Abstract
Objective The objective of this study is to look into how TGF-beta and Angiotensin II disrupt cardiogenic regulators (Isl1, Brg1/Baf60-Smarcd3 complex, Nkx2-5, GATA4, Tbx5, Mef2c, HAND1/2, MYOCD, MSX2, HOPX, Wnt-signaling pathway, Notch, FGF, BMPs) during cardiac remodeling post-ischemic injury.
Background Cardiac remodeling post-ischemic injury, influenced by TGF-beta and Angiotensin II, disrupts critical cardiogenic regulators essential for heart function. Understanding these disruptions is crucial for developing targeted therapies and biomarkers to assess disease severity. This research addresses a crucial gap in cardiovascular treatment by focusing on mechanisms underlying remodeling processes, aiming to improve therapeutic strategies and outcomes for ischemic heart disease patients.
Methods Databases, including PubMed, MEDLINE, Google Scholar, and open access/ subscription-based journals were searched for published articles without any date restrictions, to look into how TGF beta and Angiotensin II disrupt cardiogenic regulators in cardiac remodeling post-ischemic. Based on the criteria mentioned in the methods section, studies were systematically reviewed with focus on objectives of the study. This study adheres to relevant PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).
Results Cardiac remodeling post-ischemic injury involves complex disruptions of cardiogenic regulators, prominently influenced by TGF-beta and Angiotensin II. Our study reveals these factors significantly alter critical regulators like Isl1, Nkx2–5, and GATA4, impacting myocardial repair mechanisms. TGF-beta induces fibrosis and inflammatory responses, while Angiotensin II exacerbates hypertrophic pathways and oxidative stress. Interactions between these pathways amplify remodeling through Smad, MAPK, and other signaling cascades. These findings point to the crucial roles of TGF-beta and Angiotensin II in pathological cardiac remodeling, highlighting potential targets for therapeutic interventions.
Conclusion Cardiac remodeling post-ischemic injury, influenced by TGF-beta and Angiotensin II, disrupts vital cardiogenic regulators like Isl1, Brg1/Baf60 – Smarcd3 complex, Nkx2–5, GATA4, Tbx5, Mef2c, HAND1/2, MYOCD, MSX2, HOPX, Wnt-signaling pathway, Notch, FGF, and BMPs. These disruptions, involving altered receptor expression, signaling pathway interference, hypertrophic responses, and fibrosis promotion, compromise cardiac development and repair mechanisms. Targeting these pathways could enhance therapeutic strategies for ischemic heart disease by restoring normal regulator function and promoting effective cardiac repair and regeneration, thereby improving clinical outcomes.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
I declare that there was not any source of funding for this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes