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Abstract. In the elderly, degenerative diseases often develop differently
over time for individual patients. For optimal treatment, physicians and
patients would like to know how much time is left for them until symp-
toms reach a certain stage. However, compared to simple disease detec-
tion tasks, disease progression modeling has received much less attention.
In addition, most existing models are black-box models which provide
little insight into the mechanisms driving the prediction. Here, we intro-
duce an interpretable-by-design survival model to predict the progression
of age-related macular degeneration (AMD) from fundus images. Our
model not only achieves state-of-the-art prediction performance com-
pared to black-box models but also provides a sparse map of local ev-
idence of AMD progression for individual patients. Our evidence map
faithfully reflects the decision-making process of the model in contrast
to widely used post-hoc saliency methods. Furthermore, we show that
the identified regions mostly align with established clinical AMD pro-
gression markers. We believe that our method may help to inform treat-
ment decisions and may lead to better insights into imaging biomark-
ers indicative of disease progression. The project’s code is available at
github.com/berenslab/interpretable-deep-survival-analysis.

Keywords: Interpretability · Deep survival analysis · Disease prognosis.

1 Introduction

Age-related macular degeneration (AMD) is the main cause of legal blindness
in developed countries, caused by cumulative damage to the central retina lead-
ing to loss of central vision. This progressive disease severely impacts patients’
quality of life by impairing tasks requiring sharp vision, motivating the need
for early detection and intervention. AMD is characterised by retinal changes,
such as drusen and pigment abnormalities, and is typically classified into early,
intermediate and late disease stages, where vision is mostly endangered in the
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Fig. 1. Interpretable-by-design Deep Survival Model for AMD Progression.
a. Fundus images of an eye at various screenings. b. An image is fed into the BagNet
survival model, which first yields local feature evidence maps (D the features dimension,
N its width and height) as in [6]. After a 1 × 1 convolution, we receive a local risk
evidence map, on which we apply a sparsity loss. Average pooling (AP) yields the
final risk prediction as in [10] on which we apply a CoxPH loss. In a second step,
the prediction is translated into a survival curve S(t), the individual’s probability of
“surviving” the event of interest – conversion to late AMD. c. The local risk evidence
map allows intuitive interpretation of predictions (left). Clinicians could be provided
with suspicious patches, i.e., regions that the model found to indicate a conversion risk
(right).

latter [12]. Retinal fundus images can reveal such indicators of AMD and con-
sequently, multiple studies have developed deep learning solutions to accurately
detect the disease stage [13,19] or predict the conversion to late AMD by a
specified time [4,25]. However, these black-box models do not provide inherent
interpretability and could only be explained by post-hoc saliency maps. These,
however, lack reliability, which is particularly problematic in high-risk medical
applications [3,22,21]. As an alternative, interpretable-by-design models such as
the Sparse BagNet [10] have recently been proposed for classification tasks on
retinal images. In this model architecture, evidence is gathered locally, repre-
sented in explicit evidence maps, which is then aggregated to predict the overall
class. The class evidence maps can be visualised as heatmaps overlaid on the
input image, highlighting the contribution of small local regions to the final pre-
diction. However, the Sparse BagNet was developed for a classification setting
and had not yet been adapted for disease progression modeling.

In this paper, we developed an interpretable-by-design model for AMD dis-
ease progression using a survival analysis framework. Survival analysis models
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are a popular choice for time-to-event modeling which predict for each indi-
vidual the probability to “survive” – i.e., to not observe – an event of interest
within a time frame, such as progressing from early to late AMD. Classical sur-
vival analysis uses simple linear models such as the Cox proportional hazards
(CoxPH) model [8], but deep survival models have been proposed that param-
eterise CoxPH models with neural networks [11,16,23]. In this work, we first
integrated the current state-of-the-art model architectures for AMD progression
modeling [4,25] into a deep survival model. We then replaced the backbone neu-
ral network with a Sparse BagNet, which provides an inherently interpretable
evidence map for the predicted survival curve of an image, i.e. the risk of dis-
ease progression. To the best of our knowledge, this is the first image-based
interpretable-by-design deep survival analysis model. We provide an overview
over our method in Fig. 1.

