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Background & Aims: Nowadays, the global prevalence of non-alcoholic fatty 

liver disease (NAFLD) has reached about 25%, which is the most common chronic 
liver disease worldwide, and the mortality risk of NAFLD patients is higher. Our 
research created five machine learning (ML) models for predicting overall mortality 
in ultrasound-proven NAFLD patients and compared their performance with 
conventional non-invasive scoring systems, aiming to find a generalizable and 
valuable model for early mortality prediction in NAFLD patients.

Methods: National Health and Nutrition Examination Survey (NHANES)-III from 

1988 to 1994 and NHANES-III related mortality data from 2019 were used. 70% of 
subjects were separated into the training set (N = 2262) for development, while 30% 
were in the testing set (N= 971) for validation. The outcome was all-cause death at the 
end of follow-up. Twenty‑nine related variables were trained as predictor features for 
five ML–based models: Logistic regression (LR), K-nearest neighbors (KNN), 
Gradient-boosted decision tree (XGBoost), Random forest (RF) and Decision tree. 
Five typical evaluation indexes including area under the curve (AUC), F1 score, 
accuracy, sensitivity and specificity were used to measure the prediction performance.

Results: 3233 patients with NAFLD in total were eligible for the inclusion criteria, 

with 1231 death during the average 25.3 years follow up time. AUC of the LR model 
in predicting the mortality of NAFLD was 0.888 (95% confidence interval [CI] 
0.867-0.909), the accuracy was 0.808, the sensitivity was 0.819, the specificity was 
0.802, and the F1 score was 0.765, which showed the best performance compared 
with other models (AUC were: RF, 0.876 [95%CI 0.852-0.897]; XGBoost, 0.875 
[95%CI 0.853-0.898]; Decision tree, 0.793 [95%CI 0.766-0.819] and KNN, 0.787 
[95%CI 0.759-0.816]) and conventional clinical scores (AUC were: Fibrosis-4 Score 
(FIB-4), 0.793 [95%CI 0.777-0.809]; NAFLD fibrosis score (NFS), 0.770 [95%CI 
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0.753-0.787] and aspartate aminotransferase-to-platelet ratio index (APRI), 0.522 
[95%CI 0.502-0.543]). 

Conclusions: ML–based models, especially LR model, had better discrimination 

performance in predicting all-cause mortality in patients with NAFLD compared to 
the conventional non-invasive scores, and an interpretable model like Decision tree, 
which only used three predictors: age, systolic pressure and glycated hemoglobin, is 
simple to use in clinical practice.

Keywords: Non-alcoholic fatty liver disease; mortality; machine learning; Logistic 

regression; Decision tree; NHANES-III. 

Introduction
NAFLD has become the most common chronic liver disease and affects up to 1 

billion people worldwide, leading to a health and economic burden1-3, and can 
increase the risk of end-stage liver disease and hepatocellular carcinoma (HCC)4. 
Patients with NAFLD have a significant increase of the all-cause mortality, among 
which the main causes are cardiovascular disease, malignant tumor as well as 
end-stage liver disease5, 6. It is of great importance to early detect patients with a 
higher risk of death, which may may help to optimize the use of finite resources and 
provide appropriate care.

In addition to age, fibrosis stage has the best predictive power for overall 
mortality7, 8. However, liver biopsy as the gold standard is inappropriate to screen  
clinically significant fibrosis because of its features like invasive, inconvenient and 
expensive. Some studies have shown that conventional non-invasive scores, such as 
NFS9, FIB-410, and APRI11, have prognostic significance of death for NAFLD 
patients12-14. However, their results were controversial. A meta-analysis including 19 
longitudinal studies showed that only the NFS > 0.676 was predictive of overall 
mortality, while FIB-4 and APRI failed14. And a retrospective analysis including 646 
NAFLD patients proven by liver biopsy revealed that although FIB-4 and NFS could 
precisely predict the risk of overall mortality of NAFLD patients, owing to the AUC 
values were not high enough (FIB-4, 0.72 [95% CI, 0.68–0.76]; NFS, 0.72 [95% CI, 
0.68–0.76] and APRI, 0.52 [95% CI, 0.47–0.57]), so they were not useful in the 
clinical practice and new methods are needed to confirm the prognosis of NAFLD  
patients 13.

