
MedPodGPT: A multilingual audio-augmented large lan-
guage model for medical research and education
Shuyue Jia1,∗, Subhrangshu Bit2,∗, Edward Searls3,∗, Lindsey A. Claus3,4,†, Pengrui Fan2,†, Varuna
H. Jasodanand3,†, Meagan V. Lauber3,†, Divya Veerapaneni3,5,†, William M. Wang2,†, Rhoda Au3,6,7,8,9,10

& Vijaya B. Kolachalama2,3,11,‡

1Department of Electrical & Computer Engineering, Boston University, MA, USA
2Department of Computer Science, Boston University, MA, USA
3Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA,
USA
4Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
5Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
6Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of
Medicine, Boston, MA, USA
7The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston,
MA, USA
8Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA,
USA
9Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
10Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
11Faculty of Computing & Data Sciences, Boston University, MA, USA

* These authors contributed equally to this work
† Listed in alphabetical order
‡Corresponding author: Vijaya B. Kolachalama, PhD; Email: vkola@bu.edu; ORCID: https://orcid.
org/0000-0002-5312-8644

1

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.11.24310304doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:vkola@bu.edu
https://orcid.org/0000-0002-5312-8644
https://orcid.org/0000-0002-5312-8644
https://doi.org/10.1101/2024.07.11.24310304


Abstract1

The proliferation of medical podcasts has generated an extensive repository of audio content, rich in spe-2

cialized terminology, diverse medical topics, and expert dialogues. Here we introduce a computational3

framework designed to enhance large language models (LLMs) by leveraging the informational content4

of publicly accessible medical podcast data. This dataset, comprising over 4, 300 hours of audio content,5

was transcribed to generate over 39 million text tokens. Our model, MedPodGPT, integrates the varied di-6

alogue found in medical podcasts to improve understanding of natural language nuances, cultural contexts,7

and medical knowledge. Evaluated across multiple benchmarks, MedPodGPT demonstrated an average im-8

provement of 2.31% over standard open-source benchmarks and showcased an improvement of 2.58% in its9

zero-shot multilingual transfer ability, effectively generalizing to different linguistic contexts. By harness-10

ing the untapped potential of podcast content, MedPodGPT advances natural language processing, offering11

enhanced capabilities for various applications in medical research and education.12
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The emergence of generative artificial intelligence (AI), particularly through the development of large1

language models (LLMs), has marked a significant progression in data analysis and interpretation. Trained2

on extensive text corpora, these models have demonstrated their ability to generate contextually rich and3

accurate content, showcasing advanced analytical prowess. Notable achievements, such as GPT-4’s per-4

formance in medical examinations, underscore the potential of LLMs to revolutionize various disciplines,5

including medicine 1. Amid these advancements, the proliferation of medical podcasts has introduced a vast6

collection of audio content, rich in medical terminology, topic diversity, and expert dialogues. This burgeon-7

ing trend not only serves as a medium for disseminating the latest medical knowledge but also provides a8

unique opportunity to mine linguistic patterns and domain-specific knowledge, enhancing the capabilities of9

language models within the healthcare and clinical sectors.10

Multimodal foundation models in medicine represent a significant leap forward, merging textual in-11

formation with intricate data forms like medical imaging. These models excel in synthesizing and producing12

content that seamlessly integrates text and visuals, enhancing the comprehension of radiological and patho-13

logical imagery 2–6. By training on comprehensive datasets that combine medical narratives with related14

visual elements, these models facilitate a deeper understanding of complex medical phenomena, thus im-15

proving diagnostic accuracy and the quality of medical education 4. The integration of various data modal-16

ities, such as audio content from medical podcasts and lectures, pioneers a promising direction to refine17

language models’ precision and relevance to the medical domain. Given the substantial progress in audio18

transcription technologies, there is a ripe opportunity to develop audio-linguistic foundation models that ad-19

vance existing large language model capabilities. Such advancements could significantly enhance medical20

research and education.21

In this work, we developed MedPodGPT, a computational framework designed to enhance language22

models by leveraging the depth of linguistic and informational content inherent in medical podcasts. It inte-23

grates the diverse dialogues from these podcasts to enhance its capability to interpret complex medical infor-24

mation and generate contextually informed content. MedPodGPT is pretrained on a vast corpus of podcast25

transcripts, encompassing specialized academic discussions. This database allows MedPodGPT to capture a26

wide range of linguistic styles and terminologies in the medical field, thus refining its ability to process and27

generate relevant texts. The development of MedPodGPT not only aligns with the complex nature of medi-28

cal communication but also signifies a major step toward more informed research and educational purposes.29

By leveraging the untapped potential of medical podcasts, MedPodGPT can foster significant advancements30

in medical language understanding, ultimately enhancing the quality and popularity of medical and clinical31

knowledge.32
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Methods1

Dataset description We curated a diverse collection of multilingual medical podcasts encompassing2

various types of medical knowledge. These podcasts are primarily created by biomedical and clinical jour-3

nals, medical exam preparation organizations, and clinician educators, aiming to teach medical students,4

resident physicians, and other learners about different aspects of medical practice. To ensure a broad lin-5

guistic perspective, we collected publicly available podcasts in English, Spanish, and French, which rank6

among the top 5 most widely spoken languages in the world. This collection offers high-quality content that7

covers cultural ethics and inclusion, natural language nuances, medical knowledge, and clinical practices,8

thus potentially advancing the understanding and translation of medical science. Specifically, the medical9

podcast data was selected and filtered based on the following criteria: (1) Podcasts hosted by reputable sci-10

entific, medical, and clinical journals. (2) Podcasts aimed at preparing medical students for standardized11

medical examinations that are hosted by physicians, medical professionals, or organizations. (3) Podcasts12

produced by individuals with medical expertise, including Medical Doctors (M.D.) or Doctors of Philosophy13

