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2

ABSTRACT 23 
 24 
Vaccination against COVID-19 has been pivotal in reducing the global burden of the 25 
disease. However, Phase III trial results and observational studies underscore differences in 26 
efficacy across vaccine technologies and dosing regimens. Notably, mRNA vaccines have 27 
exhibited superior effectiveness compared to Adenovirus (AdV) vaccines, especially with 28 
extended dosing intervals. Using in-host mechanistic modelling, this study elucidates these 29 
variations and unravels the biological mechanisms shaping the immune responses at the 30 
cellular level. We used data on the change in memory B cells, plasmablasts, and antibody 31 
titres after the second dose of a COVID-19 vaccine for Australian healthcare workers. 32 
Alongside this dataset, we constructed a kinetic model of humoral immunity which jointly 33 
captured the dynamics of multiple immune markers, and integrated hierarchical effects into 34 
this kinetics model, including age, dosing schedule, and vaccine type. Our analysis 35 
estimated that mRNA vaccines induced 2.1 times higher memory B cell proliferation than 36 
AdV vaccines after adjusting for age, interval between doses and priming dose. Additionally, 37 
extending the duration between the second vaccine dose and priming dose beyond 28 days 38 
boosted neutralising antibody production per plasmablast concentration by 30%. We also 39 
found that antibody responses after the second dose were more persistent when mRNA 40 
vaccines were used over AdV vaccines and for longer dosing regimens. Reconstructing in-41 
host kinetics in response to vaccination could help optimise vaccine dosing regimens, 42 
improve vaccine efficacy in different population groups, and inform the design of future 43 
vaccines for enhanced protection against emerging pathogens.  44 
 45 
 46 
 47 
SIGNIFICANCE STATEMENT 48 
 49 
There are differences in vaccine efficacy across different SARS-CoV-2 vaccine technologies 50 
and dosing regimens. Using an in-host mechanistic model that describes antibody 51 
production fitting to in-host immune markers, we found that mRNA vaccines are twice as 52 
effective at stimulating memory B cell proliferation when compared to AdVs vaccines and 53 
that a longer time between the second vaccine dose and priming dose increases the 54 
neutralising antibody production per plasmablast concentration. These findings disentangle 55 
the effect of vaccine type and time since the priming dose, aiding in the understanding of 56 
immune responses to SARS-CoV-2 vaccination.  57 
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INTRODUCTION 58 
 59 
Vaccination has been a crucial tool in the global reduction of the COVID-19 burden since the 60 
approval of early vaccine candidates in December 2020. The earliest vaccines to be 61 
approved included an adenoviral-vectored vaccine (i.e. ChAdOx1) and mRNA vaccines (i.e. 62 
BNT162b2 and mRNA-1273). However, as Phase III trial results and observational studies 63 
emerged, variation was observed in the estimated efficacy and effectiveness of different 64 
vaccine types and their corresponding dosing schedules.(1) For example, the efficacy of 65 
BNT162b2 against symptomatic COVID-19 after two doses given three weeks apart was 66 
initially reported at 95.0% (95% CI 90.3–97.6) for a median follow-up of two months(2) and 67 
91.3% (95% CI 89.0–93.2) after at least 6 months of follow up.(3) The efficacy of ChAdOx1 68 
against symptomatic COVID-19 after two doses given ≤12 weeks apart was initially reported 69 
at 62.1% (95% CI 41.0–75.7) after a 53–90 day follow-up.(4). Consistent with these findings, 70 
observational studies have found higher effectiveness of the BNT162b2 vaccine compared 71 
to the ChAdOx1 vaccine at preventing symptomatic COVID-19.(5) Moreover, the dosing 72 
schedule has been shown to influence the vaccine effectiveness of both products, with 73 
longer dosing schedules (time between first and second dose) seeing higher effectiveness 74 
values than shorter dosing schedules. Specifically, for ChAdOx1, vaccine efficacy was 75 
81·3% [95% CI 60·3–91·2] with a dosing schedule ≥12 weeks and 55·1% [33·0–69·9] at <6 76 
weeks.(4) For BNT162b2, lower risks of symptomatic SARS-CoV-2 infection have been 77 
observed when the dosing schedule was extended from 17–25 days to 26–42 days(6) 78 
 79 