Predictive tools using ML have been extensively developed and used in medicine 
in recent years because they are often superior to traditional predictive methods16, and 
nowadays, the utilization of ML in gastroenterology territory is in steady-state 
growth17. Some studies have shown that ML is superior to traditional non-invasive 
approaches for the prediction of liver fibrosis18-21, such as FIB-4 and FibroScan to 
predict significant fibrosis (≥F2) and advanced fibrosis (≥F3) in NAFLD patients18. 
However, a model for predicting NAFLD mortality based on ML has not yet been 
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developed. Our study aimed to develop, test and verify the mortality prediction model 
established by ML for patients with NAFLD in the USA.

Methods
Data sources and ethical approval

NHANES-III (1988–1994) database with nationwide, multilevel, stratified, 
clustered probability sampling design, is used to assess the health status of the civilian 
population in the USA. The data in the NHANES-III includes interviews, physical 
examinations, laboratory tests, and ultrasound examinations were conducted to assess 
the liver steatosis. NHANES-III data is also related to death certificates from the 
National Death Index (NDI) as of December 31, 2019, allowing for mortality 
analysis.

The survey was ratified by the ethics review committee of the National Center 
for health statistics, and the written informed consent of all participants was acquired 
to collect data. The institutional review committee dispensed with the consideration of 
human research because the data was fully certain.

Study population and definitions
In the NHANES-III survey, among the adult participants (20-74 years old) with 

gradable liver / gallbladder ultrasound results (n=13,856), we first excluded 
individuals with heavy drinking (men >21drinks / week, women >14 drinks/ week), 
viral hepatitis (serum hepatitis B surface antigen positive and /or serum hepatitis C 
antibody positive), iron overload (transferring saturation≥50%). In addition, 
participants with incomplete or missing data on mortality, physical examinations and 
laboratory tests were also excluded (Figure 1). 

NHANES-III examination includes gallbladder ultrasonography in adults aged 
20-74. In order to evaluate fatty liver, the gallbladder ultrasound images were 
examined by three committee certified radiologists. The following five criteria were 
used in the review process: (I) parenchymal brightness, (II) liver to kidney contrast, 
(III) deep beam attenuation, (IV) bright vascular walls, and (V) gallbladder wall 
definition. The degree of hepatic steatosis were reported as normal, mild, moderate or 
severe according to these five criteria. In this study, NAFLD was defined as mild to 
severe hepatic steatosis, excluding whatever known causes of liver disease.

Variable selection and outcome
In this study, twenty-nine NAFLD related factors were included, such as 

demographic features (age, gender and ethnicity), general measurement (waist 
circumference, body mass index (BMI), systolic blood pressure (SBP) and diastolic 
blood pressure (DBP)), biochemistry tests (WBC, PLT, C-reactive protein (CRP), 
iron, total iron-binding capacity (TBIL), ferritin, transferrin saturation, total 
cholesterol, triglyceride, high-density lipoprotein (HDL) cholesterol, and uric acid), 
diabetes testing profile (fasting plasma glucose, glycated hemoglobin (HbA1c), 
fasting C-peptide and fasting insulin) ,and liver chemistry (aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2024.07.10.24310253doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310253
http://creativecommons.org/licenses/by/4.0/


glutamyl transferase (GGT), albumin and total bilirubin) .
The outcome was set as the passive mortality as of December 31, 2019 according 

to the follow up time of NHANES-III. For assessing the state of death (including the 
date of death), we performed probability matching with the NDI records. 
NHANES-III related death documents use the ucod_113 to code the deaths before 
1998 and between 1999 and 2015, which are coded according to the Ninth Revision 
of the international classification of diseases (ICD-9). 