(Ph.D.), discussing clinical and medical knowledge to educate medical students and residents. Finally, med-14

ical experts on our team reviewed each podcast to ensure the topics were limited to didactic medicine and15

clinical practice. The complete set of podcast episodes, along with relevant metadata, is detailed in Table 1.16

Dataset processing The pretraining corpus for MedPodGPT consisted of thousands of hours of medical17

podcasts, encompassing academic discussions, clinical case studies, and expert interviews. We transcribed18

these audio files using the state-of-the-art automatic speech recognition model, OpenAI Whisper 7. Built19

upon an encoder-decoder Transformer architecture, the Whisper model resampled the input audio to 16, 00020

Hz and performed temporal chunking. Then, these chunks of audio data were represented by 80-channel21

log-magnitude Mel spectrograms with a 25-millisecond window and 10-millisecond stride. Before being22

processed by the Transformer modules, the input underwent a convolutional layer and was augmented with23

the sinusoidal position embeddings to incorporate positional information. Finally, the Transformer decoder24

module further interpreted the hidden representation of the audio data and generated textual output through25

a language head 8. We utilized the latest Whisper series model, the Whisper large-v3, with 1, 550M param-26

eters, to specify the spoken language for improved speech recognition.27

All the transcripts were cleaned and preprocessed to remove unnecessary information and ensure28

consistency. Initially, we automatically removed sentences with duplicated content. Additionally, sentences29

containing words or characters in other languages were cleaned to avoid transcription errors. Finally, all the30

podcast transcripts were carefully and manually reviewed to maintain content quality. Consequently, 2, 836,31

327, and 34 sentences were filtered from English, Spanish, and French data, accounting for 0.16%, 0.14%,32

and 0.04% of the total content, respectively. This diverse and high-quality dataset ensured that MedPodGPT33

was well-equipped to handle a wide range of medical queries with high precision and contextual relevance.34

Model architecture The Transformer model 9, renowned for its multi-head self-attention mechanism,35

has become the backbone of many state-of-the-art AI models. Unlike traditional methods, the self-attention36

mechanism of the Transformer model captures long-range dependencies with efficient parallelization and37

scalability. Additionally, its deep feedforward neural networks enhance the model’s capacity to learn com-38

plex patterns in data. Our proposed MedPodGPT leverages this advanced architecture and is designed for39

medical and educational purposes. Built upon state-of-the-art general large language models (LLMs) such40
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as Gemma 10, LLaMA 11, and Mistral 12, MedPodGPT is pre-trained on a diverse corpus of textual data41

extracted from medical podcasts. By utilizing instruction-tuned variants of these LLMs, we aimed to im-42

prove instruction-following capabilities and conversational structure. To evaluate the effectiveness of our43

framework, we applied models of varying scales, ranging from 2 to 70 billion parameters.44

Gemma is a series of lightweight open models developed by Google DeepMind. These are text-to-45

text auto-regressive language models, which have pre-trained versions as well as fine-tuned variants. These46

models were trained on the textual datasets on a context length of 8192 from a wide variety of sources. The47

primary sources include web documents, codes, and mathematical content. Several recent advancements48

have been made to improve the performance and training efficiency of the Transformer model. These in-49

clude multi-query attention 13, rotary positional embeddings 14, and GeGLU activations 15. We utilized the50

Gemma models 2B and 7B to validate our framework across different model sizes. LLaMA is a family of51

advanced general-purpose LLMs released by Meta Research, with a publicly accessible 70B model for out-52

standing capability. These models are constructed using a decoder-only Transformer architecture as well as53

the grouped-query attention for improved efficiency 16. Both model variants 8B and 70B were pretrained54

using a context length of 8192 on publicly available sources, with over 5% of the pretraining dataset con-55

sisting of non-English data covering over 30 languages. We encoded medical knowledge into the 8B and56

70B weights to enhance their understanding of medicine. The Mistral series has been open-sourced by the57

Mistral AI team for open and portable generative AI. The models employ the standard decoder-only archi-58

tecture with improved efficiency using grouped-query and sliding window attention, rolling buffer cache,59

and chunking. Furthermore, the initial generative Sparse Mixture of Experts (MoE) model was designed to60

balance computational load and model capability. In this work, we implemented our framework to the 7B61

and 7×8B MoE models to assess the MoE-based architecture.62

Pre-training is a crucial step in the development of LLMs, during which the model learns from a63

vast corpus of text data in an auto-regressive manner. This phase generally leverages self-supervised learn-64

ing, employing methods like masked language modeling, e.g., BERT 17, or autoregressive modeling, e.g.,65

GPT 18. The self-supervised learning framework allows the model to gain a broad understanding of knowl-66

edge, thereby improving its performance in subsequent tasks. In this work, we utilized an auto-regressive67

objective to perform continual pretraining through an iterative gradient solver. The above-mentioned LLMs68

have been pre-trained on trillions of tokens. Thus, one cost-effective and efficient way to encode domain-69

specific knowledge is through continuous pre-training and evolving the pre-trained models with expertise70

corpora, instead of retraining them from scratch. The podcast transcripts were represented by a sequence of71

tokens, i.e., x = {x1, x2, . . . xN}, where xi is a subword token and N denotes the length of the sequence.72

