self-supervised learn-50

ing, employing methods like masked language modeling, e.g., BERT 17, or autoregressive modeling, e.g.,51

GPT 18. The self-supervised learning framework allows the model to gain a broad understanding of knowl-52

edge, thereby improving its performance in subsequent tasks. In this work, we utilized an auto-regressive53

objective to perform continual pretraining through an iterative gradient solver. The above-mentioned LLMs54

have been pre-trained on trillions of tokens. Thus, one cost-effective and efficient way to encode domain-55

specific knowledge is through continuous pre-training and evolving the pre-trained models with expertise56

corpora, instead of retraining them from scratch. The podcast transcripts were represented by a sequence of57

tokens, i.e., x = {x1, x2, . . . xN}, where xi is a subword token and N denotes the length of the sequence.58

We fine-tuned publicly available models using our podcast data in an auto-regressive manner, optimizing59

the models by minimizing the negative log likelihood. The training objective is as follows,60

Lπθ
= −

∑
log (πθ(xi|x<i)) ,

where πθ is the language model, parameterized by θ.61

Retrieval augmented generation framework To ensure PodGPT is aligned with the latest advance-62

ments in STEMM research and education, we integrated a retrieval augmented generation (RAG) system63

into its computational framework. This system facilitates the continuous search and retrieval of up to date64

information from PubMed Central 19, the free archive of life science journal articles managed by the Na-65

tional Institutes of Health (NIH), United States. The NIH offered an FTP server for bulk downloading large66

sets of non-commercially licensed public articles, which we utilized to ground text generation in PodGPT.67

Additionally, the latest articles from NEJM since 2016 were also incorporated into our database, providing68

a wide range of content for medical research and education. The retrieved articles used to generate and69

ground the responses were meticulously cited in MLA format, ensuring proper attribution and ease of ref-70

erence. This citation style facilitated clear acknowledgment of the original sources while maintaining the71

academic integrity of the outputs. By integrating these citations directly into the generated text, PodGPT72

ensured that users could trace back the evidence to peer-reviewed and credible scientific literature, further73

enhancing trustworthiness and usability for research and educational purposes.74

To fully utilize the content, the first step was to preprocess article bodies into shorter text samples, de-75

termined by the hyper-parameters of the vectorization neural networks. Then, we encoded these text chunks76

using two embedding models. Specifically, we used two types of embeddings: a dense embedding, which is77

a compact vector that captures semantic similarity between different contexts, and a sparse vector, with the78

length of the vocabulary size, e.g., 30K. In the sparse vector, each position corresponds to a subword token,79
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enabling highly efficient keyword searches. We selected state-of-the-art open-source embedding models80

for both dense and sparse embeddings: the Salesforce Research SFR-Embedding-2 20 and the opensearch-81

neural-sparse-encoding-v1 model from the OpenSearch Project 21. To enhance efficiency, we implemented82

the 4-bit GPTQ quantization 22 on the Salesforce model. The similarity search was performed using cosine83

similarity for dense vectors and inner product for sparse vectors, as specified in these models.84

Furthermore, to improve retrieval performance for the dense vector, we employed a two-stage retrieve-85

rerank approach. In this method, we initially conducted binary quantization for top-K retrieval, returning86

the most relevant top-N documents from our 4-bit quantized model. Then, we re-ranked the results based87

on similarity scores using a reranker. The samples that had the shortest distance were re-ranked and passed88

into the reranker model, which assigned relevance scores to each document. We selected the BAAI general89

embedding model, bge-reranker-large 23, a publicly available top-performing re-ranking model. Reranking90

allows a hybrid search that combines specialized embedding models for document retrieval with the gener-91

ation of re-ranked relevance scores for the model’s use.92

The database, vector search, and indexing were all managed by a vector database system pgvector 24, a93

PostgreSQL extension that implements vector distance searches and the hierarchical navigable small worlds94

(HNSW) algorithm with standard SQL tools, enabling efficient pipeline development with familiar APIs.95

Experimental settings To analyze the capabilities of PodGPT, we employed various model sizes and96

conducted extensive experiments across STEMM fields in a multilingual context. In current literature,97

benchmarks for multiple-choice question-answering (QA) were commonly utilized to evaluate the per-98

formance of large language models. Thus, in this work, we utilized the multilingual multiple-choice QA99

benchmarks to evaluate the model’s performance. In addition, we conducted experiments and documented100

the performance of all the models that were used in this study on multilingual STEMM benchmarks. This101

potentially advances the field with an open-source and unified multilingual benchmarking library covering102

training, inference, answer extraction, performance evaluation, real-world model deployment, as well as a103

pipeline of RAG for evidence-based medicine (EBM). Furthermore, to guarantee scientific reproducible re-104

search, we implemented all our experiments with a set of unified hyper-parameters. Thus, our work was out105

of the box without any specific hyper-parameter tuning and further optimization for different models.106

Evaluation benchmarks To evaluate the performance of PodGPT, we utilized a comprehensive set of107

