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ABSTRACT 

Background 

Cryptococcal meningitis is a leading cause of adult community-acquired meningitis in sub-Saharan Africa 

with high mortality rates in the first 10 weeks post diagnosis. Practical tools to stratify mortality risk may 

help to tailor effective treatment strategies.  

Methods 

We pooled individual-level data from two randomised-controlled trials of HIV-associated cryptococcal 

meningitis across eight sub-Saharan African countries (ACTA, ISRCTN45035509; Ambition-cm, 

ISRCTN72509687). We used this pooled dataset to develop and validate multivariable logistic regression 

models for 2-week and 10-week mortality. Candidate predictor variables were specified a priori. ‘Basic’ 

models were developed using only predictors available in resource-limited settings; ‘Research’ models 

were developed from all available predictors. We used internal-external cross-validation to evaluate 

performance across countries within the development cohort, before validation of discrimination, 

calibration and net benefit in held-out data from Malawi (Ambition-cm trial). We also evaluated whether 

treatment effects in the trials were heterogenous by predicted mortality risk.  

Findings 

We included 1488 participants, of whom 236 (15.9%) and 469 (31.5%) met the 2-week and 10-week 

mortality outcomes, respectively. In the development cohort (n=1263), five variables were selected into 

the basic model (haemoglobin, neutrophil count, Eastern Cooperative Oncology Group performance 

status, Glasgow coma scale and treatment regimen), with two additional variables in the research model 

(cerebrospinal fluid quantitative culture and opening pressure) for 2-week mortality. During internal-

external cross-validation, both models showed consistent discrimination across countries (pooled areas 

under the receiver operating characteristic curves (AUROCs) 0.75 (95% CI 0.68-0.82) and 0.78 (0.75-

0.82) for the ‘Basic’ and ‘Research’ 2-week mortality models, respectively), with some variation in 

calibration between sites. Performance was similar in held-out validation (n=225), with the models 

demonstrating higher net benefit to inform decision-making than alternative approaches including a pre-

existing comparator model. In exploratory analyses, treatment effects varied by predicted mortality risk, 

with a trend towards lower absolute and relative mortality for a single high-dose liposomal Amphotericin 

B-based regimen (in comparison to 1-week Amphotericin B deoxycholate plus flucytosine) among lower 

risk participants in the Ambition-cm trial.  

Interpretation 

Both models accurately predict mortality, were generalisable across African trial settings, and have 

potential to be incorporated into future treatment stratification approaches in low and middle-income 

settings. 

Funding:  

MRC, United Kingdom (100504); ANRS, France (ANRS12275); SIDA, Sweden (TRIA2015-1092); 

Wellcome/MRC/UKAID Joint Global Health Trials (MR/P006922/1); European DCCT Partnership; NIHR, 

United Kingdom through a Global Health Research Professorship to JNJ (RP-2017-08-ST2-012) and a 

personal Fellowship to RKG (NIHR302829). 
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RESEARCH IN CONTEXT 

Evidence before this study 

There is an urgent need to improve clinical management for HIV-associated cryptococcal meningitis in 

resource limited settings across Africa. Cryptococcal meningitis accounts for ~112,000 AIDS-related 

deaths per year globally, with over 75% in Africa, despite widespread antiretroviral therapy roll-out. The 

development of practical tools to identify patients at highest risk of death could help to tailor management 

strategies and stratify therapy. We searched PubMed for studies published between database inception 

and Jan 12, 2024, using the terms “cryptococcal meningitis”, “HIV”, “human immunodeficiency virus”, 

“immunocompromised”, “predict*”, and “model*”, with no language restrictions. Three previous studies, 

all conducted in China, have developed prognostic models for cryptococcal meningitis mortality. Of these, 

two used statistical methods while the third used machine learning but focused on persons without HIV 

only. No studies conducted in Africa, specifically targeting people living with HIV, or using both statistical 

and machine learning approaches in parallel, were identified. Well-developed and validated tools to 

predict risk of cryptococcal meningitis mortality and guide treatment stratification are thus lacking for 

resource limited settings in Africa. 

Added value of this study 

To our knowledge, this is the largest study to date to develop and validate prediction models for HIV-

associated cryptococcal meningitis mortality. We combined high-quality data from the two largest 

randomised-controlled clinical trials conducted to date for cryptococcal meningitis treatment, with a total 

sample size of 1488 participants of whom 236 (15.9%) and 469 (31.5%) met the 2-week and 10-week 

mortality outcomes, respectively. We developed two models, ‘basic’ and ‘research’, to enable use in both 

resource-limited and research settings (where additional prognostic markers such as measurements of 

cerebrospinal fluid (CSF) opening pressure and CSF fungal burden may also be available). In the 2-week 

mortality models, five variables were included in the ‘basic’ model, with two additional variables included 

in the ‘research’ model. Both models predicted risk of mortality with consistent discrimination and 

calibration across sub-Saharan African settings. Head-to-head statistical (logistic regression) and 

machine learning (XGBoost) methods revealed no added value of the machine learning approach. In 

exploratory analyses, treatment effects varied by predicted 2-week mortality risk, thus providing proof-of-

concept for future treatment stratification approaches. Specifically, there was a trend towards lower 

mortality for a single high-dose liposomal Amphotericin B-based regimen (in comparison to 1-week 

Amphotericin B deoxycholate plus flucytosine) among lower risk participants in the Ambition-cm trial.  