We trained our podcast data on pre-trained models in an auto-regressive manner, optimizing the models by73

minimizing the negative log likelihood. The training objective is as follows,74

Lπθ
= −

∑
log (πθ(xi|x<i)) ,

where πθ is the language model, parameterized by θ.75

Experimental settings To comprehensively analyze the capabilities of MedPodGPT, we employed a76

wide range of model sizes and conducted extensive experiments on multilingual medical knowledge. In77

current literature, benchmarks for multiple-choice question-answering (QA) were commonly utilized to78

evaluate the performance of large medical language models. Thus, in this work, we utilized the multilingual79

multiple-choice QA benchmarks to evaluate the model’s performance. In addition, we conducted experi-80
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ments and documented the performance of all the models that were used in this study on multilingual medical81

benchmarks. This potentially advances the field with an open-source and unified multilingual benchmarking82

library covering training, inference, answer extraction, performance evaluation, and real-world deployment.83

Furthermore, to guarantee scientific reproducible research, we implemented all our experiments with a set84

of unified hyperparameters. Thus, our work was out of the box without any specific hyperparameter tuning85

and further optimization for different models.86

Evaluation benchmarks To evaluate the performance of MedPodGPT, we utilized a comprehensive set87

of medical benchmarks from the most spoken languages in the world, including English, Mandarin, French,88

Spanish, and Hindi. For intra-language experiments, we performed performance evaluations on datasets89

where the language aligned with the podcast content. Furthermore, for cross-language experiments, the90

model was evaluated on benchmarks in different languages compared to the podcasts. This evaluation was91

crucial for validating the effectiveness of the zero-shot multilingual transfer capability of medical LLMs.92

The detailed descriptions of multilingual benchmarks are as follows.93

Medical benchmarks in English The benchmarks for medical natural language understanding in English have94

been significantly advanced over the past decade. In this study, we selected five well-known publicly acces-95

sible benchmarks, which include MedQA 19, PubMedQA 20, MedMCQA 21, MedExpQA 22, and MMLU96

clinical topics 23. For the MMLU benchmark, we followed the Google PaLM work and chose six clinical97

subcategories, i.e., anatomy, clinical knowledge, college biology, college medicine, medical genetics, and98

professional medicine 24. These benchmarks cover a wide range of medical topics and question formats,99

providing a robust evaluation framework to assess the model’s capabilities.100

Medical benchmarks in Chinese The benchmarking of medical and clinical knowledge in Chinese has be-101

come increasingly popular recently. A range of databases have been successively proposed to assess the102

performance of Chinese language models on medical data 25. In this study, we adopted the popular MedQA-103

MCMLE 19 and CMMU medical topics 25. For the CMMLU benchmark, the medical and clinically related104

subsets were utilized, containing anatomy, clinical knowledge, medical school, genetics, nutrition, tradi-105

tional Chinese medicine, and virology 26. These eight datasets provide comprehensive and in-depth Chinese106

medical contexts for evaluating the knowledge and reasoning capabilities of multilingual language models.107

Medical benchmarks in Spanish The Spanish medical testbed encourages the NLP community to develop108

new approaches for understanding and reasoning medical and clinical knowledge in Spanish. The HEAD-109

QA benchmark was utilized in our research. It is a multiple-choice healthcare dataset obtained from ex-110

aminations in the Spanish healthcare system 27. Additionally, we also employed the MedExpQA Spanish111

subset 22 and Spanish MMLU clinical topics 26. The selected benchmarks cover various medical content, in-112

cluding medical, clinical, and healthcare knowledge, providing an adequate platform to evaluate the model’s113

performance in Spanish.114

Medical benchmarks in French We primarily selected the popular FrenchMedMCQA dataset, which consists115

of 3, 105 questions taken from the French pharmacy diploma examinations 28. Following Wang et al., we116

only performed performance evaluations on questions with a single answer 26. As a result, the total number117

of questions in the testing set was 321. Furthermore, the MedExpQA French subset 22 and French MMLU118

clinical topics 26 were also included in this work. The databases mentioned above played a significant role119

in interpreting French medical knowledge and assessing the performance of models in French.120
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Medical benchmarks in Hindi To encode medical and clinical content in Hindi, we included the Hindi121

MMLU clinical topics 26 in our benchmarking. Thus, we can evaluate the model’s ability to understand122

medical language in Hindi and cover one of the most widely spoken languages in the world. It also sets the123

standards for evaluating multilingual LLMs in the medical and clinical field.124

Implementation details We began transcribing podcast data using the OpenAI Whisper large-v3 model125

for an automatic speech recognition task. The chunk length was set to 30 seconds with a 5-second stride on126

both sides to improve the continuity and coherence of the transcriptions. The batch size was 96, and 384127

tokens were generated per chunk to parallelly process audio chunks.128

We encoded medical knowledge and clinical practice across a wide range of model sizes, from 2B to129

70B. We have implemented publicly available language models, which include the 2B and 7B versions of130

the Gemma series, the most recent fine-tuned version (v0.3) of the Mistral 7B family, the instruction-tuned131

variant of the LLaMA 3 8B collections, the first open-sourced MoE model, which is the Mixtral 8×7B sparse132

MoE, and the instruction-tuned generative text LLaMA models in 70B. During model training, we utilized133

Brain float 16 data type with the AdamW optimizer to prevent overflow issues 29, and the context window134

was set to 2, 048 26. We trained all models for 5 epochs with an initial learning rate of 5× 10−6 with a 0.03135

warm-up ratio and a cosine schedule. The weight decay rate was 0.01, and the gradient was accumulated136

during each training step. Due to the computational limit, we have employed the 8-bit quantized AdamW137

optimizer and implemented the low-rank adaptation (LoRA) in the Mixtral 8×7B sparse MoE and LLaMA138