STEMM benchmarks from the most spoken languages in the world, including English, Mandarin, French,108

Spanish, and Hindi. For intra-language experiments, i.e., English, we performed performance evaluations on109

datasets where the language aligned with the podcast content. Furthermore, for cross-language experiments,110

the model was evaluated on benchmarks in different languages compared to the podcasts. This evaluation111

was crucial for validating the effectiveness of the zero-shot multilingual transfer capability of medical LLMs.112

Our multilingual benchmarking approach not only demonstrates that our model is accurate and effective113

across varied linguistic contexts, but that it represents a technical achievement with the power to democratize114

global access to science, research, and educational knowledge. The detailed descriptions of multilingual115

benchmarks are as follows.116

STEMM benchmarks in English The benchmarks for STEMM natural language understanding in English117

have advanced significantly over the past decade. In this study, we selected well-known publicly accessible118

6
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benchmarks including MedQA 25, PubMedQA 26, MedMCQA 27, MedExpQA 28, and MMLU STEMM119

datasets, including subsets from physics (astronomy, college physics, conceptual physics, and high school120

physics), biology (college biology and high school biology), chemistry (college chemistry and high school121

chemistry), computer science (college computer science, computer security, high school computer sci-122

ence, and machine learning), engineering (electrical engineering), mathematics (abstract algebra, college123

mathematics, elementary mathematics, high school mathematics, and high school statistics), and medicine124

(anatomy, clinical knowledge, college medicine, medical genetics, professional medicine) 29. Additionally,125

we incorporated the college biology question set into the MMLU medicine subset to ensure a fair compari-126

son, as it was widely used to evaluate large medical language models 30.127

STEMM benchmarks in Mandarin The benchmarking of medical and clinical knowledge in Mandarin has128

become increasingly popular in NLP research. A range of databases have been successively proposed to129

assess the performance of Mandarin language models on medical data. In this study, we adopted the pop-130

ular MedQA-MCMLE 25 and CMMU STEMM topics 30, 31. The CMMLU STEMM benchmarks include131

the subsets from physics (astronomy, conceptual physics, and high school physics), biology (high school132

biology), chemistry (high school chemistry), computer science (computer science, machine learning, and133

computer security), mathematics (college actuarial science, college mathematics, elementary mathematics,134

high school mathematics, and college medical statistics), engineering (college engineering hydrology and135

electrical engineering), and medicine (anatomy, clinical knowledge, college medicine, genetics, nutrition,136

traditional Chinese medicine, and virology) 31.137

STEMM benchmarks in Spanish The Spanish STEMM testbed has encouraged the NLP community to de-138

velop new approaches for understanding and reasoning about science, research, and educational knowledge139

in Spanish. Therefore, we utilized the HEAD-QA benchmark, a multiple-choice healthcare dataset obtained140

from examinations in the Spanish healthcare system 32. Additionally, we also employed the MedExpQA141

Spanish subset 28 and Spanish MMLU STEMM topics 30.142

STEMM benchmarks in French We primarily selected the popular FrenchMedMCQA dataset, which consists143

of 3, 105 questions taken from the French pharmacy diploma examinations 33. Following Wang et al., we144

only performed performance evaluations on questions with a single answer 30. As a result, the total number145

of questions in the testing set was 321. Furthermore, the MedExpQA French subset 28 and French MMLU146

STEMM topics 30 were also included in this work.147

STEMM benchmarks in Hindi To encode STEMM content in Hindi, we included the Hindi MMLU STEMM148

topics 30 in our benchmarking. By evaluating our model’s ability to understand science, research, and med-149

ical terminology in Hindi, we were able to incorporate one of the most widely spoken languages in the150

world.151

Implementation details We transcribed podcast data using the OpenAI Whisper large-v3 model for an152

automatic speech recognition task. The chunk length was set to 30 seconds with a 5-second stride on both153

sides to improve the continuity and coherence of the transcriptions. The batch size was 96, and 384 tokens154

were generated per chunk to parallelly process audio chunks.155

We encoded STEMM knowledge across various model sizes, from 2B to 8B. To do so, we imple-156
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mented publicly available language models, which include the 2B and 7B versions of the Gemma series and157

the instruction-tuned variant of the LLaMA 3.1 8B. During model training, we utilized Brain float 16 data158

type with the AdamW optimizer to prevent overflow issues 34, and the context length was set to 2, 048 30.159

We trained all models for 5 epochs with an initial learning rate of 5 × 10−6 with a 0.03 warm-up ratio and160

a cosine schedule. The weight decay rate was 0.01, and the gradient was accumulated during each training161

step. All the models were optimized based on the unified hyper-parameter settings without specific tuning162

for superior performance. To deploy a highly performant and efficient RAG pipeline, we selected the top-163

K = 10, 000 document samples using the binary quantized embedding model. Next, we retrieved the text164

samples from the top-N = 15 dense embeddings and the top-N = 15 sparse embeddings by similarity165

score. Finally, we used only the documents that had reranking scores greater than 1.0.166