Despite these heterogeneous observations in efficacy, a comprehensive understanding of 80 
the immunological processes underlying the effects of vaccine type and dosing schedule on 81 
vaccine efficacy remains elusive. Both ChAdOx1 and BNT162b2 elicit robust cellular 82 
responses and cross-reactive neutralising antibodies against different SARS-CoV-2 variants, 83 
promoting the persistence and maturation of memory B cells (MBC) over time, and 84 
contributing to durable immunity.(7, 8) However, there are also notable differences in the 85 
immunological responses. For example, ChAdOx1 triggers robust T cell and antibody 86 
responses, particularly generating IgG and IgM antibodies along with Th1 cytokines such as 87 
IL-2, TNF-α, and INF-γ.(9, 10) Whereas, BNT162b2 initiates potent B cell responses and 88 
antibody secretion, particularly of IgA and IgG, usually at much higher levels than responses 89 
to the ChAdOx1 vaccine.(10) When considering the dosing schedule, a longer dose 90 
schedule for BNT162b2 resulted in higher neutralizing antibody titres, whilst maintaining 91 
comparable T cell responses.(11, 12) Assessing variations in the immunological response to 92 
vaccination presents challenges, as the schedules differed between ChAdOx1 and 93 
BNT162b2 vaccines upon deployment, complicating the disentanglement of the impact of 94 
vaccine type and dosing schedule on immunological kinetics. 95 
 96 
 Analysis of in-host immunological responses can be used to understand the dynamic 97 
behaviour of the factors driving these responses, formalising correlates between immune 98 
markers, and allowing identification of key factors that influence the timing and magnitude of 99 
immune responses. Such analysis typically adopts a phenomenological approach, aiming to 100 
formalise correlations between observed phenomena through a purely statistical approach 101 
rather than explicitly elucidating underlying biological mechanisms.(13, 14) Mechanistic in-102 
host models, on the other hand, specify the detailed biological processes driving immune 103 
responses, allowing deeper insights into the causal effects of antibody production and 104 
immune cell kinetics.(13) However, a significant challenge with mechanistic models is their 105 
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susceptibility to identifiability issues; where due to limited or noisy data, multiple sets of 106 
parameters can produce the same observed outcomes, making it difficult to determine the 107 
true underlying biological mechanisms.(15) Establishing a mechanistic model capable of 108 
disentangling key processes can therefore enable a more accurate comparison of 109 
immunogenicity between vaccine types. 110 
 111 
In this study, we employ an in-host mechanistic model to reconstruct the unobserved kinetics 112 
of SARS-CoV-2 immune markers and consider the influence of host factors on driving 113 
immunological heterogeneity (Figure 1). Specifically, our investigation aims to elucidate 114 
mechanistic explanations for differences in vaccine-neutralising activity and MBC kinetics in 115 
response to second-dose vaccination against COVID-19. Our in-host model incorporates two 116 
sources of antibody production: plasmablasts and plasma cells, both stemming from 117 
vaccine-induced differentiation of MBC. By fitting our model to multiple biomarkers, including 118 
concentrations of MBC and plasmablasts, as well as surrogate virus neutralisation test 119 
(sVNT) titers against ancestral SARS-CoV-2 strains, we delineate the distinct 120 
immunogenicity (characterised by the rate of MBC proliferation) and antibody affinity 121 
(measured by neutralising sVNT per MBC) profiles associated with ChAdOx1 and 122 
BNT162b2 vaccine types. Further, we validate this mechanistic model by predicting antibody 123 
kinetics on unseen validation data and show that the predictions remain accurate providing 124 
that baseline immune information can be measured for each individual. Finally, we 125 
investigate the influence of host factors, such as the time elapsed since initial vaccination, as 126 
well as demographic characteristics such as age, on the in-host kinetics of these 127 
immunological responses 128 
 129 
 130 
RESULTS 131 
 132 
Model performance on calibration and validation data 133 
 134 
We fitted the model to two different antigens expressed on the MBC and plasmablasts: the 135 