3 70B models. The rank and alpha were set to 16 and 32, respectively, and the dropout rate was 0.1. All the139

models were optimized based on the unified hyper-parameter settings without specific tuning for superior140

performance.141

Software and database infrastructure We created a custom graphical user interface (GUI) and plat-142

form infrastructure to allow users to interact with MedPodGPT, providing public access to our model. Our143

goal was to deliver our model with a user-friendly and responsive conversational interface. For hardware, we144

utilized a custom-built method to deploy our LLMs at scale using entirely self-hosted and open-source tools145

without relying on software as a service (SaaS) or proprietary software. MedPodGPT’s hardware included146

4 NVIDIA RTX 3080 Ti GPUs and 3 production servers, each with 4 CPU cores and 8GB RAM. This setup147

is modest, supporting only hundreds of individual users per day, but the architecture can be quickly scaled148

to match the load.149

We employed a microservice architecture using Kubernetes as a container orchestration tool. Kuber-150

netes manages clusters of nodes hosting microservices wrapped inside Docker containers. It facilitates the151

creation of highly available distributed systems that automatically scale to meet needs and ensure secure152

inter-cluster communication, IP address allocation, load balancing, and reverse proxy services. We utilized153

ReactJS and NextJS for the front end. ReactJS furnishes a collection of APIs and libraries to construct154

reusable web components, while NextJS provides scaffolding for ReactJS applications, encompassing an155

HTTP server, server-side rendering, and a “back end for a front end” design pattern. For LLM deployment,156

we employed the vLLM library, which offers a fast and portable inference server that batches inference tasks157

efficiently 30. It requires a minimum of NVIDIA 11 and a 7.5 compute-capable NVIDIA GPU, supporting158

several GPUs on different host machines simultaneously.159
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Authentication and user management are crucial components of our architecture. In order to distribute160

resources equitably among potential researchers, we have implemented OAuth 2.0 compliant authorization161

and user management in addition to a per-token rate limiting system based on user scopes and total system162

load. MedPodGPT implements features which users familiar with widely-used chatting services expect, such163

as multiturn conversations and the ability to open many conversations. Furthermore, MedPodGPT utilized164

Apache Cassandra, a distributed NoSQL database designed for high availability and query optimization.165

The backend API router, which was built with Flask, stores new chats and conversations in Cassandra and166

sends text inference requests to a queue. For queuing and message processing, we utilized RabbitMQ and167

Redis, which are a message broker and key-value databases, respectively. Each fine-tuned model can be168

assigned its own queue in RabbitMQ to receive messages. When a user requests a message, the conversation169

is processed by a vLLM gateway module. This module asynchronously generates text completions from170

vLLM, acknowledges the message to the broker, and stores the message in Redis. The API then serves the171

completed text inference via another text completion endpoint, referenced by a unique text completion ID.172

Data and model availability A multilingual LLMs benchmarking library along with the source codes173

are made available at https://github.com/vkola-lab/MedPodGPT.174
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Results1

We conducted comprehensive experiments to assess MedPodGPT’s performance on various multilingual2

medical QA benchmark datasets. Our results demonstrate that incorporating medical audio podcast data3

enhances the model’s ability to understand and generate medically relevant information. In addition, the4

models across a wide range of scales outperformed their respective baselines in both in-domain benchmarks5

and zero-shot domain generalization across multilingual medical datasets.6

Performance on in-domain benchmarks The evaluation of MedPodGPT across diverse medical7

question-answering benchmarks demonstrated enhanced model efficacy following pre-training with mul-8

tilingual medical podcast datasets (Table 2). Specifically, on the MedExpQA benchmark, MedPodGPT9

achieved significant performance gains, i.e., a 10.80% increase with the Gemma 7B model, 8.40% with the10

Mixtral 8×7B MoE, and 8.20% with the Gemma 2B model. In MedMCQA, improvements were notable,11

with the Gemma 7B model increasing by 4.20% and the Mixtral MoE by 3.34%. Additionally, the Gemma12

7B model showed enhancements of 6.30% and the 2B model 3.69% on the MedQA database. Evaluation on13

French benchmarks revealed substantial improvements, with MedPodGPT achieving 10.67% and 9.81% en-14

hancements on FrenchMedMCQA with Gemma 7B and LLaMA 3 70B models, respectively. Moreover, on15

French MedExpQA, the Gemma 7B model outperformed the baseline by a remarkable 12.80%. In Spanish16

benchmarks, the Gemma 7B model of MedPodGPT demonstrated improvements of 6.26% on HeadQA and17

5.60% on MedExpQA. Lastly, across multilingual MMLU benchmarks, MedPodGPT consistently surpassed18

baseline models, achieving improvements up to 13.50% and averaging 7.23%. Overall, MedPodGPT showed19

a cumulative 2.31% enhancement across in-domain benchmarks, highlighting the advantage of leveraging20

open-source multilingual podcast datasets to enhance model efficacy.21

As shown in Table S1, we further evaluated MedPodGPT across various English medical QA bench-22

marks after pre-training with English medical podcast data. On the MedExpQA dataset, MedPodGPT demon-23

strated a notable increase of 6.60% in the Gemma 2B model, 7.80% in the Gemma 7B model, and 7.00%24

in the Mixtral MoE model. Similarly, on the MedMCQA dataset, there were improvements of 3.89% in25

the Gemma 7B model and 2.59% in the Mistral 7B model. For the MedQA dataset, the performance en-26

hancements included a 6.87% increase in the Gemma 7B model and a 3.85% increase in the Gemma 2B27

model. In the PubMedQA dataset, the Gemma 2B model saw an improvement of 9.40%. In the MMLU28

anatomy dataset, the Mixtral MoE and Gemma 7B improved by 2.97% and 2.59%, respectively. Addition-29

ally, for the college biology dataset, there were increases of 4.34% in the Gemma 2B model, 8.16% in the30

