CAF to the rescue! Potential and challenges of combination antifungal therapy for reducing morbidity and mortality in hospitalized patients with serious fungal infections ========================================================================================================================================================================== * Samantha E. Jacobs * Vishnu Chaturvedi ## Abstract The global burden of invasive fungal disease (IFD) is substantial and escalating. Combination antifungal therapy (CAF) may improve patient outcomes by reducing development of resistance, improving drug penetration and rate of fungal clearance, and allowing for lower, less toxic antifungal drug doses; yet, increased cost, antagonism, drug-drug interactions, and toxicity are concerns. Clinical practice guidelines recommend antifungal monotherapy, rather than CAF, for most IFDs due to a lack of comparative randomized clinical trials. An examination of the existing body of CAF research should frame new hypotheses and determine priorities for future CAF clinical trials. We performed a systematic review of CAF clinical studies for invasive candidiasis, cryptococcosis, invasive aspergillosis, and mucormycosis. Additionally, we summarize findings from animal models of CAF and assess laboratory methods available to evaluate CAF efficacy. Future CAF trials should be prioritized according to animal models showing improved survival and observational clinical data supporting efficacy and safety. ## Introduction ### Continued dismal outcomes for patients with serious fungal infections The global burden of invasive fungal disease (IFD) is substantial, causing approximately 1.5 million deaths per year, and escalating due to a growing population of immunosuppressed individuals, global health events such as the COVID-19 pandemic, and improvements in molecular diagnostics leading to increased reporting of previously unrecognized or undiagnosed IFD.(1–6) IFDs have considerable economic impact in terms of direct medical costs, productivity loss, and pre-mature deaths.(7) In 2019, the estimated economic burden of fungal disease in the U.S. was $11.5 billion, and the mean cost of an inpatient visit associated with fungal disease diagnosis was more than twice that of the average inpatient stay. Within the healthcare system, IFDs lead to increased length of stay and mortality, and inappropriate empirical antimicrobial therapy.(8–10) Disparate mortality rates are observed across continents and countries. For example, 30-day all-cause mortality in patients with candidemia is approximately 30% in Europe and the U.S. and 60-72% in South Africa and Brazil.(11) ### Potential and challenges of combination antifungal therapy Given the considerable individual and public health burden of IFDs, emphasis on research pertaining to antifungal therapeutics is essential. Except for cryptococcal meningitis, current clinical practice guidelines recommend antifungal monotherapy for most IFDs; yet, morbidity and mortality remains unacceptably high.(12–19) Combination antifungal therapy (CAF) is one putative strategy to reduce risk and improve outcomes. Potential reasons to pursue CAF for IFDs are: (1) To broaden the spectrum of activity for empirical therapy, (2) to enhance the rate of killing through antifungal synergy/ increased potency, (3) to delay or prevent development of resistance (4) to reduce antifungal toxicity by using lower drug dosages (5) or to enhance the effectiveness of older antifungals, and (6) to treat breakthrough infections.(20–23) CAF may be particularly useful in difficult clinical situations, e.g., infections due to highly resistant pathogens or biofilm formation, or in tissues with compromised drug penetration. However, some potentially harmful effects of CAF include reduced fungal killing (antagonism), drug-drug interactions, increased toxicity, and increased cost. The concept of combining drugs with different mechanisms of action to treat a disease is a longstanding practice supported by rigorous randomized controlled trials (RCTs) for other complex and severe infections including HIV and tuberculosis, as well as oncologic diseases.(24–27) Unfortunately, multiple challenges to conducting large-scale RCTs exist for patients with IFDs including cost, the significant time to conduct the study, particularly for rare fungi (e.g., Mucorales), and difficulty enrolling medically complex and/or critically ill patients.(28) Due to a lack of RCTs comparing CAF to monotherapy, CAF is reserved for salvage therapy or specific severe disease manifestations, e.g., *Candida* endocarditis, in U.S. and international guidelines.(13) To frame new hypotheses and carefully inform clinical trial design, it is important to examine and build upon the existing body of preclinical research and human studies. We perform a systematic review of CAF clinical studies for the most prevalent and dangerous fungal pathogens, *Candida* spp., *Cryptococcus neoformans*, *Aspergillus* spp., and the Mucorales. We further summarize findings from experimental research and assess laboratory methods available to evaluate CAF efficacy. Table 1 provides a “bird’s eye view” qualitative summary of the evidence for CAF. View this table: [Table 1.](http://medrxiv.org/content/early/2024/07/11/2024.07.10.24310241/T1) Table 1. Bird’s eye view: Summary of clinical and experimental evidence supporting combination antifungal therapy for the most prevalent and dangerous fungal pathogens ### Clinical studies of combination antifungal therapy #### Systematic review methods A systematic review to identify clinical studies of CAF for invasive candidiasis (IC), cryptococcosis, invasive aspergillosis (IA), and invasive mucormycosis was conducted in accordance with the PRISMA guidelines.(29) PubMed was searched for English-language publications using the following terms “antifungal combination therapy” or “combination antifungal therapy” and “candida” or “candidiasis”, “cryptococcus” or “cryptococcosis” or “cryptococcal”, “aspergillus” or “aspergillosis”, and “mucorales” or “mucormycosis” or “zygomycetes” or “zygomycosis” (Appendix). We limited our search to manuscripts published between January 1, 2003 (coinciding with the year of U.S. FDA approval of voriconazole) and February 1, 2023. Reference lists from the included studies were additionally screened to identify potentially relevant evidence. We included studies whose primary aim was to evaluate the CAF efficacy for proven or probable IFD according to consensus definitions; fungal speciation was not required.(30, 31) Papers were excluded if they were literature reviews or meta-analyses, if they did not specify antifungal drug dosages, or if they evaluated combinations including non-systemic antifungal agents, e.g., topical or aerosolized formulations, or non-antifungal chemical compounds. #### Systematic review results The PRISMA flowcharts in the Appendix provide a detailed breakdown of the results of the primary search for each of the four IFDs. From 954 publications evaluated, 104 articles met the inclusion criteria. These included 21 CAF papers for IC, 17 for cryptococcosis, 45 for IA, and 21 for mucormycosis. Below, we focus our discussion on the findings from randomized trials and large observational studies for each pathogen. Details of each included manuscript, including study design, patient population, antifungal therapy, and patient-related outcomes, are provided in Supplementary Tables 1-4. #### Invasive Candidiasis Only one RCT of CAF for IC was identified in the systematic review, and the trial was conducted prior to the availability of echinocandins. The trial included 219 non-neutropenic patients who received fluconazole (FLC) 800 mg/d plus placebo vs. FLC plus deoxycholate amphotericin B (dAmB) 0.7 mg/kg/d for candidemia (*C. albicans* in 62%).