Development and validation of machine learning models
The ML models in our study, including LR, KNN, Decision tree, RF and 

XGBoost, were trained using the selected 29 variables to predict mortality, and then 
10-fold stratified cross-validation was adopted in the training process to avoid 
overfitting of the mode. Briefly speaking, the training data was divided into 10 
hierarchical subsets, followed by using 9 subsets to train the model, and using the left 
one subset for verification. These training and verification processes were repeated 10 
times, and each subset was used once as the verification dataset, so that we could 
obtain 10 estimates of prediction accuracy, and these estimates were averaged to 
obtain a single estimate. For the LR model, we described the absolute value of 
standardized beta coefficient, while for the RF and XGBoost, the feature importance 
was showed of each model. 

Testing data were used to verify the performance of developed ML models, 
which was independent from the training process. Accuracy, sensitivity or recall, 
specificity, precision, AUC and the F1 score (the harmonic average of recall and 
precision) were taken as performance indicators, and then compared with those of 
three conventional NAFLD scores (FIB-4, NFS, APRI) on the testing dataset, where 
we also established calibration plots in order to observe the coherence between 
predicted and observed mortality during follow-up. A good calibration degree shows 
that from the model explanation to the random samples prediction, the predicted value 
of the model is closer to the actual probability of the results.

Statistical analysis
To present the patient characteristics, the mean of standard deviation (SD) for 

numerical variables and percentage counting for the categorical variables were used. 
We use Student t-test to compare the mean value between two samples, and 
chi-square test to compare the frequencies. For all tests, the bilateral significance level 
<5% was considered statistically significant (p<0.05). All statistical analyses were 
conducted using RStudio software (Macintosh; Intel Mac OS X 12_5_0).

Results
Characteristics of study subjects 

3,233 patients with NAFLD met the inclusion criteria and were categorized into 
two groups at random: training set (70%, N = 2262) as well as testing set (30%, N = 
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971). Figure 1 shows the patient screening process. The overall mortality in patients 
with NAFLD is 38.7% during the average 25.3 years follow up time. The baseline 
characteristics of patients according to whether died or not in the training and testing 
sets are described in Table 1. Compared with the patients finally died, those survival 
NAFLD patients were more likely to be young people, women, Mexican Americans. 
In addition, BMI, waist circumference, SBP, DBP, TC, TG, CRP, uric acid, GGT, 
ALP, HbA1c, FPG, fasting C-peptide, fasting insulin of these people were lower, and 
PLT, TIBC, ALT, albumin were higher. There were no significant differences 
between the training set and testing set for all factors. 

Model building and evaluation
Five ML methods, including LR, decision tree, RF, KNN and XGBoost, with all 

the 29 factors inputted were built for the mortality prediction of NAFLD patients. 
Absolute values of standardized beta coefficients for LR and feature importance for 
XGBoost and RF models were assessed and the results were shown in Figure 2. Age 
was the most important factor among all the ML models to predict mortality during 
follow-up period. SBP and glucose level were listed as the top 5 important variables 
of RF and XGBoost. The other essential factors for the models development were 
iron, transferrin saturation, BMI and uric acid for the LR, DBP and waist 
circumference for the RF, and HbA1c as well as C-peptide for the XGBoost.

After 10-fold cross-validation, the training accuracy of ML models were 0.807 
for the LR, 0.807 for the decision tree, 0.814 for the RF, 0.692 for the KNN, and 
0.808 for the XGBoost. 