Gemma 7B model, and 4.68% in the Mistral 7B model. For the college medicine dataset, the Gemma 7B and31

Mixtral MoE models showed increases of 4.19% and 4.05%, respectively. Lastly, in the clinical knowledge32

dataset, the Gemma 7B model showed a 7.07% improvement, while the Mixtral MoE model had an increase33

of 7.84%. These results underscore the effectiveness of integrating podcast data into the training process,34

resulting in performance gains across most instances, with an average improvement of 2.16%.35

Zero-shot cross-lingual performance In Table 3, we validated MedPodGPT’s zero-shot cross-lingual36

performance using multilingual benchmarks. These benchmarks encompass a wide array of medical sub-37

jects, including traditional Chinese medicine, medical nutrition, and Hindi MMLU. The Gemma 7B model38

of MedPodGPT showcased a significant 5.47% improvement on the MedQA-MCMLE benchmark. More-39

over, it exhibited superior performance on CMMLU benchmarks, achieving average increases up to 5.19%.40
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Remarkably, the Gemma 7B model achieved significant performance improvements of 8.65%, 8.29%, and41

6.59% on CMMLU benchmarks focusing on clinical knowledge, anatomy, and virology topics. Lastly,42

across Hindi benchmarks, particularly clinical knowledge, medical genetics, and professional medicine,43

MedPodGPT demonstrated notable performance gains, with improvements reaching up to 10.94% across44

various models. Overall, MedPodGPT demonstrated its superiority by enhancing its zero-shot multilingual45

transfer capability, achieving an average improvement of 2.58% across models and effectively generalizing46

to diverse linguistic contexts.47

In addition, MedPodGPT was trained on English podcast data, and its zero-shot transfer capability48

was assessed as well in Table S2. These benchmarks encompass a wide range of medical subjects, including49

traditional Chinese medicine, French pharmaceutical examinations, and specialized assessments in the Span-50

ish healthcare system. MedPodGPT showed improved performance on multilingual MMLU and CMMLU51

benchmarks. In Mandarin benchmarks, such as MedQA-MCMLE and clinical knowledge, MedPodGPT out-52

performed the baseline models, showing an average improvement of 1.87%. It also achieved enhancements53

of up to 7.28% on Mandarin benchmarks. Second, for the French benchmarks, including FrenchMedMCQA54

and MedExpQA, MedPodGPT demonstrated notable performance gains, with improvements ranging from55

1.72% to 3.87% across different categories. Lastly, in the Hindi and Spanish benchmarks, the model also56

exhibited enhanced performance, particularly in categories such as anatomy and clinical knowledge, where57

it showed increases of up to 11.67%. Overall, MedPodGPT exhibited a 2.28% enhancement in zero-shot58

multilingual transfer, further propelling AI advancements in medicine.59
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Discussion1

We present MedPodGPT, a large language model that leverages the rich and diverse linguistic content of2

medical podcasts, capturing a wide array of medical terminologies and conversational contexts. Extensive3

pre-training on podcast data has endowed MedPodGPT with the capability to generate relevant medical4

information. When benchmarked against existing datasets such as MedQA, PubMedQA, MedMCQA, and5

various MMLU categories, MedPodGPT demonstrated superior performance, particularly in areas requiring6

detailed medical knowledge and contextual understanding. These results highlight its potential to serve as a7

valuable tool for medical education and research.8

Our results indicate that our audio-augmented LLM framework improves the accuracy and relevance9

of medical information generated by the model. This enhancement is particularly evident when compared to10

a series of baseline models, such as Google Gemma, Meta LLaMA, and Mistral models, where MedPodGPT11

consistently outperformed these models across multiple benchmarks. This demonstrates that incorporating12

audio data provides a richer understanding of medical conversations, which is crucial for accurate medical13

language processing.14

Our study has a few limitations. First, we focused on publicly available medical podcasts based on15

content feasibility and availability. While we incorporated content from popular medical podcasts, there are16

certainly more medically relevant contexts available, such as textbooks and even video tutorials. Extend-17

ing the language medium beyond English, we downloaded multilingual medical podcast data, specifically18

Spanish and French. We sought to include podcasts in Hindi and Mandarin, but we found relevant content to19

be limited. Despite these constraints, our model successfully learned from the multilingual podcast content,20

performing well on respective language benchmarks and even showing zero-shot performance on Hindi and21

Mandarin benchmarks. In the future, we aim to acquire richer and more relevant podcast data in numerous22

languages to further enhance model training and performance. Future work on MedPodGPT should also23

include a comprehensive ethical evaluation to ensure the model consistently adheres to high standards in24

diverse settings. Also, we observed that pre-training using podcast data did not improve performance on a25

few benchmarks. This finding can be attributed to the nature and structure of podcasts, which contrasts with26

the demands of these benchmarks. Podcast data, while rich in narrative and contextual content, lacks the27

precision, structure, and specific terminologies found in traditional medical texts and scientific literature.28

The informal and conversational style of podcasts may not align well with the formal, structured, and detail-29

oriented requirements of benchmarks such as PubMedQA, clinical knowledge, and professional medicine.30

To address this limitation and enhance performance, it is crucial to complement podcast training data with31

more structured and detailed medical texts, ensuring a balanced and comprehensive training dataset.32