(32) There was no difference between groups in the primary analysis of time-to-failure, nor in mortality, although overall success rates were higher in the combination vs. monotherapy arm (69% vs. 56%, respectively, *P*=0.043). Further clinical data pertaining to CAF for IC was limited to 20 case reports and small case series, most often describing azole-echinocandin or polyene-echinocandin combinations used as salvage therapy. Four case reports and a series of 13 patients with peritoneal dialysis-associated *Candida* peritonitis described favorable outcomes in patients treated with combination dAmB or liposomal AmB (L-AmB) plus flucytosine (5-FC), a regimen still recommended for treatment of deep-seated *Candida* infections, e.g., meningitis and endocarditis, based on limited experimental and clinical data.(13, 33–37) This combination has shown synergy *in vitro* and is widely used for cryptococcal meningitis (CM).(38) Moreover, excellent 5-FC levels are achieved in cerebrospinal fluid (CSF).(39) #### Cryptococcosis The systematic review identified 12 RCTs and one prospective, non-randomized trial of induction therapy for CM, all in individuals with HIV/AIDS, as well as 3 retrospective studies and a case report in persons with other immunocompromising conditions. There are no prospective trials in persons without HIV, nor has CAF been evaluated for other manifestations of cryptococcosis, e.g., pulmonary disease. Several trials established that the combinations of AmB plus 5-FC and AmB plus FLC both achieve improved clinical outcomes as compared to AmB alone.(40–42) However, fungicidal activity, as measured by the rate of reduction in CSF yeast CFU from serial quantitative cultures, is greater with AmB plus 5-FC as compared to AmB plus FLC.(40, 41) Combination 5-FC and FLC is appealing due to its oral availability and low rates of nephrotoxicity, although prolonged 5-FC is associated with leukopenia.(43) In a pivotal trial in Africa (ACTA) including 721 patients, the all-oral induction regimen of FLC 1200 mg/d plus 5-FC 100 mg/kg/d was non-inferior to dAmB plus FLC or 5-FC for 7 or 14 days for the primary endpoint of 2-week mortality.(44) However, faster CSF clearance was observed with AmB plus 5-FC compared to FLC plus 5-FC. L-AmB was investigated in a landmark trial, Ambition, in 844 individuals with CM in sub-Saharan Africa. A single 10 mg/kg dose of L-AmB plus 14 days of high-dose FLC and 5-FC was non-inferior to the WHO-recommended 1-week regimen of dAmB plus 5-FC and was associated with fewer adverse events.(45) Following the results of the ACTA and Ambition trials, as well as advocacy efforts, generic 5-FC is more widely available at a reduced cost and utilized in routine care.(46) Three-drug combinations of AmB, 5-FC, and FLC have also been studied. While the triple therapy had the most potent fungicidal effect in a murine model of CM, it was not more efficacious than AmB plus 5-FC in humans.(40, 47) Other triazole antifungal agents have excellent *in vitro* activity against *Cryptococcus* spp., and the combination of AmB and voriconazole (VOR) had similar early fungicidal activity as compared to AmB plus 5-FC and AmB plus FLC in a small randomized trial.(48, 49) However, VOR, isavuconazole (ISA), and posaconazole (POS) have more side effects and drug-drug interactions, and higher costs than FLC, thus limiting their utility for a disease that is most prevalent in resource-limited settings. #### Invasive Aspergillosis Two randomized trials, 10 observational studies, and 33 case reports/series met inclusion criteria in the systematic review of CAF for IA. Prior to widespread use of VOR as standard of care, prospective studies primarily investigated polyene-echinocandin combination. In the randomized, open-label Combistrat trial including 30 patients with hematologic malignancy (HM) and IA, those receiving L-AmB 3 mg/kg/d plus caspofungin (CAS) had higher favorable response rate (67%) and less acute kidney injury than those receiving high-dose L-AmB 10 mg/kg/d alone (27%, P=0.028 for comparison) for primary therapy.(50) However, L-AmB ≥ 7.5 mg/kg/d plus CAS combination led to poorer clinical outcomes compared to POS suspension for salvage therapy in a single center compassionate use trial.(51) Further clinical trials with polyene-based combination therapy have not been pursued in the past two decades given a lack of compelling preclinical data, high rates of AmB-associated nephrotoxicity, and studies confirming improved IA-related mortality with VOR.(52, 53) Observational studies of echinocandin-triazole combination therapy for IA have had inconsistent results depending on the indication and study population. Marr and colleagues compared VOR plus CAS to VOR alone in 47 patients with HM and hematopoietic cell transplant (HCT) recipients with IA who had failed initial therapy with AmB. Improved 3-month survival was observed in the combination group compared to monotherapy (HR, 0.42; 95% CI, 0.17–1.1; *P*=0.048), independent of other variables associated with prognosis.(54) However, in a retrospective study spanning 12 years (1998–2010), VOR plus CAS did not achieve better outcomes than VOR alone, as primary or salvage therapy.(55) In solid organ transplant recipients, compared to a historical cohort receiving L-AmB alone, VOR plus CAS for primary therapy of IA led to similar overall survival at Day 90 (67.5% combination vs. 51% L-AmB monotherapy controls; *P*=0.117). (56) To date, one RCT has evaluated echinocandin-triazole combination for IA. This multicenter, multinational study randomized patients with HM or HCT recipients to VOR plus anidulafungin (AFG) versus VOR alone for primary therapy of proven or probable IA.(57) Amongst 277 patients, there was no difference in 6-week mortality (combination: 19.4%, monotherapy: 27.5%; *P*=0.087). However, in a post-hoc subgroup analysis of probable IA cases (n=218), 6-week mortality was lower in the combination arm (15.7% vs. 27.3% monotherapy; *P*=0.037). A limitation of this trial is that statistical power was lower than expected due to higher than expected mortality in both treatment arms. Polyene-triazole combination therapy has received relatively little study in humans given the preclinical data demonstrating variable synergistic interactions.(58) The only comparative data are from a retrospective study in which similar 12-week survival was observed among 49 patients receiving L-AmB 3 mg/kg/d plus VOR or POS vs. L-AmB plus CAS vs. VOR plus echinocandin.(59) Taken together, these single studies have failed to decisively establish a benefit to CAF for IA; however, limitations in study design may preclude definitive determination. #### Mucormycosis Twenty-one manuscripts, including 6 retrospective studies and 15 case reports/series were included in the systematic review. A 2008 retrospective study by Reed and colleagues was one of the first to suggest a benefit to polyene-echinocandin combination therapy for primary treatment of rhino-orbital-cerebral mucormycosis (ROCM). Amongst 41 patients with ROCM (83% diabetic) between 1994-2006 at two centers, 100% (7 of 7) of patients receiving lipid-complex AmB (ABLC) or L-AmB plus CAS were alive and not in hospital care 30 days after hospital discharge vs. 45% (15/34) of patients on dAmB or a lipid formulation alone (*P*=0.02).(60) In a multivariate analysis, only receipt of combination therapy was significantly associated with improved outcome (OR, 10.9; *P*=0.02). Kyvernitakis and colleagues performed the largest analysis to date in a retrospective study including 106 HM and HCT patients with mucormycosis at a single U.S. cancer center between 1994-2014.