ancestral spike antigen and the receptor binding domain (RBD) antigen. For each model, we 136 
fit to the same antibody data, measured by sVNT assay, which measures antibodies that 137 
inhibit RBD binding to ACE2. The sampled posterior distributions for both models were 138 
effectively explored, with all parameters demonstrating convergence and the chains showing 139 
good mixing (Figures S1–2). After calibrating the two models to the calibration dataset, we 140 
found that immune trajectories could reproduce the observed dynamics in the data (Figure 141 
2A). We calculated the Continuous Ranked Probability Score (CRPS) to assess the 142 
goodness-of-fit between the two models and found that for all three immune markers (MBC, 143 
plasmablasts and sVNT) similar scores were achieved for both models (Figure 2B). We then 144 
evaluated the predictive accuracy of the fitted model by using baseline estimates from the 145 
validation dataset (immune markers before vaccination) to predict the trajectories of each 146 
biomarker and then assessed the fit using the CRPS. We found that the model predictions to 147 
the validation dataset were reflective of the data and that both the spike and RBD models 148 
provided similar fits in terms of CRPS (Figure 2C-D). From this, we cannot conclude that 149 
either the spike or RBD model is better at describing sVNT in each individual. The individual-150 
level fits for each time point, and the resulting individual-level trajectories for each model are 151 
provided in Figures S3–6. The posterior distributions for the fitted distributions of the 152 
hierarchical and decay parameters are also provided in Figures S7–10. 153 
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 154 
Drivers of MBC proliferation and antibody production 155 
 156 
By combining multiple biomarkers with a dynamic model, we were able to reconstruct 157 
individual-level kinetics of MBC frequencies, plasmablast frequencies and sVNT as well as 158 
estimate overall average population kinetics for these markers. In the process, we were able 159 
to estimate three key mechanistic processes underlying the observed kinetics: the rate of 160 
MBC proliferation (a1), the antibody affinity of plasmablasts (a3), and the antibody affinity of 161 
plasma cells (a4). For the spike model, we estimated that the BNT162b2 vaccine induced 162 
substantially more MBC proliferation when compared to ChAdOx1, with ancestral spike 163 
reactive MBC concentrations (of total MBC) increasing by 0.44% (95% PPI 0.28–0.58) vs. 164 
0.21% (95% PPI 0.11–0.34) per day per vaccine unit (Figure 3A). Lower rates of MBC 165 
proliferation were seen in the RBD model, with concentration increasing by 0.26 (95% PPI 166 
0.16–0.25) and 0.13 (95% PPI 0.06–0.22) per day per vaccine unit for BNT162b2 and 167 
ChAdOx1 respectively. We also estimated that age and the dosing schedule had little impact 168 
on the rate of B cell proliferation after adjusting for vaccine type, with no notable trend 169 
between age group levels (Figure 3B and Figure S11A).  170 
 171 
However, for the rate of production of sVNT antibodies per plasmablast, we found that dose 172 
interval had a notable impact, with those vaccinated <28 days prior seeing lower rates of 173 
sVNT antibodies produced per plasmablast concentration per day (1.08 (95% PPI 0.74–174 
1.66) when compared to those vaccinated �28 days prior ) (1.30 (95% PPI 0.90–2.94)) for 175 
the spike model. Similar estimates were also found for the RBD model with rates of antibody 176 
production of 1.26 (95% PPI 0.67–2.96) for <28 days compared to 1.48 (95% PPI 0.80–3.26) 177 
for RBD). We also found that the rate of production of neutralising antibodies per plasma cell 178 
remains similar across vaccine type, time since last dose and age group. These 179 
observations remained consistent for ancestral RBD. 180 
 181 
 182 
Mechanistic predictions of antibody kinetics  183 
 184 
By inferring underlying in-host kinetics, we could also estimate the temporal variation in the 185 
origin of antibody production following vaccination with a second dose (Figure 4). For 186 
ancestral spike, after vaccination with ChAdOx1, our findings reveal a peak in antibody titres 187 
16 days post-vaccination with a log2 sVNT of 1.29 (95% PPI 0.97–1.66). These titres then 188 
undergo a fast period of waning until around 50 days and then have a slower period of 189 
waning driven by antibody production from plasma cells, gradually declining to an sVNT of 190 
0.48 (95% PPI 0.21–0.74) by day 250 post-vaccination. For the BNT162b2 vaccine, we find 191 
a peak antibody titre at day 17 post-vaccination with a log2 sVNT of 2.31 (95% PPI 2.13–192 
2.50), which then wane to an sVNT of 1.09 (95% PPI 0.80–1.40) at day 250 post-193 
vaccination. The time at which antibodies produced from plasmablasts dominate the sVNT 194 
response (transition time in Figure 4A) is 54 and 51 days for ChAdOx1 and BNT162b2 195 
vaccines, respectively. Similar trends are observed for the ancestral RBD model and are 196 
summarised in Figure S12A. 197 
 198 
We also estimated the duration after vaccination that an individual sVNT IC50 titre remained 199 
above 10 by assessing the proportion of the posterior distribution that is above this threshold 200 
as a function of time since vaccination. We estimate that the median duration of time that 201 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.11.24310221doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.11.24310221
http://creativecommons.org/licenses/by/4.0/


 
 

6

sVNT IC50 titres exceeded 10 was 290 (95% PPI 105–365) days and 34 (95% PPI 0–96) 202 
days for BNT162b2 and ChAdOx1, respectively. When stratified by time since first dose, we 203 
estimated that individuals who were vaccinated <28 days since their first dose maintained 204 
IC50 titres in excess of 10 for shorter periods compared to those with longer time between 205 
doses, i.e. 30 (95% PPI 0–90) and 50 (95% PPI 25–130) days for ChAdOx1 respectively, 206 
and 247 (95% PPI 91–365) and 33 (95% PPI 88–365) days for BNT162b2 vaccine 207 
respectively (Figure 4B and Figure S12B). No strong trend was seen with antibody 208 
persistence with increasing age (Figure 4C and Figure 12C).  209 
 210 
DISCUSSION 211 
 212 
Using an in-host mechanistic model, we reconstructed the mechanisms driving the 213 
production of antibodies from two MBC sources in response to a second dose of ChAdOx1 214 
and BNT162b2 SARS-CoV-2 vaccine. Our estimation of the MBC proliferation rate and 215 
antibody production revealed significantly higher responses among BNT162b2 vaccinees 216 
compared to ChAdOx1 vaccinees, but age and dosing schedule showed minimal impact on 217 
MBC proliferation rates. Instead, we found that dosing interval affected the rate of 218 
neutralising antibody production per plasmablast, with lower rates observed for those 219 
receiving their second dose within 28 days of their first dose compared to those who 220 
received their second dose after 28 days. In-host kinetic modelling made it possible to 221 
reconstruct peak antibody titres and duration of antibody persistence, indicating longer 222 
periods of protection with BNT162b2 when compared to ChAdOx1, and longer periods of 223 
protection for individuals vaccinated more than 28 days since their first dose. These findings 224 
suggest that vaccine implementation efforts should consider the intricate interplay between 225 
dosing schedule and immune kinetics to optimise vaccine efficacy and durability. 226 
 227 
 228 
DISCUSSION 229 
 230 
Using an in-host mechanistic model, we reconstructed the mechanisms driving the 231 
production of antibodies from two MBC sources in response to a second dose of ChAdOx1 232 
and BNT162b2 SARS-CoV-2 vaccine. Our estimation of the MBC proliferation rate and 233 
antibody production revealed significantly higher responses among BNT162b2 vaccinees 234 
compared to ChAdOx1 vaccinees, but age and dosing schedule showed minimal impact on 235 
MBC proliferation rates. Instead, we found that dosing interval affected the rate of 236 
neutralising antibody production per plasmablast, with lower rates observed for those 237 
receiving their second dose within 28 days of their first dose compared to those who 238 
received their second dose after 28 days. In-host kinetic modelling made it possible to 239 
reconstruct peak antibody titres and duration of antibody persistence, indicating longer 240 
periods of protection with BNT162b2 when compared to ChAdOx1, and longer periods of 241 
protection for individuals vaccinated more than 28 days since their first dose. These findings 242 
suggest that vaccine implementation efforts should consider the intricate interplay between 243 
dosing schedule and immune kinetics to optimise vaccine efficacy and durability. 244 