2 Methods

2.1 Dataset and Preprocessing

We worked with data from the Age-Related Eye Disease Study (AREDS), a
longitudinal study sponsored by the National Eye Institute, USA [1] which is
available upon request1 for research purposes. A total of 4,757 participants be-
tween 55 and 80 years of age were screened over a course of 12 years to study
the natural progression of age-related eye diseases. The study was approved by
the institutional review boards at all participating clinical sites and participants
gave written consent [2]. We filtered out fundus images that were missing infor-
mation such as the AMD severity score (1-9: increasing AMD severity; 10-12:
central geographic atrophy and/or neovascular AMD, i.e., late AMD) and used
the remaining 133,293 macula-centered fundus images for this project. Images
came in pairs of photographs of the same fundus from slightly different angles
to allow retinal specialists for depth impressions. We randomly selected one of
the two views from each pair and excluded images after conversion to late AMD.
Images were first resized to a height of 350 pixels and then cropped to a width of
350 pixels from the center. We further applied random resized cropping, flipping,
color jitter, and rotation with the settings from [15], as these proved useful to en-
hance retinal disease detection. We split data into 60% training, 20% validation,
and 20% test set, keeping a participant’s records in the same split.

We defined the label targets event and time as follows: the event was 1 if
the eye’s AMD severity score reached 10 (late AMD) any time during the study
and 0 otherwise (no late AMD). For this project, we defined time as the relative
duration from an eye scan to the screening after which the eye was first diagnosed
with late AMD or, if there was no such diagnosis, the time until the patient’s
last screening session. For time-dependent evaluation, we defined a “case” as an
eye that converted to late AMD before or at that time.
1 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000001.v3.p1
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2.2 Interpretable-by-design Deep Survival Model

Deep Survival Analysis. In survival analysis, CoxPH models provide a scalar
output that can be used in a second step to estimate a set of risk predictions
over time. We denote

λ(t|x) = λ0(t) · exph(x) (1)

as the hazard function, where λ0(t) is the population wide baseline hazard func-
tion and h(x) the individual log partial hazard based on a set of features x.
A hazard at time t is the instantaneous risk to observe an event of interest at
(an infinitesimally small interval around) t. Classically, h(x) is a linear function.
For deep survival analysis, it can be parameterised by a neural network with
any choice of architecture (ResNet-50, Inception-v3 or others) with one output
node: we can apply a sigmoid function to the model’s output logit and interpret
the result as an estimate of the log partial hazard ĥ(x). Here, this refers to the
subject’s relative risk to develop late AMD. This framework allows to directly
work on fundus images as inputs x and to train end-to-end. We estimated the
baseline hazard function λ0(t) using Breslow’s maximum likelihood approach [7]
given the training data. The survival curve is given by

Ŝ(t|x) = exp−
∫ t

0

λ̂(u|x)du (2)

which represents the probabilities not to convert to late AMD up to time t.

Adding Inherent Interpretability. Instead of using a non-interpretable stan-
dard architecture to parameterise h(x), we used a modified inherently inter-
pretable model, the bag-of-local-features model, referred to as BagNet [6]. The
BagNet is based on the ResNet-50 architecture, but changes in strides and the
kernel sizes restrict the model to work on local image patches of size q× q. After
slight modification, the BagNet architecture can yield an explicit and local map
of activations for each class: one pixel of each final feature map represents the
local class evidence from an image patch in the input image [10]. Note that stan-
dard ResNets learn potentially global features and their interactions, while the
BagNet learns the local evidence in an image patch. This eliminates the need for
post-hoc saliency maps or the post-hoc analysis of convolutional filters. For the
BagNet, we chose a receptive field size of q = 33 pixels and, following [10], we
applied a sparsity constraint to the loss to avoid cluttered evidence maps (see
Suppl. Fig. 1 for the selection of the sparsity coefficient). The model decision is
then obtained by spatial average pooling, resulting in a final risk prediction logit.
Correspondingly, the Sparse BagNet for survival analysis produces one class ev-
idence map for the risk of disease progression and, as a result, allows a direct
and intuitive interpretation of the survival predictions. In contrast, the baseline
models are classification models that are trained once for each queried prediction
time, resulting in a set of models, each of which has a saliency map to consider.
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Implementation Details. We initialised the model with pre-trained weights
from ImageNet and trained it for up to 50 epochs on the training set with a
batch size of eight. Weights were updated based on the CoxPH loss [11,16], that
is, the negative log likelihood loss of the log partial hazard ĥ, adapted from the
auton-survival package [18]. We applied Breslow’s method as implemented in
scikit-survival [20]. We used the Adam optimiser at a learning rate of 1.6e–5,
as determined by a hyperparameter search. Training was conducted using a
NVIDIA GeForce RTX 2080 Ti GPU and the PyTorch framework.