(61) For initial therapy, 44% of patients received monotherapy (L-AmB 87%, POS 13%) and 56% of patients received CAF (L-AmB + echinocandin, 46%; L-AmB + POS, 27%; triple therapy, 27%), highlighting the frequency with which CAF is employed in clinical practice. Using a propensity-score adjusted analysis, they found a similar 6-week survival between patients receiving initial monotherapy vs. combination therapy (56% vs. 60%; *P*=0.71). An important feature of the abovementioned studies is the relatively long study period spanning over 10 years, which may introduce biases pertaining to changes in fungal diagnostics, supportive care practices, and availability of specific antifungal agents and formulations. An additional limitation to observational studies of IFD treatment is the use of different dosages of antifungal agents, which may affect efficacy and toxicity. ### Animal studies of combination antifungal therapy In the absence of large-scale RCTs, animal models of IFDs have several strengths. They allow for pharmacokinetics of the administered drugs, tissue burden, and rate of clearance to be assessed. Researchers can integrate host factors and study a range of doses and dose combinations. Finally, resistant species may be studied; whereas, enrolling patients with rare and highly resistant fungal pathogen into clinical trials is quite challenging. With the implementation of ARRIVE (Animal Research: Reporting In Vivo Experiments) and ARRIVE 2.0 guidelines on the design, conduct, and reporting of animal studies, it is reasonable to conclude that animal studies with IFD and CAF will be able to bridge the quality gap with RCTs.(62–64) #### Candida spp Studies of CAF in experimental models of infections due to *Candida* spp. have yielded mixed results depending on the species, drugs, and methodology. For example, the combination of FLC plus CAS for murine candidemia (*C. albicans*) yielded no change in tissue fungal burden as compared to FLC monotherapy; whereas POS plus CAS led to improved survival compared to either drug alone.(65, 66) An *in vivo* study by Louie and colleagues further illustrates the complexity of antifungal interactions.(67, 68) In a rabbit model of *Candida albicans* endocarditis and pyelonephritis, both AmB monotherapy and sequential treatment with AmB alone followed by AmB plus FLC rapidly sterilized kidneys and cardiac vegetations. In contrast, simultaneous AmB plus FLC, FLC monotherapy, and FLC followed by AmB were all slower to clear fungi from infected tissues.(68) Polyene-echinocandin combination is the most frequently studied regimen in the experimental models of IC, particularly due to *C. glabrata*. Compared to monotherapy, AmB plus CAS or L-AmB plus CAS or micafungin (MFG) led to reduced tissue fungal burden in a murine model of systemic infection due to azole-resistant *C. albicans* and *C. glabrata* and in immunosuppressed mice with *C. glabrata* infection.(69–71) #### Cryptococcus spp *In vivo* studies of CAF for cryptococcosis laid the groundwork for subsequent RCTs in humans. In particular, AmB, FLC, and 5-FC, in different dosages and combinations, have been extensively studied in animal models of disseminated disease and meningitis. Schwarz and colleagues demonstrated that AmB plus 5-FC, as compared to monotherapy, led to improved survival and reduced brain tissue fungal burden in murine disseminated cryptococcosis due to 5-FC-susceptible or -resistant *C. neoformans*.(72) Other studies have found that FLC and AmB, whether given sequentially or combined, lead to greater antifungal activity than AmB alone.(73, 74) The role of high-dose FLC, with or without 5-FC, was further established in murine cryptococcal meningitis.(75) Other triazoles have received lesser attention, either as monotherapy or combination therapy, in experimental models of cryptococcosis.(76) #### Aspergillus spp Preclinical studies of azole-echinocandin combinations for IA have garnered significant interest given the favorable safety profile of the latter group. The combinations of POS plus AFG and ISA plus MFG led to improved outcomes in neutropenic models of IA.(77, 78) This synergistic interaction between the echinocandin and the triazole is likely due to simultaneous inhibition of biosynthesis of 1,3-β-D-glucan in the fungal cell wall and ergosterol in the cell membrane. However, poorer outcomes observed with VOR plus high-dose AFG suggest that azole-echinocandin interactions may be concentration-dependent.(79) Experimental models of IA treated with azole-polyene combinations have primarily demonstrated antagonism except for CNS disease.(79–82) Again, consideration of the drug mechanism of action may explain these observations. Antifungal azoles deplete the fungal cell membrane of ergosterol and thereby diminish the principal biochemical target of AmB. Polyene-echinocandins combination did not show any benefit for experimental CNS aspergillosis or for invasive pulmonary aspergillosis in immunosuppressed murine models due to chronic granulomatous disease or glucocorticoids.(82–84) #### Mucorales Azole-polyene combinations for treatment of mucormycosis are frequently used in clinical practice, although preclinical data do not clearly establish a benefit. In neutropenic mice with pulmonary mucormycosis due to *R. delemar* or *M. circinelloides*, L-AmB plus ISA improved survival and reduced tissue fungal burden (lung and brain) compared to either drug alone.(85) However, in murine disseminated mucormycosis due to *R. oryzae*, L-AmB plus POS did not improve outcomes as compared to L-AmB monotherapy.(86, 87) Echinocandins do not have *in vitro* activity against Mucorales in standard susceptibility tests, however, some agents of mucormycosis, including *Rhizopus oryzae*, express (1→3)-β-D-glucan synthase, which is the target enzyme for echinocandins.(88) Experimental studies of murine mucormycosis due to *R. oryzae* have found improved outcomes when combining lipid formulations of Amb plus echinocandins as compared to either agent alone.(89, 90) The benefit noted with the addition of echinocandins may be in part due to the class’ immunomodulatory effect on the activity of phagocytic cells.(91) However, no evidence of synergy nor antagonism was noted for the combination of ISA and MFG in neutropenic mice with pulmonary disease due to *R. delemar*.(92) ### Laboratory methods There are no standard CLSI or EUCAST methods for *in vitro* testing of antifungal agents in combinations (93). Our literature analysis revealed numerous publications on laboratory testing of antifungal drugs in combinations against yeasts and molds (Supplementary Fig 1). Only a small selection of published studies included details consistent with the inoculum, inclusion of quality control strains, end-point reading, and interpretations of test results per CLSI or EUCAST methods for testing of molds and yeasts (94–112). Even publications describing combination testing with standard methods originated from single institutions and the reproducibility of the described method at other institutions remains unknown. The development of a consensus method with standardized parameters is imperative for the meaningful testing of antifungal combinations in the clinical laboratory. Towards this end, one of us conducted a series of multi-laboratory studies to define the parameters that would allow reproducible antifungal combination testing. We identified a *Candida krusei* QC strain, inoculum size, and 100% inhibition end-point as highly reproducible features for combination testing of *Candida* species and *Aspergillus fumigatus* among six laboratories (113–115). The result interpretations were consistent among laboratories using summation fractional inhibitory concentration indices (ΣFICI) (113, 116). Recent re-analysis of the data revealed significant pharmacodynamic interactions with Loewe additivity-based FICi range of 1–2 FIC and essential agreement with Bliss independence-based response surface analysis (116). Thus, laboratories now have access to a standardized method for *in vitro* testing of antifungal agents in combinations. Further progress is imminent when multi-laboratory studies are conducted with newer antifungal combinations and with other fungal pathogens. Similarly, there is an opportunity for device manufacturers to offer commercial combination panels for wider access to routine laboratory testing. ### Future prospects Table 2 summarizes ongoing clinical trials of CAF, including those incorporating investigational and non-systemic (e.g., aerosolized) antifungal agents. Promising drugs in clinical phases of development with novel mechanisms of action include fosmanogepix, olorofim, and ibrexafungerp.