Software and database infrastructure We created a custom graphical user interface (GUI) and plat-167

form infrastructure to allow users to interact with PodGPT, providing public access to our model. Our goal168

was to deliver our model with a user-friendly and responsive conversational interface. We utilized ReactJS169

and NextJS for the front end. ReactJS furnishes a collection of APIs and libraries to construct reusable web170

components, while NextJS provides scaffolding for ReactJS applications, encompassing an HTTP server,171

server-side rendering, and a “back end for a front end” design pattern. For hardware, we utilized a custom-172

built stack to deploy our LLMs at scale using entirely self-hosted and open-source tools without relying on173

software as a service (SaaS) or proprietary software. We employed a microservice architecture using Kuber-174

netes as a container orchestration tool. Kubernetes manages clusters of nodes hosting microservices wrapped175

inside Docker containers. It facilitates the creation of highly available distributed systems that automatically176

scale to meet needs and ensure secure inter-cluster communication, IP address allocation, load balancing,177

and reverse proxy services. For LLM deployment, we employed the vLLM library 35, which offers a fast and178

portable inference server that deploys transformers and batches inference tasks efficiently while providing179

a convenient API. It requires a minimum of CUDA Toolkit 11.0 and a 7.5 compute-capable NVIDIA GPU,180

supporting splitting model weights across several devices.181

Authentication and user management were crucial components of our architecture. In order to dis-182

tribute resources equitably among potential researchers, we implemented OAuth 2.0 compliant authoriza-183

tion and user management in addition to a per-token rate limiting system based on user scopes and total184

system load. We equipped PodGPT with standard chatbot features such as multiturn conversations and the185

ability to open new conversations. Furthermore, PodGPT utilized Apache Cassandra, a distributed NoSQL186

database designed for high availability and query optimization. The backend API router, which was built187

with Flask, stores new chats and conversations in Cassandra and sends text inference requests to a queue.188

For queuing and message processing, we utilized RabbitMQ and Redis, which are a message broker and189

key-value databases, respectively.190

Data and model availability A multilingual LLMs benchmarking library along with the source codes191

are made available at github.com/vkola-lab/PodGPT. Our models are available at huggingface.co/vkola-lab.192
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Results1

We conducted comprehensive experiments to assess PodGPT’s performance on various multilingual STEMM2

QA benchmark datasets. Our results broadly demonstrate that incorporating STEMM audio podcast data en-3

hances our model’s ability to understand and generate precise and comprehensive information. In addition,4

our enhanced models outperformed their respective baselines across a wide range of scales in both in-domain5

benchmarks and zero-shot domain generalization across multilingual benchmarks.6

Performance on in-domain benchmarks The evaluation of PodGPT across a wide spectrum of dis-7

ciplines in MMLU benchmarks demonstrated enhanced model efficacy following pre-training with STEMM8

podcast data (Table 2). Across all MMLU STEMM benchmarks, PodGPT achieved performance gains of9

9.73 percentage points for the LLaMA 8B model and 3.49 percentage points for the Gemma 7B model.10

Specifically, on the MMLU physics benchmark subset, PodGPT outperformed the baseline by 12.36 per-11

centage points. In MMLU biology benchmarks, there were 8.62 percentage points improvement for the12

LLaMA 8B model and 3.11 for the Gemma 7B model. Additionally, the Gemma 2B model showed enhance-13

ments of 3.61 percentage points on the MMLU computer science datasets. Evaluation of the engineering14

subset revealed that PodGPT achieved improvements of 10.34 and 3.80 percentage points for the LLaMA15

8B and Gemma 7B models, respectively. Moreover, on the MMLU mathematics benchmark, PodGPT con-16

sistently outperformed the baseline, with the Gemma 7B model improving by 4.26 percentage points and17

the LLaMA 8B model improving by 4.25 percentage points. Lastly, on the medical datasets, PodGPT ex-18

hibited improvements of 10.29 percentage points for the LLaMA 8B model and 5.26 for the Gemma 7B19

model. Overall, PodGPT demonstrated cumulative enhancements of 3.51 percentage points over standard20

open-source benchmarks and 3.13 percentage points across in-domain MMLU benchmarks. These results21

underscored the potential of leveraging open-source podcast data to significantly boost model performance22

and applicability across specialized STEMM domains, paving the way for more effective and versatile AI23

systems for research and education.24

As shown in Table 3, we further evaluated PodGPT across various English medical QA benchmarks25

after pre-training with English medical podcast data with the RAG pipeline. This framework consistently26

surpassed baseline models, achieving an improvement of up to 13.00 percentage points, highlighting the27

effectiveness of grounding language models with the latest scientific evidence. On the MedExpQA bench-28

mark, our framework demonstrated an improvement of 12.20 percentage points for the Gemma 7B model.29

The other models also exhibited strong performance enhancements of 4.80 and 2.80 percentage points for the30

