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ABSTRACT 

 

Objective: Interictal high-frequency oscillations (HFOs) are a promising neurophysiological biomarker of the 

epileptogenic zone (EZ). However, objective criteria for distinguishing pathological from physiological HFOs 

remain elusive, hindering clinical application. We investigated whether the distinct mechanisms underlying 

pathological and physiological HFOs are encapsulated in their signal morphology in intracranial EEG (iEEG) 

recordings and whether this mechanism-driven distinction could be simulated by a deep generative model. 

Methods: In a retrospective cohort of 185 epilepsy patients who underwent iEEG monitoring, we analyzed 

686,410 HFOs across 18,265 brain contacts. To learn morphological characteristics, each event was transformed 

into a time-frequency plot and input into a variational autoencoder. We characterized latent space clusters 

containing morphologically defined putative pathological HFOs (mpHFOs) using interpretability analysis, 

including latent space disentanglement and time-domain perturbation. 

Results: mpHFOs showed strong associations with expert-defined spikes and were predominantly located within 

the seizure onset zone (SOZ). Discovered novel pathological features included high power in the gamma (30–80 

Hz) and ripple (>80 Hz) bands centered on the event. These characteristics were consistent across multiple 

variables, including institution, electrode type, and patient demographics. Predicting 12-month postoperative 

seizure outcomes using the resection ratio of mpHFOs outperformed unclassified HFOs (F1=0.72 vs. 0.68) and 

matched current clinical standards using SOZ resection (F1=0.74). Combining mpHFO data with demographic 

and SOZ resection status further improved prediction accuracy (F1=0.83). 

Interpretation: Our data-driven approach yielded a novel, explainable definition of pathological HFOs, which 

has the potential to further enhance the clinical use of HFOs for EZ delineation. 
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INTRODUCTION 

Over a third of epilepsy patients do not respond to medication and may become candidates for epilepsy 

surgery. Currently, surgical plans mainly rely on neuroimaging and EEG, including interictal spikes and the 

seizure onset zone (SOZ), but seizure freedom rates remain around 50–85%.1 Discovering a biomarker to 

precisely delineate the epileptogenic zone (EZ: the brain regions responsible for generating seizures) would be 

transformative. Interictal high-frequency oscillations (HFOs) in intracranial EEG (iEEG) show promise as spatial 

biomarkers for delineating the epileptogenic zone (EZ),2-4 with studies linking HFO-generating regions' removal 

to postoperative seizure freedom.5,6 However, using HFOs in surgery is challenging because they can arise from 

both pathological and physiological sources, and currently, no method exists to reliably distinguish between the 

two.7 

Supervised machine learning is highly effective when human annotators accurately label large-scale 

datasets. Deep learning (DL) models can learn complex patterns representative of labeled categories and then 

perform automated classification on unseen signals and images with high accuracy.8 For HFO classification, 

certified experts would be required to annotate large repositories of HFOs from diverse groups of patients 

accurately and consistently. However, accurately labeling pathological HFOs is challenging due to a lack of 

consensus on their definition. Recent studies9,10 have explored weakly supervised approaches where, instead of 

expert labels, clinical evidence based on seizure freedom and channel resection status can be used to train DL 

models. However, these methods have limited scalability since clinical evidence is not always available, 

especially in stereotactic EEG (SEEG) without resection. Additionally, labeling, such as SOZ annotation and 

resection margin determination, lacks standardization across institutions and may be inaccurate.11,12 

A potential solution to the limitations of supervised learning is to utilize original observations. Research 

using microelectrodes indicates that pathological HFOs, generated by abnormal synchronous burst firing, are 

morphologically distinct from physiological HFOs, which stem from inhibitory synchronous postsynaptic 

potentials.7,13
  However, clinical iEEG recordings often use macroelectrodes, and traditional signal processing 

algorithms have been insufficient in characterizing these morphological differences.14,15 A generative AI model, 

like a variational autoencoder (VAE),16 can capture subtle morphological differences based on such biological 

mechanisms without labels if given a large dataset. VAEs, trained in a self-supervised manner, have proven 

effective in natural language processing,17 computer vision,18,19 and EEG analysis.20,21 They learn low-dimensional 

representations by reconstructing data from latent codes, forming clusters in latent space that capture different 

data-generative mechanisms. Once the morphological characteristics of pathological HFOs are learned, they can 

be visualized and interpreted through latent space exploration. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2024. ; https://doi.org/10.1101/2024.07.10.24310189doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310189
http://creativecommons.org/licenses/by/4.0/


 

This study utilized a large multi-institutional cohort of patients who underwent iEEG monitoring with 

grid or SEEG electrodes, providing comprehensive coverage of deep and superficial brain regions. We developed 

a VAE framework to analyze large numbers of HFOs and identify morphologically defined putative pathological 

HFOs (mpHFOs). Using the interpretability of VAEs, we explored various neurophysiological characteristics of 

mpHFOs through the VAE's latent space disentanglement. Finally, we tested postoperative seizure outcome 

prediction using the mpHFO resection ratio from interictal EEG recordings to assess its comparability to the 

current clinical standard of SOZ-based prediction. 