Models performance analysis 
The receiver operating characteristic (ROC) curves with AUC values of the five 

ML models in the testing data is shown in Figure 3. Validation of our developed ML 
models showed reliable performance for the mortality prediction in NAFLD patients, 
whose AUC values were: LR, 0.888 (0.867–0.909); RF, 0.876 (0.852–0.897); 
XGBoost, 0875 (0.853–0.898); decision tree, 0.793 (0.766–0.819) and KNN, 0.787 
(0.759–0.816), respectively. The F1 score of above models were 0.765, 0.759, 0.745, 
0.744 and 0.759, respectively. The other evaluation measures of the prediction 
models, including accuracy, sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV) are described in Table 2. Among all the 
evaluated classifiers, the LR model had the highest sensitivity of 0.819 and NPV of 
0.878. The specificity, PPV and accuracy of the RF model were the highest on the 
other hand, which were 0.837, 0.745 and 0.813, respectively. Table 2 shows the 
performance of NFS, FIB-4 and APRI on the testing data at the same time, and among 
all the conventional non-invasive scores, FIB-4 showed the best performance, whose 
accuracy was 73.0% and F1 score was 0.765. Nevertheless, the performance of all the 
ML models were superior to FIB-4 in all metrics.

Finally, Supplementary Figure 1 shows the probability calibration curves of the 
ML models in validation and it can be seen that the predicted probability of all the 
models was uncertainty because they were not well-calibrated and underestimated.
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Discussion
To our knowledge, this study is the first time that the NAFLD mortality 

prediction model based on ML has been developed and evaluated. In conclusion, we 
selected 29 clinical variables for NAFLD mortality prediction from the NHANES-III 
database, which were important in the liver diseases and generally readily available at 
hospital admission. After using several ML algorithms of LR, decision tree, RF, KNN 
and XGBoost to train these variables, the verification of the developed models 
revealed dependable performance with relatively high AUC values. The LR model 
had both a higher AUC and F1 score, which indicated a superior performance in the 
death classification of NAFLD patients, and showed better performance than that of 
decision tree, RF, KNN and XGBoost.

On the other hand, we found that the decision tree model which consisted of only 
three factors: age, systolic blood pressure and HbA1c (Figure 4), although not 
showed the best performance among all the ML models, it had a certain degree of 
value (accuracy was 80.1%; AUC was 0.793 and F1 score was 0.744) in terms of 
testing performance. The decision tree model is easy to explain and use, so it can be 
used more practically in clinical practice.

The performance of some conventional non-invasive scores, like FIB-4, NFS and 
APRI for the overall mortality prediction in NAFLD patients was also showed in our 
study. AUC values for the overall mortality were: FIB-4, 0.793 (0.777–0.809); NFS, 
0.770 (0.753–0.787) and APRI, 0.522 (0.502–0.543), respectively, which were closely 
similar to the results of a retrospective analysis of 646 biopsy-proven patients with 
NAFLD (AUC for the overall mortality were FIB-4, 0.72 (0.68–0.76); NFS, 
0.72(0.68–0.76) and APRI, 0.52 (0.47–0.57)), indicating that these scoring systems 
were insufficient for clinical use.

On the other hand, the availability of ML methods in the development of medical 
prediction models have been proven in recent years22, 23. In the same way, by using a 
ML algorithm, a well-done prognostic model for NAFLD has been successfully 
developed in our study. With regard to the AUC values, the models we developed 
showed statistical advantages over the conventional non-invasive scores, and the F1 
scores in the developed models were also significantly higher, which incited the 
validity of ML models in detecting NAFLD mortality. However, the calibration chart 
showed that the prediction of the probability of results was underestimated or 
overestimated, indicating that these models were only applicable to classification 
problems.

Our predictive models have the latent capacity for use in the clinical practice. 
Since we only used demographic characteristics and laboratory data as the predictor 
variables which are easily obtained, clinicians can use the predictive results as a 
reference tool to initiate treatment as early as possible. In addition, the model can be 
used to retrospectively evaluate the quality of care in NAFLD treatment. 
Nevertheless, ML models should not be used as an explicit tool to decide the 
withdraw of treatment.
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Age is the most important factor not only in the decision tree model, but also 
ranks the first in all the other ML models. Many studies have proven that age is an 
independent risk factor for liver fibrosis in NAFLD patients24, 25, and liver fibrosis is 
also an independent risk factor for liver-related mortality26-28. Age is in correlation 
with increased cardiovascular mortality as the independent risk factor in NAFLD at 
the same time29, 30. So the role of age in all-cause mortality can be rationally 
explained.