Implications of all the available evidence 

The personalised risk predictor for cryptococcal meningitis (PERISKOPE-CM) models accurately 

predicted mortality risk among patients with HIV-associated cryptococcal meningitis and demonstrated 

generalisable performance across trial settings in Africa. Predictions from the models could be utilised to 

direct treatment stratification approaches in future clinical trials, with patients at lowest predicted risk 

receiving less intensive and less toxic therapy. The models have been made available for future research 

use on an open access online interface.   
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INTRODUCTION 

Cryptococcal meningitis is a major driver of global HIV-related mortality resulting in ~112,000 deaths per 

year, with over 75% in Africa, and accounting for 19% of all AIDS-related deaths.1 Despite the rapid roll-

out of antiretroviral therapy (ART), incidence remains high and ten-week mortality ranges from 24% to 

over 50%, depending on setting and treatment used.2-7 Stratifying patients by disease severity on 

admission may allow for more targeted therapy; less sick patients could avoid both prolonged 

hospitalisation and the most intensive and toxic treatments, whereas those who are severely unwell could 

be identified early for treatment escalation. Validated approaches to prognostication could be used in 

interventional trials to direct treatment stratification.  

Previous studies have identified factors associated with increased risk of HIV-associated cryptococcal 

meningitis mortality including older age,8-10 clinical measurements at presentation (such as low 

weight/body mass index (BMI),8,11,12 abnormal mental status,8,9,12-15 and CSF opening pressure8,9), and 

laboratory measurements (including low cerebrospinal fluid (CSF) white cell count (WCC),12-14,16 elevated 

CSF fungal burden,8,10,12,13,15 high peripheral white blood cell (WBC) count,8 low CD4 cell count,9 low 

haemogloblin,8 and high serum C-reactive protein17). However, the majority of studies published to date 

are small, with few conducted in Africa.8,11 There are currently no practical tools leveraging the combined 

discrimination of these factors to identify those at highest risk of death in clinical use. Prognostic models 

have been developed for a range of acute infectious diseases, notably COVID-19,18,19 where extensive 

external validation has been performed for a model to predict in-hospital mortality. For cryptococcal 

meningitis, existing prognostic models have been developed in studies from China using conventional 

statistical methods9,20 and for persons without HIV using machine learning approaches.21 However, there 

are currently no validated models to guide clinical decision-making in people living with advanced HIV in 

Africa, where the disease burden is highest.  

In this study, we pooled individual-level data from the two largest randomised-controlled trials (RCTs) to 

date in HIV-associated cryptococcal meningitis. We aimed to develop and validate prediction models to 

predict risk of all-cause 2-week mortality. We used both statistical and machine learning approaches, in 

a head-to-head analysis, and also evaluated performance over a longer (10-week) time horizon. Finally, 

we assessed whether treatment efficacy in the trials was heterogenous by predicted risk.   
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METHODS 

Data sources 

We analysed pooled data from the ACTA (ISRCTN45035509) and Ambition-cm (ISRCTN72509687) 

phase III, RCTs for HIV-associated cryptococcal meningitis, which have been reported previously.4,5  

In brief, adults (≥18 years) with a first episode of HIV-associated cryptococcal meningitis were recruited 

to both trials. In ACTA, participants were randomized in a 1:1:1 ratio to received either: fluconazole plus 

flucytosine for 14 days (oral combination regimen); amphotericin B deoxycholate plus either flucytosine 

or fluconazole for 7 days followed by 7 days fluconazole; or amphotericin B deoxycholate plus either 

flucytosine or fluconazole for 14 days. Participants were recruited from 9 sites across 4 countries in Africa 

(Cameroon, Malawi, Tanzania and Zambia). In Ambition-cm, participants were randomized 1:1 to receive 

either: single high-dose (10 mg/kg) liposomal amphotericin B plus 14 days of flucytosine plus fluconazole 

(Ambition regimen); or amphotericin B deoxycholate (1 mg/kg/day) plus flucytosine for 7 days, followed 

by fluconazole for 7 days (1-wk AmBd+5FC regimen). Participants were recruited from 6 sites in 5 

countries (Botswana, Malawi, South Africa, Uganda and Zimbabwe).  

We elected a priori to include all data in model development apart from the Malawi site in the Ambition-

cm trial, which was held-out for validation since Malawi was the only country where participants were 

recruited to both trials.  

Both studies were approved by the London School of Hygiene and Tropical Medicine Research Ethics 

Committee and local ethics and regulatory authorities in each country, where appropriate. The full 

analysis pipeline is summarised in Supplementary Figure 1. All analyses were conducted and reported in 

accordance with TRIPOD standards7 and were performed in R (version 4.3.2). 