 245 
Serological analysis of antibody responses of cohorts with homologous two-dose vaccination 246 
schedules shows that those with BNT162b2 have higher levels of sVNT to ancestral variants 247 
compared to ChAdOx1.(10) We find this difference is driven by 2.1 times higher rates of 248 
MBC proliferation caused by BNT162b2, compared to ChAdOx1, and not by differences in 249 
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antibody affinity per antibody-secreting cell. This could indicate that mRNA vaccines are 250 
better at stimulating B cells, potentially due to the amount of antigen produced or to co-251 
stimulatory and inflammatory signals.(16) We present findings from our study of a healthy 252 
cohort aged 18–60, revealing no correlation between the in-host kinetics of vaccine-induced 253 
humoral responses and age. This observation aligns with broader immunological insights, 254 
which show that age-related variations in the immune response to vaccination are exhibited 255 
primarily in children and adults aged 65 years and older.(17–20) 256 
 257 
Our study also revealed that delaying the time until the second dose led to higher affinity 258 
antibodies from plasmablasts, causing more robust post-vaccination sVNT. A longer dosing 259 
schedule has previously been shown to lead to higher sVNT and a greater magnitude of 260 
mature MBC post-vaccination.(11, 12, 21) This is likely driven by increased affinity 261 
maturation in B cells, which continues up to 6 months after vaccination.(22, 23). Vaccinating 262 
individuals whilst affinity maturation is ongoing could lead to sub-optimal antibody repertoires 263 
being proliferated in-host and thus lead to reduced antibody affinity compared to those with 264 
longer dosing schedules.(24) Whilst the dosing schedule influences antibody affinity, we 265 
found it had little impact on the rate of proliferation of B cells or the antibody affinity of 266 
plasma cells. Given its notable influence on antibody affinity, public health strategies should 267 
consider the importance of the dosing schedule when offering boosting campaigns to 268 
maximize vaccine-induced protection, particularly for those where strong and lasting 269 
immunity is critical. 270 
 271 
We were able to mechanically describe the kinetics of antibody responses following a 272 
second dose of SARS-CoV-2 vaccination. Peak antibody levels were observed at 17 days 273 
post-vaccination (consistent with previous modelling estimates of 15 days (25) ) and plasma 274 
cell responses were found to dominate the sVNT response after approximately 50 days. Our 275 
model also estimated that plasmablast concentration peaked at five days after a second 276 
vaccine dose and returned to baseline at 19 days. These dynamics are corroborated by 277 
observational studies, such as Pape et al. (2021),(26) which reported a peak in spike-binding 278 
plasmablasts to second dose mRNA vaccines at 5 days post-vaccination, returning close to 279 
baseline by day 11. Similarly, Turner et al. (2021),(27) found plasmablast responses to 280 
vaccine doses returning to baseline by 2 weeks. In addition, our hierarchical regression 281 
analysis allowed us to consider marginal posterior distributions and account for potential 282 
confounding with dosing schedules, estimating the relative impact of adenovirus (AdV) 283 
vaccines if dosing schedules were shorter. By estimating the antibody persistence if the 284 
ChAdOx1 dosing schedule was less than 28 days, a counterfactual outcome, we can 285 
disentangle the effect of vaccine type and time since the priming dose, aiding in the 286 
understanding of immune responses to SARS-CoV-2 vaccination 287 
 288 
Our study has some limitations. Firstly, the sample size was relatively small, comprising only 289 
41 participants in the calibration dataset and 22 in the validation dataset, and both cohorts 290 
remained infection naive throughout, making it difficult to generalise these results to other 291 
populations who may have had prior infections, which are known to change immune kinetics 292 
compared to those who are infection naive.(28) Additionally, our measured observations of 293 
immune markers were confined to peripheral blood, potentially overlooking critical immune 294 
dynamics within lymphoid organs which may influence antibody kinetics. Further, this study 295 