The findings from this study indicate that MedPodGPT represents an important advancement in the33

application of language models for medical applications. Its ability to process and generate medically rel-34

evant text holds promise for enhancing medical education and research. However, the deployment of such35

advanced models must be accompanied by rigorous considerations, particularly concerning patient confiden-36

tiality and data integrity. By continuing to advance the intersection of AI and medicine, we can ultimately37

improve the accessibility and quality of medical education and research, ensuring that such technologies38

benefit trainees and researchers alike. MedPodGPT highlights the value of integrating podcast data to en-39

hance language models, which can be extended to applications beyond health and medicine by incorporating40

diverse audio podcasts.41
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Figure 1: MedPodGPT framework. This figure illustrates the workflow and components involved
in developing MedPodGPT, a multilingual audio-augmented large language model designed for
medical research and education. The process began by utilizing publicly available generative AI
auto-regressive language models across various scales, including the Gemma series, LLaMA col-
lections, and the Mistral family. These models underwent multilingual pre-training on podcast
content from journals, exam preparation materials, and clinical practice in English, Spanish, and
French, totaling over 4, 300 hours of context covering diverse medical topics indicated in the word
cloud. Following pre-training, the models were evaluated using multilingual medical question-
answering benchmarks, spanning various subjects, including clinical knowledge, anatomy, medical
genetics, and biology, in the most commonly spoken languages worldwide. Additional benchmarks
in Hindi and Mandarin were also employed to assess MedPodGPT’s zero-shot transfer capability.
The next phase involved software development, encompassing the inference engine for model de-
ployment, messaging queue, database, API microservices, and responsive human-machine inter-
face. This infrastructure enables users to engage through a chat interface supported by an adaptive
chatbot, facilitating multi-turn conversations.
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Journal Podcasts

Podcast Language Episodes Audio Time
(min)

Mean Length Episode
±σ (min)

Number of
Text Tokens

Mean Text Tokens
per Episode ±σ

NEJM English 1974 39256.0 19.89 ± 9.74 4,760,783 1928.22 ± 14.87
JAMA English 2235 32163.0 14.39 ± 8.66 3,454,191 1928.64 ± 15.54

The Lancet English 2029 28279.0 13.94 ± 7.62 3,300,982 1925.89 ± 20.88
The BMJ English 300 13264.2 44.21 ± 10.35 2,235,458 1897.67 ± 75.07

Annals Latest Highlights English 396 6427.0 16.23 ± 8.09 803,958 1927.96 ± 14.60
Annals On Call English 142 3440.0 24.22 ± 3.65 522,547 1928.22 ± 15.64

Pediatrics on Call English 98 3299.0 33.66 ± 6.09 565,781 1930.99 ± 15.00
Procedure Ready: Ob/Gyn English 20 383.7 19.19 ± 5.00 63,667 1929.30 ± 13.41

Revista Médica AFP Podcast Spanish 40 1055.0 26.38 ± 3.70 190,518 1924.42 ± 16.34
Test Preparation Podcasts

Podcast Language Episodes Audio Time
(min)

Mean Length of Episode
±σ (min)

Number of
Text Tokens

Mean Text Tokens
per Episode ±σ

Divine Intervention Podcasts English 480 18363.8 38.26 ± 24.07 2,269,153 1931.19 ± 13.53
The Radiology Review Podcast English 127 2517.7 19.82 ± 10.10 292,949 1927.29 ± 26.81

Crush Step 1: The Ultimate USMLE Step 1 Review English 49 2176.2 44.41 ± 15.31 328,194 1930.55 ± 13.03
The USMLE Guys Podcast English 31 1464.3 47.24 ± 43.47 156,923 1937.32 ± 6.12

Harrison’s PodClass: Internal Medicine Cases and Board Prep Spanish 95 905.2 9.53 ± 2.24 101,574 1916.49 ± 22.77
El Interno Desvelado Spanish 4 99.13 24.78 ± 11.91 17,121 1902.33 ± 25.54
Curso MIR Asturias Spanish 3 17.7 5.89 ± 4.53 3,872 1936.00 ± 9.00

Clinical Podcasts

Podcast Language Episodes Audio Time
(min)

Mean Length of Episode
±σ (min)

Number of
Text Tokens

Mean Text Tokens
per Episode ±σ

The Curbsiders Internal Medicine Podcast English 485 28749.2 59.39 ± 16.08 5,772,083 1929.82 ± 17.06
This Podcast Will Kill You English 168 18363.8 38.26 ± 24.07 2,269,153 1931.19 ± 13.53

The Clinical Problem Solvers English 315 13500.1 42.86 ± 14.51 2,493,777 1927.18 ± 23.32
PsychEd: educational psychiatry podcast English 62 3556.3 57.36 ± 17.52 607,237 1927.74 ± 16.36

Run the List English 97 1973.0 20.34 ± 6.44 352,977 1928.84 ± 15.17
Goljan Pathology Lectures English 37 1886.0 50.97 ± 4.58 412,086 1934.68 ± 13.45

Core IM: 5 Pearls English 54 1847.1 34.21 ± 10.19 361,213 1931.62 ± 10.16
Neurology Clinical Pearls English 27 333.2 12.34 ± 3.19 42,494 1931.54 ± 10.78
Tutorı́as Medicina Interna Spanish 570 19834.9 34.80 ± 25.01 4,311,263 1898.39 ± 64.31

Leucocitos isotópicos Spanish 68 2537.8 37.32 ± 9.55 481,676 1797.29 ± 154.42
Medicina Con Cabeza Spanish 246 2457.8 9.99 ± 3.44 462,383 1902.81 ± 57.55
Medicina de impacto Spanish 57 2406.5 42.22 ± 9.13 492,363 1915.81 ± 29.28