Model development 

We considered predefined candidate predictors for inclusion in the models based on clinical knowledge, 

previous studies and availability of variables collected at baseline in both trials (Supplementary Table 1). 

Sample size calculation details are provided in the Supplementary Appendix. Variables were only 

considered if available from at least 60% of participants, as previously.23 Missing data were handled using 

multiple imputation in the primary analyses, using the aRegImpute function in R.23,24 All predictors, 

including transformations, considered for the final model were included in the imputation model to ensure 

compatibility. All primary analyses were performed across 10 multiply imputed datasets; parameters were 

pooled using Rubin’s rules.25 

We developed models for the primary outcome of 2-week mortality, since we hypothesised that early 

mortality is more likely to be directly associated with cryptococcal meningitis severity. We developed a 

‘basic’ model for use in a resource limited setting, using only candidate predictors routinely obtained 

programmatically at the point of hospital admission; and a ‘research’ model, where all pre-defined 

candidate predictors were considered for inclusion. Multivariable logistic regression models were initially 

developed in the development dataset. Variable selection was conducted for the ‘basic’ and ‘research’ 

models separately, using backward selection, based on Akaike Information Criteria (AIC). Continuous 

variables were modelled using restricted cubic splines (3 knots) to assess non-linear associations. 

Predictors retained in >50% of multiply imputed sets were retained in the final models.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.10.24310212doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310212
http://creativecommons.org/licenses/by-nd/4.0/


8 

 

Models including the selected variables were then evaluated using the internal-external cross-validation 

method, where participants from one country were iteratively left out of the model development set and 

used for validation.23,26,27 This method evaluates potential generalisability of the modelling approach 

between settings by examining between-setting heterogeneity in performance. To do this, the models 

were re-trained in the remaining countries in the development dataset and validated in the omitted country 

by quantifying the discrimination and calibration. Discrimination assesses how well the models 

differentiate between those who do and do not meet the outcome (measured as the C-statistic), while 

calibration evaluates how well predicted risk matches observed risk (measured as the calibration slope 

and calibration-in-the-large, and by visualisation of calibration plots28). Random-effects meta-analysis 

was then used to calculate pooled measures of discrimination and calibration across countries in the 

development dataset.26 We performed re-calibration by country by re-estimating model intercepts. The 

final models were trained using the full development dataset prior to further validation in the held-out 

dataset (Malawi site in the Ambition-cm trial).  

Machine learning 

Next, we sought to test whether a statistical model using logistic regression could be improved upon using 

a machine learning method. We re-trained the research model with the selected variables using XGBoost, 

as a “best-in-class” machine learning approach for predicting a binary outcome,29 as previously.19 Further 

details of the XGBoost approach are provided in the Supplementary Appendix.  

Model validation 

Held-out validation of the statistical and machine learning models was then performed in the Ambition-

cm Malawi dataset by quantifying the C-statistic, calibration slope and calibration-in-the-large, and 

visualisation of calibration plots. We benchmarked performance to single univariable predictors, and other 

HIV-associated cryptococcal meningitis prognostic models for which constituent variables were available 

in >60% of the dataset and model reconstruction was possible from reported manuscripts.9,30 We also 

performed decision curve analysis30 in the validation dataset to quantify the overall net benefit of 

implementing the models to inform clinical decisions, compared to: (a) a ‘treat all’ approach; (b) a ‘treat 

none’ approach; and (c) other candidate models. 

10-week analysis 

Performance of the final logistic regression models to predict mortality over a longer time horizon of 10 

weeks was assessed by evaluating discrimination for this outcome in the held-out validation in the Malawi 

Ambition-cm dataset. In addition, we developed separate models specifically to predict the 10-week 

outcome, using the same methodology as for the primary models, to assess whether this further improved 

performance for the longer time horizon.  

Treatment effect heterogeneity analyses 

In an exploratory analysis, we also tested the hypothesis that the Ambition regimen and oral combination 

(fluconazole plus flucytosine) regimen were more effective than 1-wk AmBd+5FC (as the control arm in 

Ambition-cm and the best performing arm in ACTA), among lower risk participants, in line with the 

Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement.31 To do this, we generated 

predictions for 2-week mortality using the final ‘basic’ and ‘research’ models in the pooled dataset. 
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Participants were divided into low, medium and high-risk strata (based on tertiles of predicted risk). We 

then examined treatment efficacy of the Ambition and oral combination regimens (compared to 1-wk 

AmBd+5FC) over 10 weeks separately within each trial, with interaction terms by risk stratum. Absolute 

risk differences between arms were quantified by risk stratum using an identity link function and relative 

risk as hazard ratios using Cox regression.  

In parallel, we evaluated whether treatment efficacy was modified by predicted risk as a continuous 

variable. We modelled time to death using Cox regression, with an interaction term between treatment 

arm and predicted 2-week mortality risk (including restricted cubic spline transformations to account for 

non-linear associations). We then visualised treatment effects (as hazard ratios) against predicted risk.  