also did not account for Helper T cell interactions, which play a crucial role in regulating the 296 
memory immune response. Finally, there are host factors not included in this analysis which 297 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.11.24310221doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.11.24310221
http://creativecommons.org/licenses/by/4.0/


 
 

8

could have influenced in-host immune heterogeneity, including age, genetic polymorphism, 298 
epigenetic factors and variations in cellular immunity.(29, 30) 299 
 300 
Our study highlights the importance of understanding in-host immunological kinetics in future 301 
vaccine development instead of relying just on Phase III endpoints. Understanding how age, 302 
vaccine type and dose schedule impact immune kinetics allows for the customisation of 303 
vaccination strategies tailored to different demographic groups, optimising protection across 304 
diverse populations. Furthermore, our findings underscore the importance of ongoing 305 
monitoring and surveillance post-vaccination to assess the persistence of immune 306 
responses. By integrating real-time data on immune kinetics into vaccine development and 307 
deployment strategies, stakeholders can make informed decisions regarding doses, vaccine 308 
updates to address emerging variants and allocation of resources in response to developing 309 
public health needs. These could be particularly useful in emergency contexts such as the 310 
Coalition for Epidemic Preparedness Innovations (CEPI) 100-day mission, which aims to 311 
develop and deploy vaccines in lower and middle-income countries in a very short 312 
timeframe.(31) 313 
 314 
In this study we reconstructed unobserved immunological kinetics and accounted for host 315 
factors which vary between individuals. This model extends previous humoral kinetics 316 
frameworks by fitting to multiple humoral biomarkers and incorporating hierarchical effects.  317 
We have shown that this framework can provide valuable insights into the mechanisms 318 
underlying vaccine-induced immune responses and aid in the development of more effective 319 
vaccination strategies and the impact of dosing schedules. In turn, a better understanding of 320 
in-host immunological kinetics in response to vaccination could help optimise vaccine dosing 321 
regimens to maximise vaccine efficacy in different population groups and inform the design 322 
of future vaccines for enhanced protection against other emerging pathogens. 323 
 324 
 325 
 326 
MATERIALS AND METHODS 327 
 328 
Study design of calibration dataset 329 
 330 
In April 2020, a prospective, open cohort study (ClinicalTrials.gov Identifier: NCT05110911) 331 
was established to investigate influenza vaccine immunogenicity among Health Care 332 
Workers (HCWs) at six health services across Australia (Alfred Hospital, Melbourne; 333 
Children’s Hospital Westmead, Sydney; John Hunter Hospital, Newcastle; Perth Children’s 334 
Hospital, Perth; Queensland Children’s Hospital, Bisbane; and the Women’s and Children’s 335 
Hospital, Adelaide). Commencing April 2021, the study pivoted to enable follow-up of 336 
COVID-19 vaccination. HCWs, including medical, nursing, and allied health staff, students 337 
and volunteers aged 18Y to 60Y, were recruited at each hospital’s staff influenza vaccination 338 
clinic or responded to recruitment advertising. Those on immunosuppressive treatment 339 
(including systemic corticosteroids) within the past 6 months, and contraindicated for 340 
vaccination were excluded. Enrolled participants provided a 9ml blood sample for serum 341 
collection prior to a first dose and ~14 days after their second dose of COVID-19 vaccine 342 
(suggested range 10-21 days) and at the end of the year. Pre-vaccination blood samples 343 
were collected from participants upon enrolment for participants newly enrolled in 2021, or 344 
samples collected in late 2020 were used for participants already enrolled in the influenza 345 
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vaccination cohort in 2020. End-of-year sera were collected October through November 346 
2021. A subset of 41 participants provided additional blood samples for peripheral blood 347 
mononuclear cell (PBMC) recovery on day 0 if enrolled prior to receiving their first vaccine 348 
dose and ~ 7 and 14 days after vaccination.   349 
 350 