Systolic blood pressure and HbA1c are also components of the decision tree to 
predict the all-cause mortality. With the deepening of research, people's 
understanding of NAFLD is no longer limited to the liver itself, but as a major 
performance of metabolic syndrome (MetS) in the liver, which is closely associated 
with hypertension, obesity, dyslipidemia, type 2 diabetes (T2DM), insulin resistance 
(IR) and cardiovascular disease31, 32. Although patients with NAFLD, especially those 
with nonalcoholic steatohepatitis (NASH), have an increased risk of liver-related 
death, there is evidence that cardiovascular disease (CV) risk factors like 
hypertension, obesity, IR as well as T2DM are the major drivers of morbidity and 
mortality in NAFLD patients33-35. A recent study using NHANES-III database found 
poor glycaemic control (adjusted population-attributable fraction (PAF)=28.3% for 
all-cause mortality) and hypertension (adjusted PAF=23% for all-cause mortality) 
were the largest contributors to mortality for NAFLD patients and reaching desirable 
glycaemic control (HbA1c of <5.7%) could avoid 28.3% of all-cause deaths36.

Our study has several limitations. First, we all know that liver biopsy is the gold 
standard for NAFLD diagnosis, but it was ultrasound-proven in our study. 
Nevertheless, in population-based studies, it is the dominant imaging approach for 
NAFLD diagnosis and is available in primary care settings; Second, missing data is an 
unavoidable nature of NHANES III population dataset; Third, since we used the US 
registration database for training and verification of the model, we should use foreign 
databases for external verification in the future. However, there was no external data 
set like NHANES III that can be used to validate the model at the time of writing this 
paper; Fourth, due to the use of randomization in the modeling process, such as data 
segmentation, cross validation and the creation of some ML models, it may not be 
possible to completely reproduce the ML algorithm in our research. Finally, it might 
be criticized that ML models need a computing device to calculate results, and it is 
unrealistic to only use a single model for NAFLD patients. Since the features we 
selected are mainly patient background and laboratory data, we suggest that we can 
use ML models as a plugin for electrical health records after completing a prospective 
study of further performance improvement and future external validation.

But there are also some strengths in our study. First, to our knowledge, this study 
firstly assessed the performance of ML models in predicting all-cause mortality in 
NAFLD patients , based on over 3000 US individuals from NHANES III. Second, we 
proposed a simple model with rational performance of mortality prediction in patients 
with NAFLD, which will potentially be used by primary care providers in clinical 
practice. 

Conclusion
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In conclusion, a new mortality prediction model for NAFLD patients in the USA 
was developed using ML technology. The LR model performed best in our study, 
using the AUC and F1 score for measurement. On the other hand, the decision tree 
model, which is composed of age, systolic blood pressure and HbA1c, can produce a 
rational prediction performance, and the most important thing is that it is the simplest 
to use. Although we need to further improve the quality of performance by increasing 
the sample size or conducting prospective validation in the clinical environment, our 
research has demonstrated for the first time the potential of NAFLD prediction 
models based on machine learning.
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Figure 1. Study design and data partitioning flow chart. 
NAFLD, non-alcoholic fatty liver disease.
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Figure 2.  (A) Absolute values of standardized beta coefficients for the logistic regression model. (B) Feature importances of variables for the 
random forest model. (C) Feature importances of variables for the XGBoost model. 
BMI, Body mass index; UA, uric acid; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL, 
high-density lipoprotein cholesterol; CRP, C-reactive protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma glutamyl 
transferase; ALP, alkaline phosphatase; TBIL, total bilirubin; HbA1c, glycated hemoglobin; FIBC, total iron-binding capacity.
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Figure 3.  Comparison of ROC curves and AUC among the developed machine-learning models and among the conventional non-invasive 
scores for mortality prediction. 
ROC, receiver operating characteristic; AUC, area under the curve; NFS, NAFLD fibrosis score; FIB-4, fibrosis-4 score; APRI, aspartate 
aminotransferase-to-platelet ratio index.
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Figure 4. The decision logic of decision tree. 
SBP, systolic blood pressure; HbA1c, glycated hemoglobin.
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Table 1. Baseline characteristics of the data set.
  Trainning data set (N=2262)   Testing data set (N=971)