2.3 Baselines

Recently proposed end-to-end trained AMD progression models consist of one
classification model for each queried time point [4,25,26]. As our baselines, we
implemented classification models from Yan et al. [25] and Babenko et al. [4]
that, similar to our model, are based only on fundus images. Both studies utilise
Inception-v3 architectures to predict whether an eye converts to late AMD.
However, Yan et al. use one fundus image per eye and screening as input, while
Babenko et al. use both images of a stereo pair as inputs to separate Inception-v3
modules with shared weights and average their predictions after the activation
function. Further, Yan et al. use the Adam optimiser and Babenko et al. use
stochastic gradient descent. We re-implemented both models in our framework
as close as possible to the originally reported settings. Training was conducted
at a learning rate of 1e–4, with the number of epochs, early stopping, batch
size, image size and data augmentation set according to our proposed model.
We used a binary cross-entropy loss and set the event label to 1 if the eye was
first diagnosed with late AMD at or before the inquired year. If an eye did not
convert to late AMD and the subject’s last screening was before the inquired
year, we could not extract classification labels and therefore had to exclude these
records.

2.4 Evaluation Strategy

We evaluated the disease progression models using the area under the receiver op-
erating characteristic curve (AUROC), Brier Score, and area under the precision-
recall curve (AUPRC), adjusted for time-dependent predictions [17]. We chose
the cumulative sensitivity/dynamic specificity approach to calculate AUROC
using the scikit-survival package, which assesses the discrimination of eyes at
higher risk from eyes at lower risk. Here, cumulative cases are subjects who have
experienced the event up to a given time, while all eyes that have not (yet)
experienced the event are referred to as dynamic controls. We computed Brier
Scores as a measure of model calibration as implemented in scikit-survival and
AUPRC as a performance measure focusing on cases using the R package time-
ROC [5]. We additionally provide the metrics variants that are not adjusted
for time-dependence in Suppl. Tab. 1. During training, we evaluated each epoch
based on the Integrated Brier Score (IBS) of the survival probability predictions
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Table 1. Performance of our interpretable-by-design model compared to black-box
SOTA models on the unseen test data (see Methods for details).

AUROC ↑ Brier Score ↓ AUPRC ↑
Model Loss Year 2 Year 5 Year 2 Year 5 Year 2 Year 5
Sparse BagNet (ours) CoxPH 0.941 0.938 0.036 0.054 0.642 0.676
Babenko et al. [4] Class. 0.942 0.948 0.034 0.050 0.660 0.633
Yan et al. [25] Class. 0.939 0.945 0.029 0.051 0.622 0.622

on the validation set. Training was stopped if the IBS did not improve within
ten consecutive epochs. We selected the final model weights based on the epoch
with the lowest IBS.

3 Results

We developed an architecture for disease progression modeling that achieves in-
built interpretability through an explicit evidence map layer that contains the
local evidence for disease progression. We applied the model to the prognosis of
AMD progression and predicted the probability of not converting to late AMD
within one to five years and compared it to state-of-the-art models.

3.1 Interpretable-by-design Model Achieves SOTA Performance

Our model performed comparably to state-of-the-art AMD progression models
(Tab. 1) and only slightly worse in terms of AUROC and Brier Scores. We studied
which of the components of our model were responsible for the performance
difference compared to the baseline models. We found that training the Sparse
BagNet as classification models reduced the performance, while replacing the
Sparse BagNet with an unmodified ResNet-50 improved it (see Suppl. Fig. 2).
This indicates that the CoxPH model training was not responsible for the slightly
decreased performance, but rather the BagNet architecture.