(117) These agents offer hope to expand our antifungal armamentarium, particularly against resistant yeasts and molds, yet will face the same environmental and host pressures for emergence of resistance over time. As such, drug development research should investigate these compounds in combinations and even look towards an antifungal “polypill” that might improve patient adherence and lessen healthcare costs.(23, 118) View this table: [Table 2:](http://medrxiv.org/content/early/2024/07/11/2024.07.10.24310241/T2) Table 2: Ongoing clinical trials of combination antifungal therapy for invasive fungal diseases While our review focused on a combinatorial strategy involving antifungal drugs, a particularly novel and emerging area of research is the role of cancer immunotherapies as adjunctive therapy for IFDs. Evidence that fungi induce activation of checkpoint pathways has led to preclinical data demonstrating that blockade of the Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 pathways augments antifungal immunity and improves outcomes.(119) Thus far, clinical data are limited to case reports for invasive mold diseases.(120, 121) Besides providing support towards future interventional trials, such investigations of immunomodulatory therapies to combat IFDs highlight the need to understand the role of host immune responses in the outcomes of IFDs when designing and interpreting experimental and clinical studies of CAF. ## Conclusion Our systematic review of the literature highlights the paucity of rigorous clinical investigations of CAF for invasive candidiasis and mucormycosis; whereas, multiple RCTs establish the superiority of polyene-5-FC CAF for cryptococcosis and one large RCT of azole-echinocandin CAF for IA suggests a benefit in patients with hematologic malignancy and probable IA. Given the challenges to conducting large prospective RCTs for most IFDs, it is reasonable to prioritize future trials of CAF based upon animal models demonstrating improved survival and observational clinical data supporting efficacy and safety. Recent multi-laboratory investigations demonstrated the feasibility of a standardized method of *in vitro* testing of antifungal combinations for *Candida* species that should be further investigated with other pathogen and drug combinations. ## Supporting information Supplemental Tables S1-4 [[supplements/310241_file02.pdf]](pending:yes) Supplemental Figure 1 [[supplements/310241_file03.pdf]](pending:yes) Appendix [[supplements/310241_file04.pdf]](pending:yes) ## Data Availability All data produced in the present study are available upon reasonable request to the authors. ## Author contributions S.J. and V.C: Conceptualization, systematic literature review, writing of original draft, and review and editing. ## Conflict of interest The authors have no conflicts of interest to declare. ## Funding None. ## Patient consent statement Not applicable. * Received July 10, 2024. * Revision received July 10, 2024. * Accepted July 11, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. ## References 1. 1.Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: Human fungal infections. Science Translational Medicine. 2012;4(165):1–10. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1126/scitranslmed.3003316.&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22261031&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 2. 2.Seagle EE, Williams SL, Chiller TM. Recent Trends in the Epidemiology of Fungal Infections. Infectious Disease Clinics of North America. 2021;35(2):237–60. 3. 3.Chowdhary A, Gupta N, Wurster S, Kumar R, Mohabir JT, Tatavarthy S, et al. Multimodal analysis of the COVID-19-associated mucormycosis outbreak in Delhi, India indicates the convergence of clinical and environmental risk factors. Mycoses. 2023;66(6):515–26. 4. 4.Steinbrink JM, Hong DK, Bergin SP, Al-Rohil RN, Perfect JR, Maziarz EK. The robust and rapid role of molecular testing in precision fungal diagnostics: A case report. Med Mycol Case Rep. 2020;27:77–80. 5. 5.Consortium O, Gabaldon T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev. 2019;43(5):517–47. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/femsre/fuz015&link_type=DOI) 6. 6.White PL, Alanio A, Brown L, Cruciani M, Hagen F, Gorton R, et al. An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Rev Mol Diagn. 2022;22(2):169–84. 7. 7.Benedict K, Whitham HK, Jackson BR. Economic Burden of Fungal Diseases in the United States. Open Forum Infectious Diseases. 2022;9(4):6–9. 8. 8.Rayens E, Norris KA. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infectious Diseases. 2022;9(1). 9. 9.Valerio M, Rodriguez-Gonzalez CG, Munoz P, Caliz B, Sanjurjo M, Bouza E, et al. Evaluation of antifungal use in a tertiary care institution: antifungal stewardship urgently needed. J Antimicrob Chemother. 2014;69(7):1993–9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dku053&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24659750&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000338129000038&link_type=ISI) 10. 10.Kara E, Metan G, Bayraktar-Ekincioglu A, Gulmez D, Arikan-Akdagli S, Demirkazik F, et al. Implementation of Pharmacist-Driven Antifungal Stewardship Program in a Tertiary Care Hospital. Antimicrob Agents Chemother. 2021;65(9):e0062921. 11. 11.Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. Journal of Antimicrobial Chemotherapy. 2018;73:i4–i13. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkx444&link_type=DOI) 12. 12.Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clinical Microbiology and Infection. 2012;18(SUPPL.7):19–37. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/1469-0691.12039&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23137135&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 13. 13.Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 2015;62(4):e1–e50. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/civ933&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26679628&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 14. 14.Patterson TF, Thompson GR, 3rd., Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis : 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 2016;63:1–60. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciw209&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27048748&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 15. 15.Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clinical Microbiology and Infection. 2018;24:e1–e38. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29544767&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 16. 16.Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. The Lancet Infectious Diseases. 2019;19(12):e405–e21. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 17. 17.Organization WH. Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV Geneva2022 [updated 27 June 2022. Available from: [https://www.who.int/publications/i/item/9789240052178](https://www.who.int/publications/i/item/9789240052178). 18. 18.Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV 2021 [Available from: [https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/cryptococcosis?view=full](https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/cryptococcosis?view=full). 19. 19.Chang CC, Harrison TS, Bicanic TA, Chayakulkeeree M, Sorrell TC, Warris A, et al. Global guideline for the diagnosis and management of cryptococcosis: an initiative of the ECMM and ISHAM in cooperation with the ASM. Lancet Infect Dis. 2024. 20. 20.Johnson MD, Perfect JR. Use of Antifungal Combination Therapy: Agents, Order, and Timing. Current Fungal Infection Reports. 