Role of the funding source 

The funder had no role in study design, data collection, data analysis, data interpretation, writing of the 

report, or decision to submit for publication. The corresponding authors had full access to all the data in 

the study and had final responsibility for the decision to submit for publication. 
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RESULTS 

Baseline characteristics 

A total of 674 eligible participants from the ACTA trial (excluding 4 participants who were lost to follow-

up) and 814 from the Ambition-cm trial were included in the pooled analysis (n=1,488). 1,263 participants 

were included in model development, with 225 (Malawi Ambition-cm participants) held out for validation 

(Supplementary Figure 2). Baseline characteristics, including candidate predictors and missingness, are 

presented in Table 1, stratified by 2-week mortality. A total of 222/1,263 (17.5%) development set 

participants and 21/225 (9.3%) validation set participants met the primary model outcome of 2-week 

mortality. 

Variable selection 

In variable selection, five predictors were retained in the ‘basic’ and seven in the ‘research’ model. 

Predictors in both models included: Glasgow coma scale (GCS) score, Eastern Cooperative Oncology 

Group (ECOG) performance status, haemoglobin, blood neutrophil count and treatment regimen. 

Additional predictors in the research model were CSF opening pressure (CSF OP) and log10CSF 

quantitative cryptococcal culture (CSF QCC). Predictor-outcome associations were similar in both models 

(Figure 1; Supplementary Figure 3). Full model coefficients for both models are presented in 

Supplementary Tables 4 and 5.  

Internal-external cross-validation 

Forest plots showing discrimination and calibration metrics of both models from each country in internal-

external cross validation in the development dataset are shown in Figure 2. Discrimination was relatively 

consistent between study sites for both models (pooled C-statistic estimates 0.75 (95%CI 0.68-0.82) for 

the ‘basic’ and 0.78 (95%CI 0.75-0.82) for the ‘research’ models). Calibration was more heterogeneous, 

with CITL varying by study site in both models, likely reflecting variation in baseline risk between sites 

(point estimates -0.45 to 0.57 for the ‘basic’ model, -0.34 to 0.42 for the ‘research’ model). Pooled 

calibration plots by study site show evidence of systematic overestimation of risk in Malawi and 

underestimation in Uganda. Recalibration to each study site by re-estimation of the model intercept led 

to improvement in model calibration, as expected (Supplementary Figure 4).  

Held-out validation 

In held-out validation in Malawi participants in the Ambition-cm trial, discrimination of both models was 

slightly higher compared to the estimates in internal-external cross-validation (Table 2) with C-statistic 

0.78 [95%CI 0.70-0.87] and 0.85 [95%CI 0.79-0.92] in the ‘basic’ and ‘research’ model, respectively. 

Calibration assessment suggested overestimation of risk, particularly in the higher risk range, where data 

were sparser (Figure 3a-b). ECOG performance status was the strongest univariable predictor for 2-week 

mortality (C-statistic 0.78 [95%CI 0.71 to 0.85]) but had lower discrimination than the full multivariable 

‘research’ model (Supplementary Table 6). The discriminative ability of single predictors varied by study 

site (Supplementary Table 7). Of the identified pre-existing models, only the model created by Zhao et al. 

(2021)9 could be reconstructed from the available data. Discrimination in the validation dataset, calculated 

using their reported point score, fell short of either of the primary models (C-statistic 0.69 [95%CI 0.6 to 

0.78]). To report calibration, we recalibrated the model intercept to our validation dataset, since no 
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intercept was reported. Despite this, calibration assessment suggested that predictions were too extreme, 

with a slope 0.35 (95%CI 0.14 - 0.56; Table 2; Supplementary Figure 5).  

Machine learning 

We also developed an XGBoost model, to assess whether a machine learning approach could further 

improve performance. Predictor-outcome associations using XGBoost were similar to the logistic 

regression approach, with no clear evidence of two-way interactions (Supplementary Figure 7). In the 

validation dataset, XGBoost discrimination and calibration metrics were also similar to the logistic 

regression model (Table 2; Figure 3). The XGBoost calibration plot showed miscalibration with predictions 

being too extreme, reflecting overfitting, and leading to a slope <1 (Figure 3c). Overall, performance of 

the machine learning model demonstrated no improvement in performance over the logistic regression 

approach.  

Decision curve analysis 

Decision curve analysis measures the trade-off between correctly identifying participants who met the 

mortality endpoint and incorrectly identifying those who did not and quantifies this as “net benefit”30. 

Decision-curve analysis in the validation dataset showed higher net-benefit for the ‘basic’ and ‘research’ 

models compared with the model by Zhao et al. (2021),9 ‘treat-all’ or ‘treat-none’ approaches across a 

broad range of threshold probabilities, where the weighting of the false positives is varied. The ‘research’ 

model demonstrated superior net benefit overall to guide management (Supplementary Figure 6). 