Gemma 2B and LLaMA 8B models, respectively. Additionally, PodGPT with RAG excelled on the MedQA31

benchmark, achieving an average increase of up to 4.04 percentage points. On the MMLU medicine bench-32

mark, promising improvements were observed, with gains of 5.97 and 3.54 percentage points for the Gemma33

7B and LLaMA 8B models, respectively. Finally, on the MedMCQA benchmark, the Gemma 7B model with34

RAG surpassed the baseline by 2.90 percentage points. Overall, PodGPT with RAG demonstrated a cumu-35

lative enhancement of 3.81 percentage points across in-domain medical benchmarks, emphasizing its effec-36

tiveness in advancing medical education and research through the incorporation of evidence-based medicine37

with RAG.38

Zero-shot cross-lingual performance In Table 4, we presented results on PodGPT’s zero-shot cross-39

lingual performance using multilingual benchmarks, encompassing diverse STEMM subjects such as physics,40
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biology, chemistry, computer science, engineering, mathematics, and medicine. PodGPT demonstrated per-41

formance gains across all benchmarks, achieving improvements of up to 7.06 percentage points. The LLaMA42

8B model achieved an improvement of 13.60 percentage points on the MedQA-MCMLE benchmark, show-43

casing its strong cross-lingual capabilities. Additionally, it delivered superior performance on the CMMLU44

benchmarks, achieving average improvements of up to 6.80 percentage points. The LLaMA 8B model45

demonstrated outstanding performance gains of 19.99, 11.53, 10.34, and 10.32 percentage points on CMMLU46

benchmarks focusing on chemistry, mathematics, physics, and computer science, respectively. Furthermore,47

the Gemma 7B model achieved increases of 7.57 and 7.14 percentage points on the CMMLU chemistry48

and computer science benchmarks, separately, highlighting the model’s robustness across diverse STEMM49

disciplines.50

On the MedExpQA benchmark, PodGPT achieved performance gains of 9.40 percentage points for51

the Gemma 7B model and 4.60 percentage points for the LLaMA 8B model. It also outperformed the base-52

line model on the MedMCQA benchmark, with improvements of 10.05 percentage points for Gemma 7B53

and 9.66 for LLaMA 8B. In addition, the LLaMA 8B model showcased an average improvement of 8.4154

percentage points across French STEMM benchmarks, while the Gemma 7B model achieved an average in-55

crease of 4.01 percentage points. Specifically, LLaMA 8B demonstrated an improvement of 9.76 percentage56

points on the chemistry subset, 8.18 on the mathematics subset, 7.84 on the computer science subset, and57

5.63 on the engineering subset. On the French MMLU physics and biology subsets, PodGPT showed im-58

provement, with gains of 7.07 and 6.88 percentage points for the Gemma 7B model. Additionally, PodGPT59

consistently surpassed the baseline models, achieving improvements of 5.75 percentage points with the60

Gemma 7B model and 5.24 percentage points with the LLaMA 8B model.61

On the Hindi MMLU STEMM benchmarks, PodGPT achieved a performance gain, with an increase62

of 8.86 percentage points for the LLaMA 8B model. Additionally, the Gemma 7B model showed improve-63

ments of 9.80 on the biology benchmark, while the LLaMA 8B model beat the baseline by 8.75 percentage64

points for the chemistry benchmark. Additionally, on the Hindi MMLU medicine benchmark, PodGPT65

demonstrated an improvement of 6.26 percentage points for the Gemma 7B model. Lastly, the performance66

on the Spanish STEMM benchmarks was equally promising, with improvements of 12.87 percentage points67

and 10.20 percentage points on the HEAD-QA and MedExpQA benchmarks, respectively, for the LLaMA68

8B model. Across the Spanish MMLU STEMM benchmarks, PodGPT achieved enhancements of up to69

9.70 percentage points. Overall, PodGPT demonstrated its superiority by enhancing its zero-shot multilin-70

gual transfer capability in Spanish, achieving an average improvement of up to 7.45 percentage points. In71

summary, PodGPT showcased an impressive average improvement of 4.06 percentage points across mul-72

tilingual STEMM benchmarks in its zero-shot transfer capabilities. These results underscored PodGPT’s73

effectiveness in generalizing across diverse linguistic contexts, further highlighting its potential for advanc-74

ing multilingual applications in research and education.75

Evaluation of subject-specific queries Our PodGPT model, integrated with the RAG framework, suc-76

cessfully generated up to date, relevant, and citation-supported responses to specialized STEMM queries,77

as demonstrated in Fig. 2. This integration empowered PodGPT to leverage a vector database of scientific78

literature, enabling the delivery of evidence-based answers underpinned by peer-reviewed references. Each79

response contained a relevance score, ensuring alignment between retrieved references and the query, and80

prioritizing highly pertinent sources while minimizing unrelated content. This approach significantly bol-81

stered the reliability and precision of the generated outputs, as evidenced by consistently high relevance82
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scores across diverse STEMM examples. In the examples shown in Fig. 2, we showed the effectiveness of83

PodGPT in addressing queries spanning endocrinology, infectious diseases, cardiovascular health, neuro-84

science, and planetary health.85
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Discussion1