2010;4(2):87–95. 21. 21.Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17(3):141–55. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41579-018-0141-x&link_type=DOI) 22. 22.Coates ARM, Hu Y, Holt J, Yeh P. Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Rev Anti Infect Ther. 2020;18(1):5–15. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/14787210.2020.1705155&link_type=DOI) 23. 23.Wake RM, Allebone-Salt PE, John LLH, Caswall BA, Govender NP, Ben-Ami R, et al. Optimising the Treatment of Invasive Candidiasis – A Case for Combination Therapy. Open Forum Infectious Diseases. 2024. 24. 24.Torres RA, Barr M. Impact of combination therapy for HIV infection on inpatient census. N Engl J Med. 1997;336(21):1531–2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJM199705223362118&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9157292&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WZ76700035&link_type=ISI) 25. 25.Collaboration H-C, Ray M, Logan R, Sterne JA, Hernandez-Diaz S, Robins JM, et al. The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS. 2010;24(1):123–37. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/QAD.0b013e3283324283&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19770621&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272917900017&link_type=ISI) 26. 26.Kerantzas CA, Jacobs WR, Jr.. Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application. mBio. 2017;8(2). 27. 27.Marshall HT, Djamgoz MBA. Immuno-Oncology: Emerging Targets and Combination Therapies. Front Oncol. 2018;8:315. 28. 28.Spellberg B, Ibrahim A, Roilides E, Lewis RE, Lortholary O, Petrikkos G, et al. Combination therapy for mucormycosis: Why, what, and how? Clinical Infectious Diseases. 2012;54(SUPPL. 1):73–8. 29. 29.Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–89. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2021.03.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 30. 30.Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71(6):1367–76. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 31. 31.De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/588660&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18462102&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000256044900007&link_type=ISI) 32. 32.Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis. 2003;36(10):1221–8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/374850&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12746765&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000182872200003&link_type=ISI) 33. 33.Abele-Horn M, Kopp A, Sternberg U, Ohly A, Dauber A, Russwurm W, et al. A randomized study comparing fluconazole with amphotericin B/5-flucytosine for the treatment of systemic Candida infections in intensive care patients. Infection. 1996;24(6):426–32. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/BF01713042&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9007589&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1996WB49200004&link_type=ISI) 34. 34.Pelletier R, Alarie I, Lagace R, Walsh TJ. Emergence of disseminated candidiasis caused by Candida krusei during treatment with caspofungin: case report and review of literature. Med Mycol. 2005;43(6):559–64. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/13693780500220415&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16320498&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 35. 35.Wong PN, Lo KY, Tong GM, Chan SF, Lo MW, Mak SK, et al. Treatment of fungal peritonitis with a combination of intravenous amphotericin B and oral flucytosine, and delayed catheter replacement in continuous ambulatory peritoneal dialysis. Perit Dial Int. 2008;28(2):155–62. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoicGRpIjtzOjU6InJlc2lkIjtzOjg6IjI4LzIvMTU1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 36. 36.Ahuja T, Fong K, Louie E. Combination antifungal therapy for treatment of Candida parapsilosis prosthetic valve endocarditis and utility of T2Candida Panel(R): A case series. IDCases. 2019;15:e00525. 37. 37.Wee LE, Wong CSL, Tan AL, Oh HM. Negative cerebrospinal fluid beta-d-glucan levels as an indicator for treatment cessation ahead of biochemical resolution: A case report of Candida glabrata meningitis. Med Mycol Case Rep. 2021;32:47–9. 38. 38.O’Brien B, Chaturvedi S, Chaturvedi V. In Vitro Evaluation of Antifungal Drug Combinations against Multidrug-Resistant Candida auris Isolates from New York Outbreak. Antimicrobial Agents and Chemotherapy. 2020;64(4). 39. 39.Kethireddy S, Andes D. CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metab Toxicol. 2007;3(4):573–81. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1517/17425255.3.4.573&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17696807&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 40. 40.Brouwer AE, Rajanuwong A, Chierakul W, Griffin GE, Larsen RA, White NJ, et al. Combination antifungal therapies for HIV-associated cryptococcal meningitis: A randomised trial. Lancet. 2004;363(9423):1764-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(04)16301-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15172774&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000221705800009&link_type=ISI) 41. 41.Day JN, Chau TTH, Wolbers M, Mai PP, Dung NT, Mai NH, et al. Combination Antifungal Therapy for Cryptococcal Meningitis. New England Journal of Medicine. 2013;368(14):1291–302. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa1110404&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23550668&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000316989900006&link_type=ISI) 42. 42.Pappas PG, Chetchotisakd P, Larsen RA, Manosuthi W, Morris MI, Anekthananon T, et al. A phase II randomized trial of amphotericin B alone or combined with fluconazole in the treatment of HIV-associated cryptococcal meningitis. Clin Infect Dis. 2009;48(12):1775–83. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/599112&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19441980&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000266439100024&link_type=ISI) 43. 43.Stamm AM, Diasio RB, Dismukes WE, Shadomy S, Cloud GA, Bowles CA, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med. 1987;83(2):236–42. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0002-9343(87)90691-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=3303926&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1987J679300007&link_type=ISI) 44. 44.Molloy SF, Kanyama C, Heyderman RS, Loyse A, Kouanfack C, Chanda D, et al. Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa. N Engl J Med. 2018;378(11):1004–17. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa1710922&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 45. 45.Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, et al. Single-Dose Liposomal Amphotericin B Treatment for Cryptococcal Meningitis. N Engl J Med. 2022;386(12):1109–20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/nejmoa2111904&link_type=DOI) 46. 46.Hurt WJ, Harrison TS, Molloy SF, Bicanic TA. Combination Therapy for HIV-Associated Cryptococcal Meningitis-A Success Story. J Fungi (Basel). 2021;7(12). 47. 47.Diamond DM, Bauer M, Daniel BE, Leal MA, Johnson D, Williams BK, et al. Amphotericin B colloidal dispersion combined with flucytosine with or without fluconazole for treatment of murine cryptococcal meningitis. Antimicrob Agents Chemother. 1998;42(3):528–33. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjQyLzMvNTI4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 48. 48.Thompson GR, 3rd., Wiederhold NP, Fothergill AW, Vallor AC, Wickes BL, Patterson TF. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother. 2009;53(1):309–11. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjUzLzEvMzA5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 49. 