10-week mortality 

A total of 411/1263 (32.5%) and 58/225 (26.2%) participants met the 10-week mortality outcome in the 

development and validation datasets, respectively. We retrained the logistic regression models, including 

variable selection, to assess whether this would improve prediction over the longer time period. Seven 

predictors were retained in the retrained ‘basic’, and eight in the ‘research’ 10-week models. In the ‘basic’ 

model, age, weight, and the presence of seizures on admission were substituted for GCS, and in the 

‘research’ model age and CSF cell count were substituted for CSF OP (Supplementary Tables 8-10; 

Supplementary Figure 9).  Performance of the 10-week models in the validation dataset is shown in Table 

2, along with the C-statistic for the primary 2-week models in predicting 10-week mortality. Overall, for 

both ‘basic’ and ‘research’ models, discrimination for the 10-week outcome was similar for the re-trained 

10-week models and the primary 2-week models. For both the ‘basic’ and ‘research’ 10-week models, 

the CITL was closer to 0 for the 10-week outcome, when compared to the primary 2-week models for the 

2-week outcome (Supplementary Figure 10), suggesting better calibration for the 10-week models.  

Treatment effect modification analysis 

We hypothesised that treatment effects within each trial may vary according to predicted 2-week mortality 

risk. Predicted risk for both models was positively skewed, with modal risk of 7.6% and 4.2% for the ‘basic’ 

and ‘research’ models, respectively, markedly lower than the overall cohort mortality of 16.3% 

(Supplementary Figure 11). Absolute number of deaths, mortality risk difference and hazard ratios 

comparing the Ambition regimen to 1-wk AmBd+5FC in the Ambition-cm trial and oral combination 

treatment to 1-wk AmBd+5FC in the ACTA trial, stratified by risk stratum, are shown in Supplementary 

Table 11.  In the Ambition-cm trial, there was a trend towards absolute and relative risk reductions for the 
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Ambition regimen for the lower risk strata for both models, with no difference in mortality in the higher risk 

stratum: Hazard ratio 0.65 (95%CI 0.38-1.13) for ‘basic’ model in low-risk stratum, compared to 1.05 

(95%CI 0.71-1.54) in high-risk stratum; 0.61 (95%CI 0.33-1.11) for ‘research’ model in low-risk stratum, 

compared to 1 (95%CI 0.68-1.45) in high-risk stratum).  

When comparing oral combination treatment to 1-wk AmBd+5FC in the ACTA trial, risk differences and 

hazard ratios appeared closer to 1 in the low- and medium-risk strata, compared to the high-risk strata, 

for both models, though the confidence intervals were wide due to small sample sizes in each stratum.  

These findings were similar when handling predicted risk as a continuous variable, shown in Figure 4.  
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DISCUSSION 

Using a large, high-quality dataset of the 2 largest randomised controlled trials conducted to date for the 

treatment of cryptococcal meningitis, conducted across 8 countries in Africa, we developed tools to predict 

2-week and 10-week mortality. Our ‘basic’ model includes five predictor variables, which are routinely 

measured programmatically: GCS score, ECOG performance status, haemoglobin, neutrophil count and 

treatment regimen. Our ‘research’ model additionally includes CSF OP and CSF fungal burden, for 

settings where these variables are available. Both models demonstrated consistent performance across 

countries, supporting their generalisability. Predicted risk was markedly skewed with modal mortality risk 

far below overall risk, suggesting that the majority of patients have individual-level risk far below the mean 

and thus supporting an individualised approach to treatment. Moreover, our results provide proof of 

concept data for treatment stratification. While the Ambition regimen was non-inferior to 1-wk AmBd+5FC 

overall in the Ambition-cm trial, we observed a trend towards improved mortality with the Ambition 

regimen among lower risk participants, when using both categorical and continuous risk measurements. 

Treatment regimens in cryptococcal meningitis are intensive and use of Amphotericin B deoxycholate is 

associated with significant toxicity risk.32 One potential hypothesis is that treatment toxicity may be a 

relatively more important factor determining outcome among lower-risk participants, which may explain 

the apparent improved outcomes with the less toxic Ambition regimen5 among these participants.  When 

evaluating oral combination therapy in the ACTA trial, the oral regimen was close to the efficacy of 1-wk 

AmBd+5FC in the lowest risk participants. Our results suggest our models could be used to direct 

stratified treatment approaches in future trials, with patients at lowest predicted risk receiving less toxic 

or intensive therapy and being considered for earlier hospital discharge. Encouragingly, this effect was 

seen in both models, suggesting the ‘basic’ version of the model could be used if measurement of CSF 

QCC and opening pressure is not possible. 