We present PodGPT, a large language model that leverages the rich and diverse linguistic content of STEMM2

podcasts, capturing a wide array of domain-specific terminologies and conversational contexts. Exten-3

sive pre-training on podcast data has endowed PodGPT with the capability to generate topically relevant4

and scientifically up to date responses to highly specialized STEMM-related queries across different lan-5

guages. When benchmarked against existing datasets such as MedQA, PubMedQA, MedMCQA, and vari-6

ous MMLU STEMM categories, PodGPT demonstrated superior performance, particularly in areas requir-7

ing detailed medical knowledge and contextual understanding. We leveraged a RAG framework with a vector8

database constructed from journal articles, enabling real-time access to emerging scientific literature. These9

results not only highlight its potential as a valuable tool for research and education, but also to democratize10

science globally through its accessibility and multilingual capabilities.11

Our results demonstrate that integrating audio-transcribed data into language model training improves12

the accuracy and relevance of information generated, particularly in STEMM contexts. Compared to base-13

line models such as Google Gemma and Meta LLaMA, PodGPT consistently achieved higher performance14

across multiple benchmarks, including in-domain STEMM tasks and zero-shot multilingual evaluations.15

By leveraging transcribed audio, PodGPT effectively captures conversational dynamics, domain-specific16

terminologies, and interdisciplinary dialogue patterns that are often absent in text-only training data. This17

integration enables more precise language processing and a broader understanding of complex topics. The18

implications of this work extend beyond benchmark performance. First, PodGPT underscores the impor-19

tance of integrating diverse modalities, such as audio-transcribed text, into language model training to ad-20

dress linguistic subtleties and interdisciplinary dialogue patterns that static text corpora alone cannot en-21

capsulate. This inclusion strengthens the model’s robustness, enabling not only superior performance on22

standard benchmarks but also enhanced generalization to multilingual and multidisciplinary applications.23

Second, the integration of a RAG framework equips PodGPT with real-time access to evolving scientific24

literature, providing researchers, educators, and practitioners with evidence-grounded insights that remain25

current and actionable. This capability bridges the gap between traditional language model outputs and26

dynamic, evidence-based decision-making, particularly in fast-evolving STEMM fields. Finally, PodGPT’s27

demonstrated success across multilingual STEMM benchmarks positions it as a transformative tool for de-28

mocratizing access to education and research globally. By breaking down language and geographic barriers,29

PodGPT has the potential to promote equitable access to scientific knowledge, enabling underserved and30

linguistically diverse communities to engage with cutting-edge research. As the global demand for interdis-31

ciplinary collaboration and education grows, PodGPT serves as an example of how language models can32

evolve to meet these challenges by integrating innovative data modalities and frameworks.33

Our study has a few limitations. First, we were limited to using STEMM podcast content that was34

openly accessible or publicly available. As such, there is a vast collection of available but unharnessed data,35

such as textbooks and even video tutorials, that could be leveraged if licensing guidelines allowed. Our36

model, trained exclusively on English podcasts, demonstrated strong performance on established bench-37

marks and improved zero-shot capabilities on multilingual evaluation tasks. Future efforts will focus on38

acquiring diverse and legally accessible podcast data in multiple languages as well as more peer-reviewed39

journal content to enrich training and enhance multilingual model performance. Future work on PodGPT40

should also include a comprehensive ethical evaluation to ensure the model consistently adheres to high sci-41

entific and research standards in a wide range of settings. Also, we observed that pre-training using podcast42

data did not improve performance on a few benchmarks. This finding can be attributed to the nature and43
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structure of podcasts, which contrasts with the demands of these benchmarks.44

The findings from this study indicate that PodGPT represents an important advancement in tailoring45

large language models for research and education. Its true potential, however, lies in democratizing access46

to scientific information globally. Its ability to process domain-specific queries, generate responses using47

the most up to date information available, including in-chat citations, and operate across multiple languages48

makes PodGPT a valuable tool. Nonetheless, deploying these advanced models must be accompanied by49

rigorous attention to data integrity and user privacy considerations. By continuing to advance the intersection50

of AI and science, we can ultimately improve the global accessibility of STEMM research and education,51

ensuring that such technologies benefit a broader range of people. PodGPT highlights the value of integrating52

podcast data to enhance language models, which can be extended to applications beyond just science and53

research by incorporating diverse audio podcasts.54
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Podcast Episodes Audio Time
(min)

Mean Length Episode
±σ (min)

Number of
Text Tokens

Mean Text Tokens
per Episode ±σ

NEJM This Week 457 13,300.17 29.10 ± 2.92 2,029,219 4440.30 ± 419.35
NEJM Interviews 654 9,223.44 14.10 ± 8.15 1,732,879 2649.66 ± 1522.35

NEJM Core IM | Internal Medicine Podcast 170 5,285.72 31.09 ± 10.08 1,077,154 6336.20 ± 2093.18
NEJM Curbside Consults 74 1,977.46 26.72 ± 11.04 408,189 5516.07 ± 2522.46