49.Loyse A, Wilson D, Meintjes G, Jarvis JN, Bicanic T, Bishop L, et al. Comparison of the early fungicidal activity of high-dose fluconazole, voriconazole, and flucytosine as second-line drugs given in combination with amphotericin B for the treatment of HIV-associated cryptococcal meningitis. Clin Infect Dis. 2012;54(1):121–8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/cir745&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22052885&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 50. 50.Caillot D, Thiébaut A, Herbrecht R, de Botton S, Pigneux A, Bernard F, et al. Liposomal amphotericin B in combination with caspofungin for invasive aspergillosis in patients with hematologic malignancies: a randomized pilot study (Combistrat trial). Cancer. 2007;110(12):2740–6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/cncr.23109&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17941026&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000251573600018&link_type=ISI) 51. 51.Raad, II, Hanna HA, Boktour M, Jiang Y, Torres HA, Afif C, et al. Novel antifungal agents as salvage therapy for invasive aspergillosis in patients with hematologic malignancies: posaconazole compared with high-dose lipid formulations of amphotericin B alone or in combination with caspofungin. Leukemia. 2008;22(3):496–503. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/sj.leu.2405065&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18094720&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000253957500005&link_type=ISI) 52. 52.Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin Infect Dis. 2007;44(4):531–40. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/510592&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17243056&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000243597700012&link_type=ISI) 53. 53.Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa020191&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12167683&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000177672400005&link_type=ISI) 54. 54.Marr KA, Boeckh M, Carter RA, Hyung WK, Corey L. Combination antifungal therapy for invasive aspergillosis. Clinical Infectious Diseases. 2004;39(6):797–802. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/423380&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15472810&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000227491500007&link_type=ISI) 55. 55.Raad, II, Zakhem AE, Helou GE, Jiang Y, Kontoyiannis DP, Hachem R. Clinical experience of the use of voriconazole, caspofungin or the combination in primary and salvage therapy of invasive aspergillosis in haematological malignancies. Int J Antimicrob Agents. 2015;45(3):283–8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijantimicag.2014.08.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25455847&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 56. 56.Singh N, Limaye AP, Forrest G, Safdar N, Muñoz P, Pursell K, et al. Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation. 2006;81(3):320–6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/01.tp.0000202421.94822.f7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16477215&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000235377800005&link_type=ISI) 57. 57.Marr KA, Schlamm HT, Herbrecht R, Rottinghaus ST, Bow EJ, Cornely OA, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162(2):81–9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/M13-2508&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25599346&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 58. 58.Kontoyiannis DP, Boktour M, Hanna H, Torres HA, Hachem R, Raad, II. Itraconazole added to a lipid formulation of amphotericin B does not improve outcome of primary treatment of invasive aspergillosis. Cancer. 2005;103(11):2334–7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/cncr.21057&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15844093&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000229282000017&link_type=ISI) 59. 59.Rojas R, Molina JR, Jarque I, Montes C, Serrano J, Sanz J, et al. Outcome of Antifungal Combination Therapy for Invasive Mold Infections in Hematological Patients is Independent of the Chosen Combination. Mediterr J Hematol Infect Dis. 2012;4(1):e2012011. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22348193&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 60. 60.Reed C, Bryant R, Ibrahim AS, Edwards J, Jr., Filler SG, Goldberg R, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008;47(3):364–71. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/589857&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18558882&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000257400300008&link_type=ISI) 61. 61.Kyvernitakis A, Torres HA, Jiang Y, Chamilos G, Lewis RE, Kontoyiannis DP. Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: a propensity score analysis. Clinical Microbiology and Infection. 2016;22(9):811.e1-.e8. 62. 62.Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pbio.1000412&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20613859&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 63. 63.Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/JOURNAL.PBIO.3000411&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 64. 64.Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J Cereb Blood Flow Metab. 2020;40(9):1769–77. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0271678X20943823&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32663096&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 65. 65.Graybill JR, Bocanegra R, Najvar LK, Hernandez S, Larsen RA. Addition of caspofungin to fluconazole does not improve outcome in murine candidiasis. Antimicrob Agents Chemother. 2003;47(7):2373–5. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjQ3LzcvMjM3MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 66. 66.Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PLoS One. 2013;8(3):e57672. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0057672&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23472097&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 67. 67.Fioriti S, Brescini L, Pallotta F, Canovari B, Morroni G, Barchiesi F. Antifungal Combinations against Candida Species: From Bench to Bedside. J Fungi (Basel). 2022;8(10). 68. 68.Louie A, Kaw P, Banerjee P, Liu W, Chen G, Miller MH. Impact of the order of initiation of fluconazole and amphotericin B in sequential or combination therapy on killing of Candida albicans in vitro and in a rabbit model of endocarditis and pyelonephritis. Antimicrob Agents Chemother. 2001;45(2):485–94. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjQ1LzIvNDg1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 69. 69.Hossain MA, Reyes GH, Long LA, Mukherjee PK, Ghannoum MA. Efficacy of caspofungin combined with amphotericin B against azole-resistant Candida albicans. J Antimicrob Chemother. 2003;51(6):1427–9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkg230&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12716772&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000183091800017&link_type=ISI) 70. 70.Barchiesi F, Spreghini E, Fothergill AW, Arzeni D, Greganti G, Giannini D, et al. Caspofungin in combination with amphotericin B against Candida glabrata. Antimicrob Agents Chemother. 2005;49(6):2546–9. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjQ5LzYvMjU0NiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 71. 71.Olson JA, Adler-Moore JP, Smith PJ, Proffitt RT. Treatment of Candida glabrata infection in immunosuppressed mice by using a combination of liposomal amphotericin B with caspofungin or micafungin. Antimicrob Agents Chemother. 2005;49(12):4895–902. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjEwOiI0OS8xMi80ODk1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 72. 