The models demonstrated consistent discrimination across different study sites but demonstrated some 

variation in calibration, likely reflecting site-level differences in baseline mortality risk not accounted for in 

the model. In Malawi, the model demonstrated systematic overprediction of risk and in Uganda 

underprediction, indicating that patients had a less-than and greater-than expected mortality at these 

sites, respectively. Multiple explanations are plausible, including differences in healthcare provision, 

genetic predisposition to outcome, and other local socio-economic determinants. Recalibration of the 

models to individual study sites resolved much of this difference and represents a possible way to adapt 

the models in future, if required. Nevertheless, in the held-out validation data, discrimination and 

calibration performance of both ‘basic’ and ‘research’ models improved significantly on the most 

comparable existing cryptococcal meningitis model for people living with HIV9 and is consistent with that 

achieved to predict mortality in COVID-19.23 The final models demonstrated higher net benefit than 

alternative approaches to inform decision making in decision curve analysis, without recalibration. 

Notably, most of the observed miscalibration was at higher predicted risks (>25%), where the data were 

sparser. However, since this represents a risk range above the likely threshold probability for most 

stratified interventions, this is unlikely to have a significant impact on clinical utility.  

Our analyses demonstrated clinically plausible predictor-outcome associations for all included variables 

in the models and explored non-linear associations of continuous variables with mortality. GCS score <15 
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and elevated CSF fungal burden have been found to be associated with increased mortality in previous 

studies from multiple settings.8,9,12-15,20,21,33 Notably, CSF fungal burden at baseline, measured using 

quantitative cultures, had a non-linear association with mortality risk with markedly increased risk above 

log104, but little increased risk of mortality at lower levels. Although measurement of CSF fungal burden 

using quantitative cultures is not a routine laboratory procedure, it may be possible in future to utilise 

results from point-of-care semi-quantitative cryptococcal antigen tests or other approaches to quantify 

organism load such as qPCR.34 We found that ECOG performance status, reflecting functional status, 

was the most discriminating single predictor for mortality. Since it is easy to measure at presentation, 

there is a strong rationale for considering this both in research studies and programmatically. Raised 

intracranial pressure (ICP) is well-known to contribute to morbidity and mortality in HIV-associated 

cryptococcal meningitis9,35,36 and is common on presentation with 580/1488 (39.0%) in the current study 

having ICP >25cm H2O. The risk associated with 2-week mortality increased modestly with increasing 

OPs in our analysis. Since raised ICP was managed through protocolised therapeutic lumbar puncture in 

our included trials, the effect of unmanaged raised ICP on mortality was likely attenuated, as has been 

hypothesised in previous analyses.8 Thus, the association observed in our models should be considered 

to reflect ICP with protocolised management. Anaemia and high blood neutrophil count were also 

associated with increased 2-week mortality in our models, as observed for other infectious diseases, and 

likely reflecting severity of systemic illness.8 In our re-trained models for 10-week mortality, age, weight, 

and seizures on admission were included as additional variables in the ‘basic’ model, while age and CSF 

cell count were substituted for CSF OP in the ‘research’ model. We hypothesise that most 2-week 

mortality risk likely relates to cryptococcal meningitis-related pathology, whereas at 10 weeks a larger 

proportion of the observed risk may be attributable to the underlying HIV and co-morbidities. Since 10-

week mortality is significantly higher than 2-week mortality, there were also a larger number of events for 

the 10-week outcome, which may have led to the inclusion of more variables and slightly better calibration 

observed for these models.  

Though previous studies have sought to compare performance of statistical and machine learning 

prediction models, most comparisons were classified at high risk of bias in a recent systematic review, 

due to suboptimal statistical and/or machine learning methodology.37  We found that performance of the 

machine learning model in the validation dataset demonstrated no improvement in performance over the 

logistic regression model. Our findings suggest that, in lower dimensional datasets, traditional regression 

approaches may offer equivalent performance whilst remaining computationally less intensive and 

methodologically more transparent. Notably, our observed predictor-outcome associations from the 

XGBoost approach largely mirrored the associations found in the regression model.  

Strengths of our study include our use of best practices for statistical and machine learning prediction 

modelling development and validation, including TRIPOD standard reporting, using multiple imputation 

to deal with missing data, and retaining continuous variables without arbitrary categorisation to avoid loss 

of information, whilst also accounting for non-linear associations. We also used the largest dataset to 

date to develop and validate a model for cryptococcal meningitis and mitigated the risk of overfitting our 

models by defining candidate predictors a priori, in line with best practice sample size guidance.38 

Furthermore, our pooled dataset included 8 countries; we harnessed this to explore generalisability and 
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geographic heterogeneity in model performance through our internal-external cross-validation approach. 

Finally, we explored heterogeneity of treatment effect by predicted risk, in line with the PATH statement.31 

Our study also has limitations. First, our models were developed and validated using data from sub-

Saharan Africa, where the greatest burden of disease is; evaluation in other world regions is required to 

further explore generalisability. While developing the model on RCT data was a strength in terms of data 

quality, real-world outcomes for cryptococcal meningitis may be inferior to that observed in the trials, due 

to factors such as trial exclusion criteria and improved standards of care in clinical trials.39 Further 

validation in programmatic cohorts is therefore also required. Whilst our treatment effect analysis provides 

early proof-of-concept evidence for treatment stratification in cryptococcal meningitis, caution is required 

due to the exploratory nature of the analysis. While the models were not trained to predict differential 

treatment effects, their discrimination and calibration to predict 2-week mortality is likely optimistic across 

participants in the development dataset. Future studies are required to further evaluate differential 

treatment effects when stratified by our models, including RCTs incorporating approaches to treatment 

stratification. 