3.2 Heatmaps Provide Faithful and Intuitive Model Interpretation

We extracted the evidence map from our model showing the local risk of con-
version to late AMD – this map may show positive entries indicating higher risk
of conversion in some regions or negative entries indicating lower risk. Crucially,
the final risk prediction is simply formed by spatially averaging this evidence
map so that it provides a faithful visualisation of the model’s decision process
when overlaid on an image (Fig. 2a). For example, the evidence map overlaid
on fundus images of a non-converting participant at three subsequent screenings
highlighted mostly regions indicating low risk of conversion (1st row of Fig. 2a)
and the corresponding predicted survival curve stayed close to 1 (Fig. 2b). In con-
trast, evidence maps overlaid on fundus images of participants who converted
to late AMD showed evidence for increased predicted risk in sizable portions

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.11.24310270doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.11.24310270
http://creativecommons.org/licenses/by/4.0/


Interpretable-by-design Deep Survival Analysis 7

Fig. 2. a. Examples of predicted local evidence for the risk of AMD conversion for
images from multiple consecutive screenings from a healthy eye (blue) and eyes that
later converted to late AMD (orange, red). b. Example survival curves show predicted
probabilities of surviving the event of interest – conversion to late AMD. An arrow
indicates the time of late AMD onset.

of the fundus images (2nd and 3rd rows of Fig. 2a). Accordingly, the survival
curve showed lower survival probability with conversion events indeed happen-
ing within a relatively short time frame of a few years (Fig. 2b). Remarkably,
even though the image perspective shifted slightly between imaging time points
the highlighted high risk regions were consistently identified (Fig. 2a).

Based on our evidence maps, the most important image regions can be
bounded by boxes sized according to the model’s receptive field and could be
shown to clinicians to help them understand the prediction and potentially re-
fine their own assessment (Fig. 3). In contrast, saliency maps for state-of-the-art
models obtained using post-hoc gradient based techniques were often much less
spatially confined (see Suppl. Fig. 3).

3.3 Heatmaps Capture Regions Known to Indicate AMD
Progression

We next analysed to what extent the patches extracted from our evidence maps
corresponded to known signs of conversion to late AMD. To this end, DM, a
senior resident in Ophthalmology with experience in AMD research, annotated
image patches. We included a random selection of the six patches with the high-
est predicted risk from 20 images from a pool of confident test set predictions
for converters (for example Fig. 3). We found that our model focused mostly
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Fig. 3. Two examples of interpretable model outputs. Patches show regions with high
evidence for a risk to convert to late AMD (purple) and regions that provide evidence
for a low AMD conversion risk (green). As the patch label number increases, the im-
portance of the patch decreases.

on regions known to be associated with AMD, with 88.3% of the patches dis-
playing known indications. Most prominently, 38/120 patches showed pigment
mottling and 34/120 patches showed soft drusen, both indicative of AMD pro-
gression, and 32/120 patches already showed signs of atrophy. The patches shown
in Fig. 3 (left) for instance contain either soft drusen, pigment mottling or both.
In contrast, for non-converters, we could observe that the model focused on un-
remarkable retinal tissue in the macula or small blood vessels as indicative of
low risk (Fig. 3, right).

4 Discussion

In this work, we introduced the first image-based interpretable-by-design deep
survival model for modeling the risk of disease progression and applied it to
the risk prediction of conversion to late AMD from fundus images. To this end,
we combined a CoxPH survival model with a Sparse BagNet, which yielded
highly localised evidence maps faithfully incorporated into the risk prediction
process, which is desirable also for ethical reasons [14]. The high-risk areas iden-
tified by our model mostly corresponded to established signs of imminent conver-
sion to late AMD. Our model uncovered the AMD risk areas without any prior
knowledge from the AREDS dataset alone, indicating the model’s potential for
image-level biomarker discovery. In contrast, post-hoc saliency maps computed
for state-of-the-art models were much less localised and do not yield faithful re-
flections on the model’s decision making process [21]. Alternatives to the BagNet
backbone include prototype models, which learn prototypical image parts and
provide them for interpretability, and deep learning-based additive models such
as the EPU-CNN [9], which provides contribution scores for colour and texture
concepts along with their spatial relevance. These methods would be worth ex-
ploring in the context of disease prognosis. To date, however, prototype models
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still suffer from imprecise explanations [24], and the EPU-CNN’s interpretations
require explicitly computed feature maps, typically based on luminance, color
or frequency content. The Sparse BagNet, on the other hand, provides intuitive
pixel importance for interpretation, making it well suited for clinical applica-
tions and finding novel image-based biomarkers. As the inductive bias of our
model fits well to task structures involving small disease features, we expect
it to generalise to other medical imaging tasks, including progression modeling
for diabetic retinopathy. In summary, our interpretable-by-design deep survival
model based on Sparse BagNets opens up new possibilities for trustworthy risk-
modeling from medical images beyond ophthalmology and may help to identify
new early indications of disease progression which could easily be overlooked by
humans.
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