72.Schwarz P, Dromer F, Lortholary O, Dannaoui E. Efficacy of amphotericin B in combination with flucytosine against flucytosine-susceptible or flucytosine-resistant isolates of *Cryptococcus neoformans* during disseminated murine cryptococcosis. Antimicrob Agents Chemother. 2006;50(1):113–20. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjUwLzEvMTEzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 73. 73.Larsen RA, Bauer M, Thomas AM, Graybill JR. Amphotericin B and fluconazole, a potent combination therapy for cryptococcal meningitis. Antimicrob Agents Chemother. 2004;48(3):985–91. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjQ4LzMvOTg1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 74. 74.Barchiesi F, Schimizzi AM, Caselli F, Novelli A, Fallani S, Giannini D, et al. Interactions between triazoles and amphotericin B against Cryptococcus neoformans. Antimicrob Agents Chemother. 2000;44(9):2435–41. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjQ0LzkvMjQzNSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 75. 75.Hossain MA, Mukherjee PK, Reyes G, Long L, Ghannoum MA. Effects of fluconazole singly and in combination with 5-fluorocytosine or amphotericin B in the treatment of cryptococcal meningoencephalitis in an intracranial murine model. J Chemother. 2002;14(4):351–60. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12420852&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000178024700006&link_type=ISI) 76. 76.Silva EG, Paula CR, Dias AL, Chang MR, Ruiz Lda S, Gambale V, et al. Combination efficacy of voriconazole and amphotericin B in the experimental disease in immunodeficient mice caused by fluconazole-resistant Cryptococcus neoformans. Mycopathologia. 2011;171(4):261–6. 77. 77.Martin-Vicente A, Capilla J, Guarro J. Synergistic effect of anidulafungin combined with posaconazole in experimental aspergillosis. Med Mycol. 2017;55(4):457–60. 78. 78.Petraitis V, Petraitiene R, McCarthy MW, Kovanda LL, Zaw MH, Hussain K, et al. Combination Therapy with Isavuconazole and Micafungin for Treatment of Experimental Invasive Pulmonary Aspergillosis. Antimicrob Agents Chemother. 2017;61(9). 79. 79.Petraitis V, Petraitiene R, Hope WW, Meletiadis J, Mickiene D, Hughes JE, et al. Combination Therapy in Treatment of Experimental Pulmonary Aspergillosis: In Vitro and In Vivo Correlations of the Concentration- and Dose-Dependent Interactions between Anidulafungin and Voriconazole by Bliss Independence Drug Interaction Analysis. Antimicrobial agents and chemotherapy. 2009;53(6):2382–91. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjUzLzYvMjM4MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 80. 80.Schaffner A, Frick PG. The effect of ketoconazole on amphotericin B in a model of disseminated aspergillosis. J Infect Dis. 1985;151(5):902–10. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/151.5.902&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=3989324&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1985AHU9700022&link_type=ISI) 81. 81.Martin-Vicente A, Capilla J, Guarro J. In Vivo Synergy of Amphotericin B plus Posaconazole in Murine Aspergillosis. Antimicrob Agents Chemother. 2016;60(1):296–300. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjYwLzEvMjk2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 82. 82.Clemons KV, Parmar R, Martinez M, Stevens DA. Efficacy of Abelcet alone, or in combination therapy, against experimental central nervous system aspergillosis. J Antimicrob Chemother. 2006;58(2):466–9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkl236&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16760192&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000239840700039&link_type=ISI) 83. 83.Clemons KV, Stevens DA. Efficacy of micafungin alone or in combination against experimental pulmonary aspergillosis. Med Mycol. 2006;44(1):69–73. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/13693780500148350&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16805095&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 84. 84.Dennis CG, Greco WR, Brun Y, Youn R, Slocum HK, Bernacki RJ, et al. Effect of amphotericin B and micafungin combination on survival, histopathology, and fungal burden in experimental aspergillosis in the p47phox-/-mouse model of chronic granulomatous disease. Antimicrob Agents Chemother. 2006;50(2):422–7. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjUwLzIvNDIyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 85. 85.Gebremariam T, Gu Y, Singh S, Kitt TM, Ibrahim AS. Combination treatment of liposomal amphotericin B and isavuconazole is synergistic in treating experimental mucormycosis. J Antimicrob Chemother. 2021;76(10):2636–9. 86. 86.Ibrahim AS, Gebremariam T, Schwartz JA, Edwards JE, Jr., Spellberg B. Posaconazole mono-or combination therapy for treatment of murine zygomycosis. Antimicrob Agents Chemother. 2009;53(2):772–5. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjUzLzIvNzcyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 87. 87.Rodríguez MM, Serena C, Mariné M, Pastor FJ, Guarro J. Posaconazole combined with amphotericin B, an effective therapy for a murine disseminated infection caused by Rhizopus oryzae. Antimicrob Agents Chemother. 2008;52(10):3786–8. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjEwOiI1Mi8xMC8zNzg2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 88. 88.Ibrahim AS, Bowman JC, Avanessian V, Brown K, Spellberg B, Edwards JE, Jr., et al. Caspofungin inhibits Rhizopus oryzae 1,3-beta-D-glucan synthase, lowers burden in brain measured by quantitative PCR, and improves survival at a low but not a high dose during murine disseminated zygomycosis. Antimicrob Agents Chemother. 2005;49(2):721–7. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjQ5LzIvNzIxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 89. 89.Spellberg B, Fu Y, Edwards JE, Jr., Ibrahim AS. Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother. 2005;49(2):830–2. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjQ5LzIvODMwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 90. 90.Ibrahim AS, Gebremariam T, Fu Y, Edwards JE, Jr., Spellberg B. Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother. 2008;52(4):1556–8. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjUyLzQvMTU1NiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 91. 91.Lamaris GA, Lewis RE, Chamilos G, May GS, Safdar A, Walsh TJ, et al. Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J Infect Dis. 2008;198(2):186–92. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/589305&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18500936&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000257320400006&link_type=ISI) 92. 92.Gebremariam T, Wiederhold NP, Alqarihi A, Uppuluri P, Azie N, Edwards JE, Jr., et al. Monotherapy or combination therapy of isavuconazole and micafungin for treating murine mucormycosis. J Antimicrob Chemother. 2017;72(2):462–6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkw433&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27798213&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 93. 93.Bidaud A-L, Schwarz P, Herbreteau G, Dannaoui E. Techniques for the assessment of in vitro and in vivo antifungal combinations. Journal of Fungi. 2021;7(2):113. 94. 94.Meletiadis J, Beredaki MI, Elefanti A, Pournaras S, Muller A. In Vitro-In Vivo Correlation of Posaconazole-Amphotericin B Combination against Candida albicans: In Vitro Interacting Concentrations Are Associated with In Vivo Free Drug Levels. J Fungi (Basel). 2023;9(4). 95. 95.John LL, Thomson DD, Bicanic T, Hoenigl M, Brown AJ, Harrison TS, et al. Heightened efficacy of anidulafungin when used in combination with manogepix or 5-flucytosine against Candida auris in vitro. Antimicrob Agents Ch. 2023:e01645–22. 96. 96.O’Brien B, Chaturvedi S, Chaturvedi V. In vitro evaluation of antifungal drug combinations against multidrug-resistant Candida auris isolates from New York outbreak. Antimicrobial agents and chemotherapy. 