In summary, we present prognostic models for 2- and 10-week mortality in HIV-associated cryptococcal 

meningitis and demonstrate consistent performance across sub-Saharan African settings. The models 

use commonly available predictors and will be made freely available to direct future treatment stratification 

approaches in clinical trials (prototype: https://rishi-k-gupta.shinyapps.io/periskope-cm/). 
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FIGURES AND TABLES 

Table 1: Baseline characteristics of study cohort 

Characteristics showed both in total study cohort and stratified by two-week mortality outcome. 

Characteristic Overall, N = 1,4881 Alive, N = 1,2451 Died, N = 2431 

Study site    

Botswana 84 (5.6%) 72 (5.8%) 12 (4.9%) 

Cameroon 107 (7.2%) 80 (6.4%) 27 (11%) 

Malawi 682 (46%) 574 (46%) 108 (44%) 

South Africa 107 (7.2%) 97 (7.8%) 10 (4.1%) 

Tanzania 52 (3.5%) 38 (3.1%) 14 (5.8%) 

Uganda 327 (22%) 274 (22%) 53 (22%) 

Zambia 58 (3.9%) 47 (3.8%) 11 (4.5%) 

Zimbabwe 71 (4.8%) 63 (5.1%) 8 (3.3%) 

Trial    

ACTA 674 (45%) 535 (43%) 139 (57%) 

Ambition-cm 814 (55%) 710 (57%) 104 (43%) 

Treatment arm    

Liposomal-AmB (Ambition regimen) 407 (27%) 354 (28%) 53 (22%) 

1wk AmBd+5FC 518 (35%) 454 (36%) 64 (26%) 

1wk AmBd+FLU 111 (7.5%) 75 (6.0%) 36 (15%) 

2wks AmBd+5FC 115 (7.7%) 91 (7.3%) 24 (9.9%) 

2wks AmBd+FLU 112 (7.5%) 87 (7.0%) 25 (10%) 

FLU+5FC (Oral regimen) 225 (15%) 184 (15%) 41 (17%) 

Age; years 37 (32, 43) 37 (32, 43) 37 (32, 44) 

Sex    

Female 612 (41%) 505 (41%) 107 (44%) 

Male 876 (59%) 740 (59%) 136 (56%) 

Weight; kg 52 (47, 60) 53 (47, 60) 50 (45, 60) 

Missing 15 10 5 

Seizures 204 (14%) 146 (12%) 58 (24%) 

Missing 4 4 0 

GCS score    

15 1,095 (74%) 969 (78%) 126 (52%) 

11-14 327 (22%) 241 (19%) 86 (35%) 
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Characteristic Overall, N = 1,4881 Alive, N = 1,2451 Died, N = 2431 

<=10 66 (4.4%) 35 (2.8%) 31 (13%) 

ECOG performance status    

Normal 64 (4.3%) 63 (5.1%) 1 (0.4%) 

Restricted activity 256 (17%) 241 (19%) 15 (6.2%) 

Ambulatory 339 (23%) 301 (24%) 38 (16%) 

Limited self-care 512 (34%) 438 (35%) 74 (30%) 

Bedbound 316 (21%) 201 (16%) 115 (47%) 

Missing 1 1 0 

White cell count; x10^9/L 4.20 (3.10, 5.60) 4.10 (3.00, 5.50) 4.80 (3.58, 6.60) 

Missing 12 9 3 

Neutrophil count; x10^9/L 2.50 (1.66, 3.80) 2.40 (1.60, 3.51) 3.40 (2.16, 4.67) 

Missing 31 23 8 

Haemoglobin; g/L 110 (96, 126) 111 (97, 126) 105 (90, 123) 

Missing 10 8 2 

CD4 count; x10^6/L 27 (10, 62) 27 (11, 63) 21 (9, 48) 

Missing 88 61 27 

CSF opening pressure; cmH20 22 (13, 33) 21 (13, 32) 25 (16, 40) 

Missing 54 50 4 

CSF cell count; WBC per mm3 4 (1, 37) 5 (1, 40) 4 (0, 16) 

Missing 59 48 11 

log(CSF quantitative culture) 4.79 (3.08, 5.66) 4.63 (2.91, 5.54) 5.48 (4.49, 6.15) 

Missing 40 31 9 

1n (%); Median (IQR) 
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Figure 1: Multivariable associations between selected predictors and outcome in primary 
research model 

Continuous variables were modeled using restricted cubic splines. The final model parameters are pooled 

across multiply imputed datasets (total sample size for model development = 1,263 participants). For 

continuous variables, black lines represent point estimates and grey shaded regions represent 95% 

confidence intervals. For categorical variables, black dots represent point estimates and black lines 

represent 95% confidence intervals. Treatment arm 1 through 5 represent 1) the liposomal-Amphotericin-