The study protocol and protocol addendums for follow-up of COVID-19 vaccinations and 351 
SARS-CoV-2 infections were approved by The Royal Melbourne Hospital Human Research 352 
Ethics Committee (HREC/54245/MH-2019). LSHTM Observational Research Ethics 353 
Committee of London School of Hygiene and Tropical Medicine gave ethical approval for the 354 
use of this data for analysis (ref 22631). 355 
 356 
Study design of validation dataset 357 
 358 
Samples for the validation dataset (n=22) were collected in a prospective observational 359 
study of immune responses to COVID-19 vaccines conducted at the Royal Melbourne 360 
Hospital and the Peter Doherty Institute for Infection and Immunity in Melbourne from June 361 
2020 to December, 2022, funded by the National Institutes of Health, Bethesda, MD (the 362 
DISCOVER-HCP-BOOSTER study, HHSN272201400005C). In this study in health care 363 
providers (including clinical and allied health staff at the two institutions),  after informed 364 
consent was obtained, blood samples (~50 ml/sample) were collected before the first dose 365 
of either ChAdOx1 (n=15) or BNT162b2 vaccines (n=10), then 3-4 weeks after the first dose, 366 
just before the second dose (which occurred 3 weeks after the first dose for BNT162b2 367 
recipients) and 11 weeks after the first dose for ChAdOx1 recipients) and 2-4 weeks after the 368 
second dose for all vaccine recipients.  PBMC were isolated within 6 hours of collection and 369 
cryopreserved in liquid nitrogen until analysis. 370 
 371 
The study protocol and all samples collected in the DISCOVER-HCP-BOOSTER study were 372 
approved after review by the RMH Human Research and Ethics Committee 373 
(HREC/63096/MH-2020).  374 
 375 
Surrogate Virus Neutralization Test (sVNT) assay  376 
 377 
The SARS-CoV-2 sVNT assay described by Tan et al(32) was adapted to utilize 378 
commercially available SARS-CoV-2 spike receptor binding domain (RBD) protein 379 
(SinoBiological, 40592-V27H-B) representative of the ancestral strain  (YP_009724390.1). 380 
Sera were serially diluted 3-fold from 1:10 to 1:21870 for testing. GraphPad Prism version 381 
9.5.1 for Windows (GraphPad Software, California USA) was used to fit sigmoidal curves of 382 
OD450 values against log10 serum dilutions and to interpolate 50% inhibition titres. Sera 383 
that had no detectable inhibition at the lowest dilution were assigned a value of 1. Full details 384 
are provided in a prior publication.(8) 385 
 386 
SARS-CoV-2 spike- and RBD-reactive B cell analysis  387 
 388 
PBMCs were recovered using Lymphoprep (STEMCELL Technologies, Vancouver, Canada) 389 
and LEUCOSEP tubes (Greiner); cryopreserved in FCS containing 10% DMSO; and thawed 390 
into RPMI containing DENARASE (cLEcta, Leipzig Germany). Biotinylated spike and RBD 391 
were labelled with Streptavidin-fluorochromes (SA-F). PBMCs were incubated with 392 
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fluorescent-labeled recombinant spike and RBD proteins and with a cocktail of mAbs to 393 
detect activated MBC. Full details are provided in a prior publication.(8) 394 
 395 
Dynamic modelling of in-host kinetics to vaccination 396 
 397 
Our aim was to develop a mechanistic model of antibody production to gain a deeper 398 
understanding of the relationship between antibody-secreting cells, such as plasma cells and 399 
plasmablasts, and the changes in serum antibody concentrations over time following a 400 
second dose of SARS-CoV-2 vaccination. Our objectives were threefold: i) Establish a 401 
mechanistic model of antibody production in response to COVID-19 vaccination, ii) 402 
Determine the host factors driving immune heterogeneity to vaccination and iii) Determine 403 
the temporal variation in the origin of antibody production over time. 404 
 405 
For the measured biomarkers, we devised an in-host mathematical model of humoral 406 
immunity to assess the kinetics of antibody production for each vaccine type. We assume 407 
that the vaccine antigen stimulates the proliferation of memory B cells. After this stimulation, 408 
these cells differentiate along one of two pathways. They can either become short-lived 409 
plasmablasts, which secrete an initial burst of antibodies in response to vaccination, or they 410 
can migrate to the germinal centre. In the germinal centre, they remain for approximately two 411 
weeks before differentiating into long-lived plasma cells, which also secrete antibodies. 412 