2020;64(4):doi:10.1128/aac.02195-19. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/aac.02195-19&link_type=DOI) 97. 97.Shi C, Liu CL, Liu JY, Wang Y, Li J, Xiang MJ. Anti-Candida Activity of New Azole Derivatives Alone and in Combination with Fluconazole. Mycopathologia. 2015;180(3-4):203–7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11046-015-9899-9&link_type=DOI) 98. 98.Planche V, Ducroz S, Alanio A, Bougnoux ME, Lortholary O, Dannaoui E. In vitro combination of anidulafungin and voriconazole against intrinsically azole-susceptible and -resistant Aspergillus spp. Antimicrob Agents Chemother. 2012;56(8):4500–3. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjU2LzgvNDUwMCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 99. 99.Venturini TP, Rossato L, Spader TB, Tronco-Alves GR, Azevedo MI, Weiler CB, et al. In vitro synergisms obtained by amphotericin B and voriconazole associated with non-antifungal agents against Fusarium spp. Diagn Microbiol Infect Dis. 2011;71(2):126–30. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.diagmicrobio.2011.05.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21840673&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 100.100.Ben-Ami R, Lewis RE, Kontoyiannis DP. In vitro interactions among echinocandins against Aspergillus fumigatus: lack of concordance among methods. Medical mycology. 2011;49(3):285–8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3109/13693786.2010.530300&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21028945&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 101.101.Cuenca-Estrella M, Alastruey-Izquierdo A, Alcazar-Fuoli L, Bernal-Martinez L, Gomez-Lopez A, Buitrago MJ, et al. In vitro activities of 35 double combinations of antifungal agents against Scedosporium apiospermum and Scedosporium prolificans. Antimicrob Agents Ch. 2008;52(3):1136–9. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjUyLzMvMTEzNiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 102.102.Arikan S, Sancak B, Alp S, Hascelik G, McNicholas P. Comparative in vitro activities of posaconazole, voriconazole, itraconazole, and amphotericin B against Aspergillus and Rhizopus, and synergy testing for Rhizopus. Sabouraudia. 2008;46(6):567–73. 103.103.Cuenca-Estrella M, Gomez-Lopez A, Buitrago MJ, Mellado E, Garcia-Effron G, Rodriguez-Tudela JL. In vitro activities of 10 combinations of antifungal agents against the multiresistant pathogen Scopulariopsis brevicaulis. Antimicrob Agents Ch. 2006;50(6):2248–50. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjUwLzYvMjI0OCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 104.104.Philip A, Odabasi Z, Rodriguez J, Paetznick VL, Chen E, Rex JH, et al. In vitro synergy testing of anidulafungin with itraconazole, voriconazole, and amphotericin B against Aspergillus spp. and Fusarium spp. Antimicrob Agents Ch. 2005;49(8):3572–4. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjQ5LzgvMzU3MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 105.105.Lewis RE, Kontoyiannis DP. Micafungin in combination with voriconazole in Aspergillus species: a pharmacodynamic approach for detection of combined antifungal activity in vitro. J Antimicrob Chemoth. 2005;56(5):887–92. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dki343&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16188916&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000232900000015&link_type=ISI) 106.106.Cuenca-Estrella M, Gomez-Lopez A, Garcia-Effron G, Alcazar-Fuoli L, Mellado E, Buitrago MJ, et al. Combined activity in vitro of caspofungin, amphotericin B, and azole agents against itraconazole-resistant clinical isolates of Aspergillus fumigatus. Antimicrob Agents Ch. 2005;49(3):1232–5. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjQ5LzMvMTIzMiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 107.107.Srimuang S, Prariyachatigul C, Chaiprasert A, Rungsipanuratn W, Tanphaichitra D. Antifungal drug combinations for Cryptococcus neoformans and Prototheca spp. J Med Assoc Thai. 2000;83(1):57–60. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10710870&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) 108.108.Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Giacometti A, Scalise G. In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemother. 1998;41(1):59–65. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/41.1.59&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9511038&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F11%2F2024.07.10.24310241.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000072069400010&link_type=ISI) 109.109.Hanson LH, Stevens DA. Comparison of antifungal activity of amphotericin B deoxycholate suspension with that of amphotericin B cholesteryl sulfate colloidal dispersion. Antimicrob Agents Chemother. 1992;36(2):486–8. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjM2LzIvNDg2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 110.110.CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015. 2015. 111.111.CLSI. Performance standards for antifungal susceptibility testing of yeasts: CLSI supplement M60. Wayne, PA, USA: CLSI; 2017. 112.112.Meletiadis J, Pournaras S, Roilides E, Walsh TJ. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob Agents Chemother. 2010;54(2):602–9. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjU0LzIvNjAyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMTEvMjAyNC4wNy4xMC4yNDMxMDI0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 113.113.Ren P, Luo M, Lin S, Ghannoum MA, Isham N, Diekema DJ, et al. Multilaboratory testing of antifungal drug combinations against Candida species and Aspergillus fumigatus: utility of 100 percent inhibition as the endpoint. Antimicrobial Agents and Chemotherapy. 2015;59(3):1759–66. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjU5LzMvMTc1OSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 114.114.Chaturvedi V, Ramani R, Andes D, Diekema DJ, Pfaller MA, Ghannoum MA, et al. Multilaboratory testing of two-drug combinations of antifungals against Candida albicans, Candida glabrata, and Candida parapsilosis. Antimicrob Agents Chemother. 2011;55(4):1543–8. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjU1LzQvMTU0MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 115.115.Chaturvedi V, Ramani R, Ghannoum MA, Killian SB, Holliday N, Knapp C, et al. Multilaboratory testing of antifungal combinations against a quality control isolate of Candida krusei. Antimicrob Agents Chemother. 2008;52(4):1500–2. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjk6IjUyLzQvMTUwMCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzExLzIwMjQuMDcuMTAuMjQzMTAyNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 116.116.Meletiadis J, Andes DR, Lockhart SR, Ghannoum MA, Knapp CC, Ostrosky-Zeichner L, et al. Multicenter Collaborative Study of the Interaction of Antifungal Combinations against Candida Spp. by Loewe Additivity and Bliss Independence-Based Response Surface Analysis. J Fungi (Basel). 2022;8(9). 117.117.Jacobs SE, Zagaliotis P, Walsh TJ. Novel antifungal agents in clinical trials. F1000Res. 2021;10:507. 118.118.Castellano JM, Pocock SJ, Bhatt DL, Quesada AJ, Owen R, Fernandez-Ortiz A, et al. Polypill Strategy in Secondary Cardiovascular Prevention. N Engl J Med. 2022;387(11):967–77. 119.119.Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol. 2022;13:1018202. 120.120.Serris A, Ouedrani A, Uhel F, Gazzano M, Bedarida V, Rouzaud C, et al. Case Report: Immune Checkpoint Blockade Plus Interferon-Gamma Add-On Antifungal Therapy in the Treatment of Refractory Covid-Associated Pulmonary Aspergillosis and Cerebral Mucormycosis. Front Immunol. 2022;13:900522. 121.121.Grimaldi D, Pradier O, Hotchkiss RS, Vincent JL. Nivolumab plus interferon-gamma in the treatment of intractable mucormycosis. Lancet Infect Dis. 2017;17(1):18. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(16)30541-2&link_type=DOI)