NEJM Clinical Conversations 108 1,829.66 16.94 ± 4.13 320,968 2971.93 ± 774.89
NEJM Leadership Conversations 100 1,765.76 17.66 ± 4.38 306,490 3064.90 ± 759.09

NEJM AI Grand Rounds 24 1,459.11 60.80 ± 14.84 303,499 12645.79 ± 3107.35
NEJM Intention to Treat 40 997.22 24.93 ± 5.27 169,632 4240.80 ± 954.41

NEJM Not Otherwise Specified 20 836.03 41.80 ± 15.71 146,718 7335.90 ± 2880.36
TWiV: This Week In Virology 1,186 104,089.57 87.77 ± 30.30 20,188,268 17022.15 ± 5785.86

TWiP: This Week In Parasitism 245 21,129.03 86.24 ± 15.35 4,381,511 17883.72 ± 3814.75
TWiM: This Week in Microbiology 320 20,641.50 64.50 ± 10.36 3,667,519 11461.00 ± 2121.78
TWiEVO: This Week In Evolution 100 8,845.09 88.45 ± 10.99 1,756,480 17564.80 ± 2517.80

IMMUNE 93 6,918.84 74.40 ± 19.67 1,363,176 14657.81 ± 3888.47
TWiN: This Week In Neuroscience 53 3,581.13 67.57 ± 10.40 644,712 12164.38 ± 2078.49

Matters Microbial 62 3,418.33 55.13 ± 11.33 637,647 10284.63 ± 2357.42
Infectious Disease Puscast 65 2,298.71 35.36 ± 5.96 415,145 6386.85 ± 1126.15

Urban Agriculture 29 2,171.63 74.88 ± 17.58 443,859 15305.48 ± 4214.82
On The Wards: On The Pods Medical Podcast for Doctors 245 5,915.14 24.14 ± 8.00 1,175,307 4797.17 ± 1781.74

Digital Campus Podcast 64 3,169.44 49.52 ± 5.85 605,977 9322.72 ± 1528.99
emDOCs.net Emergency Medicine (EM) Podcast 112 1,576.72 14.08 ± 4.30 303,672 2711.35 ± 864.29

Policy in Plainer English Podcast 73 1,089.20 14.92 ± 7.52 208,580 2857.26 ± 1509.80
Open Minds ... from Creative Commons 21 803.28 38.25 ± 12.79 145,624 6619.27 ± 2722.90

What is Global Health? 18 486.47 27.03 ± 10.02 87,653 4869.61 ± 2054.00
Consilience Sustainability In Progress (SIP) Podcast 9 403.95 44.88 ± 17.89 70,461 7829.00 ± 3535.75

Research Pulse: Future Focussed Health Insights 16 177.79 11.11 ± 2.29 33,672 2104.50 ± 476.85
Our People: Central to Healthcare 9 161.15 17.91 ± 7.42 31,545 3505.00 ± 1474.57

Table 1: Podcasts used for model development. This table summarizes the STEMM podcasts licensed
under Creative Commons Attribution (CC-BY) and content from The New England Journal of Medicine
(NEJM) used for PodGPT’s continual pre-training. It provides key details, including podcast names, episode
counts, total audio durations, average episode lengths with standard deviations, text token counts, and av-
erage tokens per episode with standard deviations. Podcasts from NEJM, The Journal of Sustainable De-
velopment, and The Columbia University Journal of Global Health offered a broad range of episodes with
substantial audio durations and high token volumes, capturing in-depth discussions on critical topics in re-
search and education. The podcast content, transcribed using OpenAI’s Whisper model, forms a diverse
and comprehensive dataset that strengthens PodGPT’s knowledge base and comprehension across STEMM
domains.
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Language MMLU Benchmark
Model

Gemma 2B Gemma 7B LLaMA 8B
Baseline Ours Baseline Ours Baseline Ours

English

Physics 29.85 30.74 (0.12) 42.38 47.64 (0.64) 49.83 58.46 (0.36)
Biology 44.82 46.58 (0.45) 63.32 66.43 (0.58) 69.06 78.18 (0.22)

Chemistry 30.04 30.96 (0.62) 43.42 44.14 (1.31) 48.08 50.82 (1.08)
Computer Science 40.59 44.20 (0.11) 53.58 54.62 (0.29) 53.10 57.22 (0.33)

Engineering 39.31 42.07 (0.49) 44.14 47.94 (0.60) 48.97 59.31 (0.49)
Mathematics 25.69 26.44 (0.57) 34.97 39.23 (0.16) 50.41 43.13 (0.62)

Medicine 40.62 41.72 (0.15) 55.22 59.50 (0.14) 66.11 74.05 (0.16)
Average 34.92 36.36 (0.11) 47.66 51.15 (0.27) 55.89 59.84 (0.13)