Nonsurvival (n=861) Survival (n=1401) P Nonsurvival (n=370) Survival (n=601) P

Demographic

Age (yr) 59.3 (12.2) 38.8 (12.2)  <0.001  58.9 (12.9) 37.9 (12.2)  <0.001  

Gender (male) (%) 438 (50.9%) 588 (42.0%)  <0.001  196 (53.0%) 269 (44.8%)   0.015  

Ethnicity                        <0.001                         <0.001  

    Mexican American (%) 213 (24.7%) 548 (39.1%)          96 (25.9%) 238 (39.6%)          

    Non-hispanic balck (%) 222 (25.8%) 350 (25.0%)          88 (23.8%) 153 (25.5%)          

    Non-hispanic white (%) 396 (46.0%) 441 (31.5%)          173 (46.8%) 173 (28.8%)          

    Others 30 (3.48%) 62 (4.43%)          13 (3.51%) 37 (6.16%)          

Body measurement

Body mass index (kg/m2) 30.4 (6.50) 29.1 (6.63)  <0.001  30.3 (6.54) 29.0 (6.83)   0.002  

Waist circumference (cm) 104 (14.3) 95.9 (16.1) <0.001   104 (14.3) 96.0 (16.8) <0.001  

Systolic blood pressure (mmHg) 137 (19.6) 120 (15.0)  <0.001  138 (20.3) 120 (14.8)  <0.001  

Diastolic blood pressure (mmHg) 78.1 (10.7) 75.0 (10.4)  <0.001  77.5 (10.7) 75.5 (10.3)   0.003  

Biochemistry tests

WBC (×10^9/L) 7.62 (2.61) 7.23 (1.98)  <0.001  7.36 (1.93) 7.34 (2.12)   0.860  

PLT (×10^9/L) 267 (71.0) 279 (67.1)  <0.001  268 (69.7) 285 (74.6)  <0.001  

Iron (ug/dL) 14.5 (5.30) 15.1 (6.02)   0.021  15.0 (5.74) 14.8 (5.72)   0.702  
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  Trainning data set (N=2262)   Testing data set (N=971)

Total iron-binding capacity (ug/dL) 63.2 (9.74) 66.2 (10.4)  <0.001  63.4 (9.83) 66.6 (10.3)  <0.001  

Transferrin saturation  (%) 23.5 (9.00) 23.3 (9.57)   0.780  24.0 (9.28) 22.9 (9.46)   0.082  

Ferritin  (ng/mL)  187 (340)  129 (138)  <0.001   172 (167)  125 (131)  <0.001  

Total cholesterol (mg/dL) 5.75 (1.13) 5.21 (1.11)  <0.001  5.55 (1.05) 5.21 (1.09)  <0.001  

Triglyceride (mg/dL) 2.26 (1.47) 1.83 (1.42)  <0.001  2.12 (1.33) 1.85 (1.37)   0.002  

HDL cholesterol (mg/dL) 1.21 (0.43) 1.23 (0.37)   0.276  1.21 (0.43) 1.21 (0.35)   0.915  

C-reactive protein (mg/dL) 0.68 (0.98) 0.45 (0.68)  <0.001  0.59 (0.70) 0.48 (0.76)   0.023  

Uric acid (mg/dL) 5.92 (1.57) 5.37 (1.47)  <0.001  5.88 (1.55) 5.39 (1.52)  <0.001  

Liver chemistry

Alanine aminotransferase (U/L) 18.7 (12.2) 23.4 (24.2)  <0.001  19.3 (13.4) 23.5 (18.8)  <0.001  