Incorporating hierarchical effects into the model will help us assess the impact of host factors 413 
on the kinetics of memory B cells and antibodies. Identifying how previous vaccination 414 
history—considering vaccine type and timing—affects immune responses will inform 415 
improvements in vaccine formulations. Understanding the variability in immune responses 416 
due to host factors will enable personalised vaccination strategies to enhance overall 417 
vaccine effectiveness. Finally, by analysing the kinetics within the fitted dynamic models, we 418 
aim to understand the timeline of antibody production, including the transition from short-419 
term to long-term immunity and the roles of different immune cells and organs over time. 420 
This temporal analysis will help predict the duration of immunity provided by the vaccine, 421 
thereby informing public health policies on optimal vaccination schedules and the frequency 422 
of booster doses. 423 
Likelihood Function 424 
The likelihood function assumes that measured biomarkers are subject to normal distribution 425 
errors. The combined likelihood relates the data for MBC, plasmablasts, and antibodies to 426 
their model-predicted quantities. The details of the likelihood equations are given in the 427 
Supplementary Information. Priors for the dynamic system parameters are based on 428 
immunological observations. For instance, the decay rates of various cell types and 429 
antibodies are assigned priors reflecting their known biological behaviour. Non-informative 430 
and weakly informative priors are used for other parameters to ensure flexibility while 431 
maintaining biological plausibility. A full list of priors and their derivations is given in the 432 
Supplementary Information.  433 
Implementation 434 
The model is implemented using Hamiltonian Monte Carlo (HMC) via Stan. The ODEs are 435 
solved at each Markov chain step using the Runge-Kutta method. The analysis is conducted 436 
on two datasets: one using memory B cells and plasmablasts for ancestral spike, and the 437 
other for ancestral RBD, combined with sVNT. The model is run for 4,000 steps with 2,000 438 
burn-in for 4 chains. The convergence diagnostics indicate good mixing and convergence, 439 
with effective sample sizes (ESS) ranging from 1,000 to 6,500 and Potential Scale Reduction 440 
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Factor (PSRF) <1.1 for all parameters. The code for this analysis and for the figures of the 441 
manuscript and appendix can be found at https://github.com/dchodge/covidbcell. 442 
 443 
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 568 
 569 
Figure 1. Illustration of the link between the immunological assumptions, dynamic model and 570 
the hierarchical effects on the parameters of interest. 571 
 572 

 573 
Figure 2. Comparison of the fitted models and raw data from the calibration dataset (A, B) 574 
and the validation dataset (C, D). (A, C) Comparison of model posterior predictive 575 
trajectories, fitted to each antigen (rows), for the biomarker type (columns) for time post-576 
vaccination (x-axis). (B, D) The distribution of the CRPS for both models fits for each 577 
biomarker for the calibration dataset. 578 
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 579 
Figure 3. Posterior predictive distributions of the parameters driving the in-host mechanistic 580 
model according to key covariates for ancestral spike and RBD stratified by time since the 581 
first dose. (A) Posterior predictive distributions for the impact of time since the first dose on 582 
the rate of MBC proliferation (a1), the rate of sVNT antibody production from plasmablasts 583 
(a3), the rate of sVNT antibody production from plasma cells (a4). (B) Posterior predictive 584 
distributions for the age on a1, a3, and a4. 585 
 586 
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 587 
Figure 4. A) Source of sVNT antibodies by days post-vaccination for ancestral RBD. Line 588 
and ribbons show the mean and 95% posterior predictive interval (PPI) and dots represent 589 
the sVNT from data. (B-–C) Complementary CDF of the marginal posterior distributions for 590 
the time antibody titres remain above an IC50 threshold of 10 stratified by vaccine type and 591 
B) time since the last dose or C) age group. 592 
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