Table 2: Performance of PodGPT on English benchmarks. All models were fine-tuned using English
podcast data and evaluated on STEMM subsets within MMLU benchmarks, which include physics, biology,
chemistry, computer science, engineering, mathematics, and medicine. The performance of baseline models
was compared against our PodGPT model (denoted as Ours). Bold numbers highlight the best-performing
model in each category, showcasing PodGPT’s ability to achieve superior results across various STEMM
domains.
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Benchmark Datasets MedExpQA MedMCQA MedQA PubMedQA MMLU Medicine Average

Model

Gemma 2B

Baseline 19.20 34.71 29.54 46.80 40.62 34.17
Ours 21.20 (0.69) 34.62 (0.02) 32.91 (0.15) 54.25 (0.54) 41.72 (0.15) 36.94

Baseline+RAG 23.20 35.91 32.60 49.00 41.47 36.44
Ours+RAG 28.00 (0.00) 35.96 (0.07) 34.43 (0.12) 51.95 (0.78) 42.12 (0.13) 38.49

Gemma 7B

Baseline 34.40 40.69 37.78 61.80 55.22 45.98
Ours 42.00 (0.89) 44.64 (0.09) 44.14 (0.21) 57.35 (1.37) 59.50 (0.14) 49.53

Baseline+RAG 35.20 40.64 39.28 61.40 54.14 46.13
Ours+RAG 47.40 (1.18) 43.54 (0.07) 43.32 (0.25) 55.70 (1.88) 60.11 (0.39) 50.01

LLaMA 8B

Baseline 55.20 51.28 53.50 72.00 66.11 59.62
Ours 62.20 (0.35) 55.90 (0.10) 59.80 (0.25) 73.75 (0.22) 74.05 (0.16) 65.14

Baseline+RAG 54.40 53.93 54.75 72.40 68.13 60.72
Ours+RAG 57.20 (0.40) 54.98 (0.16) 57.07 (0.28) 72.50 (0.22) 71.67 (0.21) 62.68

Table 3: Performance of PodGPT with RAG on English benchmarks. All models were fine-tuned with
English STEMM podcast data and evaluated on various medical QA benchmarks, including MedExpQA,
MedMCQA, MedQA, PubMedQA, and the MMLU Medicine subset. For each model, baseline performance
was compared against PodGPT (indicated as Ours). Additionally, the performance of baseline models inte-
grated with RAG (denoted as Baseline+RAG) and PodGPT with RAG (denoted as Ours+RAG) was eval-
uated. The results demonstrated PodGPT’s superior performance, highlighting the effectiveness of incor-
porating podcast data into the training process. Bold numbers indicate the best-performing model in each
category.
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Language Benchmark Datasets
Model

Gemma 2B Gemma7B LLaMA 8B
Baseline Ours Baseline Ours Baseline Ours

Mandarin

MedQA-MCMLE 33.54 33.14 (0.13) 40.81 45.20 (0.06) 56.19 69.79 (0.22)
Physics 32.75 31.73 (0.37) 35.37 40.13 (0.54) 36.40 46.74 (0.12)
Biology 24.26 25.44 (0.00) 33.14 37.43 (0.64) 28.79 34.66 (0.63)

Chemistry 25.00 27.08 (0.32) 29.55 37.12 (0.54) 38.33 58.32 (0.29)
Computer Science 32.24 34.18 (0.32) 40.78 47.92 (0.59) 37.98 48.30 (0.62)

Engineering 33.40 32.05 (0.40) 41.72 45.58 (0.20) 25.47 30.24 (0.93)
Mathematics 26.82 24.64 (0.65) 27.96 30.73 (0.81) 41.66 53.19 (0.14)

Medicine 31.18 31.62 (0.15) 35.72 39.65 (0.18) 33.03 41.53 (0.69)
Average 29.93 30.03 35.66 40.38 37.70 47.89

French

MedExpQA 19.20 22.40 (0.00) 28.00 37.40 (1.18) 48.80 53.40 (0.66)
FrenchMedMCQA 31.46 28.04 (0.22) 33.64 43.69 (0.34) 49.84 59.50 (0.38)

Physics 26.93 28.88 (0.23) 35.58 42.65 (0.59) 44.85 51.61 (0.19)
Biology 34.51 39.35 (0.39) 50.16 57.04 (0.34) 44.14 45.07 (0.71)

Chemistry 26.07 29.09 (0.32) 37.98 40.20 (0.53) 44.42 54.18 (0.22)
Computer Science 35.46 37.40 (0.69) 44.20 45.23 (0.70) 50.34 58.10 (0.57)

Engineering 38.62 36.20 (0.60) 46.90 47.59 (0.00) 34.70 40.33 (0.83)
Mathematics 26.14 28.01 (0.51) 30.62 32.92 (0.98) 51.43 59.61 (0.10)

Medicine 32.56 35.48 (0.12) 45.80 51.55 (0.18) 41.34 46.58 (0.24)
Average 30.16 31.77 39.34 44.28 46.55 53.24

Hindi

Physics 25.49 26.60 (0.56) 29.32 33.39 (0.46) 36.09 40.15 (0.08)
Biology 29.02 32.58 (0.18) 29.28 39.08 (0.66) 36.20 34.14 (0.27)