Aspartate aminotransferase (U/L) 22.6 (13.6) 24.0 (23.2)   0.065  23.1 (12.9) 23.6 (12.4)   0.577  

Gamma glutamyl transferase (U/L) 41.4 (50.1) 34.2 (39.5)  <0.001  49.6 (87.5) 33.7 (29.8)   0.001  

Alkaline phosphatase (U/L) 97.7 (35.4) 86.4 (25.0)  <0.001  97.5 (39.1) 87.5 (31.0)  <0.001  

Total bilirubin (mg/dL) 9.82 (5.24) 9.85 (5.36)   0.886  9.79 (4.64) 9.96 (5.24)   0.608  

Albumin (g/dL) 40.3 (3.35) 41.2 (3.43)  <0.001  40.2 (3.33) 41.2 (3.45)  <0.001  

Diabetes testing profile

Glycated hemoglobin (%) 6.29 (1.68) 5.50 (1.11)  <0.001  6.25 (1.69) 5.47 (1.03)  <0.001  

Fasting plasma glucose (mg/dL) 123 (59.9) 100 (36.7)  <0.001  124 (66.1) 101 (38.1)  <0.001  

Fasting C-peptide (pmol/mL) 6.81 (3.33) 5.55 (2.04)  <0.001  6.87 (3.67) 5.61 (2.12)  <0.001  
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  Trainning data set (N=2262)   Testing data set (N=971)

Fasting insulin (uU/mL) 19.2 (23.7) 15.4 (15.8)  <0.001  18.8 (19.0) 15.3 (13.8)   0.002  

NAFLD indices

NAFLD severity                        <0.001                          0.060  

    Mild (%) 278 (32.3%) 573 (40.9%)          126 (34.1%) 250 (41.6%)          

    Moderate (%) 370 (43.0%) 559 (39.9%)          150 (40.5%) 221 (36.8%)          

    Severe (%) 213 (24.7%) 269 (19.2%)          94 (25.4%) 130 (21.6%)          

NFS  -0.54 (1.51) -2.01 (1.44) <0.001 -0.63 (1.48) -2.14 (1.45) <0.001

FIB-4 1.32 (0.76) 0.77 (0.46) <0.001 1.30 (0.66) 0.77 (0.81) <0.001

APRI  0.25 (0.24) 0.25 (0.30) 0.893 0.25 (0.18) 0.26 (0.46) 0.650

NFS, NAFLD fibrosis score; FIB-4, Fibrosis-4 Score; APRI, aspartate aminotransferase-to-platelet ratio index.
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Table 2. The performance of machine learning models and conventional non-invasive scores on testing data.

AUC, area under the curve; CI ,confidence interval; NPV, negative predictive value; PPV, positive predictive value; 

NFS, NAFLD fibrosis score; FIB-4, fibrosis-4 score; APRI, aspartate aminotransferase-to-platelet ratio index.

Model AUC [95%CI] Accuracy 
(%)

PPV/Precision 
(%)

NPV 
(%)

Sensitivity/Recall 
(%)

Specificity 
(%)

F1 
score

Machine learning models

Logistic regression 0.888 [0.867-0.909] 0.808 0.718 0.878 0.819 0.802 0.765

Random forest 0.876 [0.852-0.897] 0.813 0.745 0.857 0.773 0.837 0.759

XGBoost 0.875 [0.853-0.898] 0.803 0.736 0.846 0.754 0.834 0.745

Decision tree 0.793 [0.766-0.819] 0.801 0.731 0.847 0.757 0.829 0.744

KNN 0.787 [0.759-0.816] 0.813 0.745 0.857 0.608 0.737 0.759

Conventional non-invasive scores

FIB-4 0.793 [0.777-0.809] 0.730 0.622 0.819 0.739 0.724 0.675

NFS 0.770 [0.753-0.787] 0.717 0.606 0.811 0.733 0.707 0.663

APRI 0.522 [0.502-0.543] 0.499 0.400 0.649 0.634 0.416 0.491
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