Ronda, El Podcast de Medicina Interna Spanish 20 1084.4 54.22 ± 25.01 206,218 1891.91 ± 71.90
Medicina De Bolsillo | Hablando de Medicina Spanish 45 958.3 21.30 ± 10.79 186,268 1844.24 ± 124.82

La Tertulia de Cajal Spanish 27 876.3 32.46 ± 18.28 186,001 1897.97 ± 57.71
PedCast: Dos Pediatras y un Podcast Spanish 14 458.5 32.75 ± 10.62 89,127 1896.32 ± 58.05

Neurobiologie et Immunite French 21 1882.8 89.66 ± 14.77 383,189 1896.97 ± 40.12
Incubateur Néonat French 25 1579.3 63.17 ± 21.28 391,475 1918.99 ± 24.15

Guideline.care French 68 1369.1 20.13 ± 6.30 293,301 1917.0 ± 29.29
La Minute Rhumato French 119 921.0 7.74 ± 2.19 132,354 1918.17 ± 23.59

Oncologie cellulaire et moléculaire - Hugues de Thé French 11 852.9 77.53 ± 19.81 186,693 1905.03 ± 44.42
Le podcast des Conférenciers (UFR3S) by Université de Lille French 65 768.4 11.82 ± 19.58 86,105 1913.44 ± 42.78

Super Docteur French 47 676.3 14.39 ± 6.50 139,824 1915.40 ± 33.26
Médecine, Sciences et Recherche clinique French 24 332.2 13.84 ± 4.58 63,314 1918.61 ± 26.60

NéphrOdio French 40 318.6 7.96 ± 2.58 55,716 1921.24 ± 19.59
La Minute Néonat French 37 307.6 8.31 ± 1.93 57,435 1914.50 ± 31.58
Le Med G Eclairé French 11 249.2 22.66 ± 16.76 51,988 1925.48 ± 12.57

La Minute du Pancréas French 22 209.4 9.52 ± 2.34 38,376 1918.80 ± 23.34
L’essentiel des principales pathologiesaå French 14 151.3 10.81 ± 13.10 23,098 1924.83 ± 11.25

AR-Pod le Podcast de lanesthésie-réanimation French 12 139.0 11.59 ± 4.52 22,998 1916.50 ± 26.48

Table 1: Podcasts used for model development. This table presents an overview of 46 journal, test
preparation, and clinical podcasts used for the continual pre-training of MedPodGPT. It includes
information on podcast names, languages, number of episodes, total audio time, mean length of
episodes with standard deviation, number of text tokens, and mean text tokens per episode with
standard deviation. For journal podcasts, NEJM, JAMA, The Lancet, and the BMJ have exten-
sive episode counts with significant audio durations and token counts, showcasing their depth and
breadth in medical discussions. Test preparation podcasts like “Crush Step 1” and “Divine Inter-
vention” highlight detailed USMLE preparation with varying episode lengths and comprehensive
content coverage. Clinical podcasts such as “The Clinical Problem Solvers” and “The Curbsiders
Internal Medicine Podcast” emphasize educational content for medical professionals, with sub-
stantial episode counts and detailed discussions. The data from these podcasts, transcribed using
OpenAI Whisper, demonstrates the diverse and robust dataset used for enhancing MedPodGPT’s
medical knowledge and comprehension.
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Language Benchmark Datasets
Model

Gemma 2B Gemma 7B Mistral 7B LLaMA 3 8B Mixtral MoE LLaMA 3 70B
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

English

MedExpQA 15.20 23.40 34.40 45.20 47.20 46.20 57.60 61.40 52.80 61.20 78.40 77.60
MedMCQA 34.81 35.24 40.66 44.86 42.65 45.50 58.64 58.82 50.20 53.54 71.12 70.58

MedQA 29.69 33.38 38.26 44.56 46.27 47.80 61.12 59.21 54.05 53.22 77.85 77.51
PubMedQA 47.80 55.50 63.40 55.30 51.60 41.75 59.40 49.20 42.80 32.20 73.00 75.75

Anatomy 43.70 42.04 49.63 52.96 56.30 56.67 68.89 69.82 64.44 68.15 77.04 77.78
Clinical Knowledge 41.51 38.78 55.47 62.17 61.89 62.26 72.08 73.68 67.92 74.90 82.26 83.40

College Biology 44.44 47.05 61.11 68.06 61.81 64.93 74.31 77.43 72.92 77.95 91.67 92.36
College Medicine 36.99 37.14 50.29 55.06 57.80 59.97 67.05 68.06 63.58 69.07 78.61 78.18
Medical Genetics 43.00 44.75 54.00 66.00 64.00 65.50 80.00 77.25 70.00 78.00 91.00 91.00

Professional Medicine 29.78 34.10 50.37 60.02 56.99 63.33 76.84 75.64 72.06 73.07 90.44 90.26
Average 36.69 39.14 49.76 55.42 54.65 55.39 67.59 67.05 61.08 64.13 81.14 81.22

French

FrenchMedMCQA 29.91 28.43 29.60 40.27 45.48 44.32 41.74 44.63 55.14 58.02 63.24 73.05
MedExpQA 19.20 20.60 26.40 39.20 40.80 41.20 48.00 43.60 50.40 56.00 76.80 74.00

Anatomy 35.56 35.18 48.15 49.63 33.33 39.45 45.19 47.41 55.56 59.63 67.41 68.52
Clinical Knowledge 32.45 36.51 50.94 57.92 55.47 53.02 61.89 61.13 65.66 71.51 78.87 80.56