B Ambition regimen and the 1-week Amphotericin-B + Flucytosine (1wk AmBd + 5FC) arms from both 

ACTA and Ambition-cm trials, 2) 1 week Amphotericin-B + Fluconazole, 3) 2 weeks Amphotericin-B + 

Flucytosine, 4) 2 weeks Amphotericin-B + Fluconazole and 5) Flucytosine + Fluconazole oral combination 

regimen, respectively.  Treatment arm (1) was grouped in this way due to the finding of non-inferiority 

between the Ambition regimen and 1wk AmBd + 5FC arms in the Ambition-cm trial. Associations for the 

primary basic model are shown in the appendix (Supp Fig 1). ECOG = Eastern Cooperative Oncology 

Group performance status; GCS = Glasgow Coma Scale; CSF = cerebrospinal fluid. 
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Figure 2a and 2b: Internal-external cross validation of basic and research model by country 

Pooled estimates are calculated through random-effects meta-analysis (total sample size = 1,263 

participants). Countries with n < 100 participants or x < 20 deaths were amalgamated and grouped by 

similarity of healthcare environment. Dashed lines indicate lines of perfect calibration in the large (0) and 

slope (1), respectively. Black squares indicate point estimates; bars indicate 95% confidence intervals; 

diamonds indicate pooled random-effects meta-analysis estimates. Bots = Botswana; SAfr = South Africa; 

Tan = Tanzania; Zam = Zambia; Zim = Zimbabwe. 

Figure 2a - Basic Model 
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Figure 2b - Research Model 
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Figure 3: Model calibration and prediction density in held-out validation data 

Panels (a) to (c) show the calibration of the basic model, research model and XGBoost machine learning 

model respectively. Calibration is shown using a loess smoother. 95% confidence intervals are shown 

shaded in grey. Rug plots, shown on the x-axis, plot the distribution of predicted risk. Panels (d) to (f) 

show density plots for the 2-week mortality predictions made by the basic model, research model and 

XGBoost machine learning model respectively, stratified by 2-week mortality outcome. 
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Table 2: Model performance in held-out validation data 

Table reports performance in validation data for each of the primary models, secondary models, XGBoost 

machine learning model and Zhao et al’s model. Brackets in the table headers refer to the outcome for 

which the model was trained. Validation outcome refers to the outcome in which model performance was 

assessed. Slope and Calibration-in-the-large data are not reported for the primary models’ 10-week 

validation outcome, since the primary model was developed for the 2-week mortality outcome. 

Calibration-in-the-large data is not reported for Zhao et al’s model as in order to reconstruct the model 

and assess calibration, the model intercept was recalibrated to our data. 

 Validation Outcome AUROC1,2 Slope1 CITL1,2 

Primary models (2-week mortality) 

Basic 2 weeks 0.78 (0.7 - 0.87) 1.04 (0.54 - 1.55) -0.55 (-1.02 - -0.07) 

Basic 10 weeks 0.74 (0.66 - 0.81) - - 

Research 2 weeks 0.85 (0.79 - 0.92) 1.14 (0.69 - 1.6) -0.57 (-1.06 - -0.07) 

Research 10 weeks 0.77 (0.7 - 0.85) - - 

Secondary models (10-week mortality) 

Basic 10 weeks 0.77 (0.71 - 0.84) 1.31 (0.85 - 1.77) -0.16 (-0.48 - 0.16) 

Research 10 weeks 0.78 (0.71 - 0.85) 1.1 (0.72 - 1.49) -0.07 (-0.4 - 0.25) 

Machine learning model (2-week mortality) 

XGBoost 2 weeks 0.83 (0.76 - 0.89) 0.87 (0.49 - 1.26) -0.63 (-1.12 - -0.13) 

Zhao et al. model (28-day mortality) 

Zhao 28 days 0.69 (0.6 - 0.78) 0.35 (0.14 - 0.56) - 

1Brackets indicate 95% confidence intervals 

2AUROC = Area under the Receiver Operator Characteristic curve; CITL = Calibration-in-the-large 
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Figure 4: Treatment Effect of Oral regimen (flucytosine (5FC) plus fluconazole (FLU)) and Ambition 
regimen vs 1-week Amphotericin B deoxycholate (AmBd) plus 5FC over a range of treatment 
model-predicted mortality 

Treatment effect, expressed as a hazard ratio for the Oral or Ambition regimens relative to 1-week of 

Amphotericin B plus Flucytosine (1wk AmBd + 5FC), is plotted logarithmically to base 2 on the y axis. 

Predicted mortality, defined by either the Basic or Research model as per the panel labels, is plotted on 

the x axis. Green, Orange and Red colouring represent the Low, Medium and High Risk terciles defined 

by the research model. Shaded regions represent 95% confidence intervals. The x-axis is foreshortened 

to predicted mortality of 0.4, which encompasses >95% of the underlying data. 
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