Chemistry 24.08 20.88 (0.10) 35.26 36.97 (0.90) 38.47 47.22 (0.18)
Computer Science 32.15 30.30 (0.40) 36.64 41.49 (0.37) 49.66 48.10 (1.32)

Engineering 43.45 42.42 (0.34) 40.00 41.72 (1.04) 30.50 33.48 (0.33)
Mathematics 25.33 24.87 (0.24) 29.33 30.96 (0.50) 37.85 42.36 (0.13)

Medicine 26.77 29.07 (0.15) 34.00 40.26 (0.21) 33.42 35.99 (0.30)
Average 29.27 29.36 33.37 37.65 37.00 40.52

Spanish

HEAD-QA 33.66 34.38 (0.10) 48.32 52.87 (0.19) 50.73 63.60 (0.19)
MedExpQA 21.60 23.20 (0.00) 32.80 37.40 (0.35) 44.00 54.20 (0.87)

Physics 28.06 28.86 (0.26) 40.64 43.63 (0.11) 45.49 52.22 (0.34)
Biology 30.63 39.50 (0.55) 52.19 57.26 (0.51) 41.93 49.23 (0.41)

Chemistry 27.06 25.94 (0.22) 35.98 39.93 (0.36) 47.43 56.46 (0.36)
Computer Science 37.09 40.43 (0.40) 45.93 48.04 (0.25) 53.10 54.48 (1.29)

Engineering 43.45 38.79 (0.75) 47.59 49.14 (0.89) 37.12 37.70 (0.35)
Mathematics 26.63 25.80 (0.14) 31.14 32.79 (0.39) 48.44 58.14 (0.46)

Medicine 31.89 35.54 (0.15) 45.94 51.81 (0.44) 44.36 52.05 (0.31)
Average 31.12 32.51 42.23 45.83 46.55 54.00

Table 4: Zero-shot performance of PodGPT on non-English benchmarks. All models were fine-
tuned using English podcast data and evaluated on various multilingual STEMM QA benchmarks in lan-
guages such as Mandarin, French, Hindi, and Spanish. These benchmarks included MedQA-MCMLE,
FrenchMedMCQA, MedExpQA, HEAD-QA, and STEMM subsets within MMLU and CMMLU, covering
physics, biology, chemistry, computer science, engineering, mathematics, and medicine. The performance
of baseline models was compared to that of our model, PodGPT (denoted as Ours), to highlight the impact
of integrating podcast data into the training process. Bold numbers indicate the superior performance in each
category.
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Figure 1: PodGPT framework. This figure illustrates the workflow and components involved in the de-
velopment of PodGPT, an audio-augmented large language model tailored for research and education. The
process began by leveraging publicly available generative AI auto-regressive language models across various
scales. These models underwent continuous pre-training on a curated dataset of English CC-BY podcasts
produced by scientific journals and clinical experts, as well as content from The New England Journal of
Medicine (NEJM). The podcast corpus comprised over 3, 700 hours of audio, covering diverse topics in sci-
ence, research, and medicine, visually summarized in the accompanying word cloud. Following pre-training,
PodGPT was rigorously evaluated against leading English medical question-answering benchmarks, such as
MedExpQA, MedMCQA, MedQA, and PubMedQA. It also underwent assessment on STEMM subsets
within MMLU benchmarks, encompassing subjects like physics, biology, chemistry, computer science, en-
gineering, mathematics, and medicine. Additionally, to evaluate its zero-shot transfer capability, multilingual
STEMM benchmarks were included, covering widely spoken languages such as Spanish, French, Hindi, and
Mandarin. The next phase involved developing the software infrastructure, which included an inference en-
gine for model deployment, a messaging queue, database integration, retrieval augmented generation (RAG)
implementation, API microservices, and a responsive human-machine interface. This highly performant and
robust system enabled users with internet access to engage seamlessly with current research and educational
material via an adaptive chatbot. The chatbot supported multi-turn conversations across various languages,
empowering users to access and interact with STEMM knowledge in a dynamic and accessible manner.
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gestational diabetes mellitus.
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Figure 2: PodGPT responses on STEMM queries. The evaluation of PodGPT’s outputs using
the retrieval augmented generation (RAG) framework highlighted its capacity to provide accu-
rate, contextually relevant responses grounded by scientific references. The references were re-
trieved from a vector database and scored for relevance to the query using the bge-reranker-large
model. The relevance score quantified the alignment between the query and retrieved references. A
higher score indicated a stronger contextual match, with the inclusion of references determined by
a tunable score threshold. This hyperparameter allowed for customization to optimize performance
based on specific application needs. The examples provided illustrated PodGPT’s adeptness at gen-
erating precise and contextually grounded outputs across diverse STEMM topics, showcasing its
reliability in integrating evidence-based information into its responses. This approach underscored
the potential of PodGPT to enhance research and education by offering high-quality and citation-
supported answers.
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