College Biology 33.33 38.02 46.53 52.78 53.47 49.65 57.64 62.50 67.36 72.92 86.81 87.67
College Medicine 32.95 35.84 43.93 47.98 51.45 48.56 57.80 59.40 57.80 63.44 69.94 74.71
Medical Genetics 35.00 40.00 50.00 57.25 47.00 59.00 66.00 67.00 71.00 72.00 90.00 89.50

Professional Medicine 24.26 28.95 33.09 42.00 43.38 43.84 51.47 55.51 59.56 64.15 72.79 73.34
Average 30.33 32.94 41.08 48.38 46.30 47.38 53.72 55.15 60.31 64.71 75.73 77.67

Spanish

HeadQA 33.77 34.32 48.21 54.47 53.79 55.54 59.66 61.24 64.77 68.00 81.44 82.44
MedExpQA 21.60 23.00 32.80 38.40 46.40 40.40 40.00 43.00 52.80 52.40 73.60 76.60

Anatomy 37.78 39.08 42.22 51.11 45.93 49.63 48.15 52.96 60.74 62.22 71.11 74.44
Clinical Knowledge 37.74 38.78 53.96 55.47 54.34 56.13 58.49 62.08 68.68 68.40 78.49 80.00

College Biology 29.17 35.94 48.61 50.35 55.56 56.25 54.86 55.04 66.67 69.10 85.42 84.20
College Medicine 32.37 34.39 43.93 48.84 54.34 48.99 49.71 54.05 59.54 58.24 69.94 72.97
Medical Genetics 32.00 34.75 46.00 59.50 53.00 57.25 72.00 68.00 67.00 66.75 86.00 86.75

Professional Medicine 26.47 30.06 38.24 43.56 47.06 45.68 51.84 50.74 53.68 56.90 69.49 68.94
Average 31.36 33.79 44.25 50.21 51.30 51.23 54.34 55.89 61.74 62.75 76.94 78.29

Table 2: MedPodGPT’s performance on multilingual medical QA benchmarks. All the mod-
els were fine-tuned with English, French, and Spanish medical podcast data and evaluated on var-
ious medical QA benchmarks in three in-domain languages. Benchmarks included MedExpQA,
MedMCQA, MedQA, PubMedQA, HeadQA, and MMLU medical and clinical topics (covering
anatomy, clinical knowledge, college biology, college medicine, medical genetics, and professional
medicine). The baseline model’s performance was compared with our MedPodGPT (indicated as
Ours). The superior performances of MedPodGPT highlight the effectiveness of incorporating pod-
cast data into the training process. The numbers in bold font indicate the best-performing model in
each category.
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Language Benchmark Datasets
Model

Gemma 2B Gemma 7B Mistral 7B LLaMA 3 8B Mixtral MoE LLaMA 3 70B
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

Chinese

MedQA-MCMLE 33.39 33.43 40.51 45.98 39.67 39.25 63.63 66.32 45.80 47.14 84.68 83.73
Anatomy 28.38 23.98 25.00 31.59 25.00 30.41 33.78 35.98 33.11 26.35 63.51 64.02

Clinical Knowledge 29.11 28.27 31.22 39.87 33.33 32.60 49.37 50.95 39.24 38.61 71.73 71.94
College Medicine 28.94 32.23 33.70 36.08 30.77 30.68 52.01 56.50 38.46 40.94 75.82 80.49
Medical Genetics 32.39 32.39 43.75 45.17 38.64 42.33 43.18 44.60 45.45 45.88 61.36 57.53
Medical Nutrition 33.79 35.69 40.69 44.66 42.07 37.24 53.10 50.00 49.66 51.90 66.21 68.28

Traditional Chinese Medicine 27.57 28.52 31.35 36.35 24.86 28.52 43.24 39.46 30.27 30.94 66.49 67.98
Virology 37.28 36.98 46.15 54.44 43.79 48.22 59.76 58.88 53.25 50.15 76.33 77.51
Average 31.36 31.44 36.55 41.77 34.77 36.16 49.76 50.34 41.91 41.49 70.77 71.44

Hindi

Anatomy 25.93 32.22 34.07 36.86 23.70 30.00 40.00 35.18 31.11 34.44 52.59 57.78
Clinical Knowledge 26.42 28.96 41.89 41.04 24.91 35.85 48.30 46.70 38.11 36.70 63.40 69.06

College Biology 26.39 33.16 26.39 34.03 19.44 28.47 32.65 37.16 30.56 32.81 58.33 68.06
College Medicine 24.86 27.60 42.20 43.35 23.12 33.09 41.04 43.64 27.17 33.24 60.69 64.74
Medical Genetics 31.00 30.50 36.00 41.75 28.00 29.25 46.00 45.75 40.00 43.25 71.00 77.00

Professional Medicine 25.37 26.19 30.88 41.08 22.06 28.67 36.40 39.34 29.41 29.50 45.59 64.70
Average 26.66 29.77 35.24 39.69 23.54 30.89 40.73 41.29 32.73 34.99 58.60 66.89

Table 3: MedPodGPT’s zero-shot performance on non-English medical QA benchmarks. All
models were fine-tuned using English, French, and Spanish medical podcast data and assessed
on cross-lingual medical QA benchmarks, including Mandarin and Hindi. Benchmarks included
MedQA-MCMLE and multiple categories within MMLU and CMMLU medical and clinical top-
ics, covering anatomy, clinical knowledge, college medicine, medical genetics, medical nutrition,
traditional Chinese medicine, virology, and professional medicine. The baseline model’s perfor-
mance was compared with the performance of our model, MedPodGPT (indicated as Ours). Model
performances are displayed to demonstrate the effectiveness of integrating podcast data into the
training process. The numbers in bold font indicate the better-performing model in each category.
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