METHODS:  

Patient cohort: This was a multi-institutional retrospective cohort study. The inclusion criteria consisted of [a] 

simultaneous video-iEEG recording for epilepsy surgery from August 2016 to December 2023 at UCLA Mattel 

Children's Hospital (UCLA grid/strip and UCLA SEEG cohorts) or from January 2007 to May 2018 at Children's 

Hospital of Michigan, Detroit, (Detroit grid/strip cohort) [b] iEEG sampling rate of at least 1,000Hz, [c] iEEG 

contained at least an artifact-free 5 min slow-wave sleep epoch at least two hours apart from clinical seizure 

events, and [d] known postoperative seizure outcomes over one year for patients who had resective surgery. The 

exclusion criteria included [a] undergoing hemispherectomy or hemispherotomy and [b] the presence of massive 

brain malformations (such as megalencephaly and perisylvian polymicrogyria) or previous surgeries that make it 

difficult to identify brain anatomy during the iEEG study. The institutional review board at UCLA and Wayne 

State University have approved the protocol. We obtained written informed consent from patients or the guardians 

of pediatric patients.  

Patient evaluation: All patients with medically refractory epilepsy referred during the study period underwent a 

standardized presurgical evaluation.9,22 The margins and extent of resections were determined mainly based on the 

SOZ, clinically defined as regions initially exhibiting sustained rhythmic waveforms at the onset of habitual 

seizures. Postoperative seizure outcomes were determined based on the status of Engel class I outcomes versus 

others 12 months after the resective surgery. 

iEEG recording: Macroelectrodes, including platinum grid electrodes (10 mm intercontact distance) and depth 

electrodes (platinum, 5 mm intercontact distance), were surgically implanted. The placement of intracranial 

electrodes was guided by the results of scalp video-EEG recording and neuroimaging studies. Regarding the 

SEEG placement, BrainLab Elements software was used for planning the electrodes to the intended targets using 

T1-weighted sequences, and the trajectories were guided by a gadolinium-enhanced T1-weighted MRI. Both 

institutions obtained iEEG recordings using Nihon Kohden Systems (Irvine, California, USA). The sampling 

frequency was set at 1,000 Hz in Detroit and at 2,000 Hz in UCLA upon acquisition.  
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Acquisition of three-dimensional (3D) brain surface images: We obtained preoperative high-resolution 3D 

magnetization-prepared rapid acquisition with gradient echo (MPRAGE) T1-weighted image of the entire head. 

Using the FreeSurfer scripts, we created the averaged surface image to which all electrode locations were spatially 

normalized.9,22 In cases where the software failed to detect the pial surface accurately due to insufficient cerebral 

myelination, we manually delineated the pial surface using the Control Point function. The averaged surface 

image functioned as the template for the analysis of anatomical location. 

Anatomical labeling and determination of ROIs: For the dataset from UCLA, each implanted contact was 

labeled visually according to the Desikan-Killiany-Tourville atlas.23 The location of electrodes was directly 

defined within a Freesurfer-based 3D surface image using post-implant computed tomography (CT) images using 

Brainstorm software.9 For the dataset from Detroit, all implanted subdural contacts were coregistered with 3D 

surface images within the FreeSurfer with an FSaverage vertex label.22 We defined 34 regions of interest (ROIs) 

for further analysis (Table 2). For the data harmonization between the two institutions, the FSaverage vertex of 

Detroit datasets was converted to MNI coordinates.24 Finally, these data were combined with UCLA patients, 

which were projected to the MNI normalized space under Brainstorm for the co-registration image (Figure 1a). 

iEEG data pre-processing: We used a customized common average reference for the grid9 and a bipolar 

montage for SEEG data. The EEG was first resampled to be the same sampling frequency of 1,000 Hz, and a 

band-reject filter was to reject the 60 Hz and its harmonics with a stopband of 2 Hz. iEEG channels not recording 

from grey matter (e.g., located outside of the brain) or otherwise deemed 'bad' (e.g., excessively noisy or 

artifactual) by the clinicians were discarded from the analysis. 

Automated HFO detection: HFOs were detected by the PyHFO platform using both STE and MNI detectors to 

enhance the sensitivity of detection.25,26 For both detectors, previously published default parameters were used 

(Supplementary Table 3), except the frequency band was adjusted to 80-300 Hz to accommodate sampling 

frequency of 1,000 Hz. Each event was classified into an artifact, HFO with spike (spkHFO), and HFO without 

spike (non-spkHFO) using the released deep learning models from PyHFO.   

Overall training and inference method: Figure 1 and Supplementary Figure 1-3 outline the overall study flow. 

Morphology-based pathological HFO classification by deep generative model 

Subject-wise k-fold Cross-validation: To thoroughly test our method, we used a subject-wise five-fold cross-

validation. Specifically, for each fold, we set aside 20% of the subjects as a test set (controlling sampling from 

UCLA grid/strip, UCLA SEEG, and Detroit grid/strip, ensuring every subject was tested once over five folds). All 
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remaining subjects became the training set. Within the training set, we randomly sampled ten subjects from each 

dataset as the validation set. 

Feature Representation: Each event detected by the automatic detector was represented by a time-frequency plot 

(Morlet wavelet transform), known for capturing the morphological information of HFO events.9 The plot spans 

±285 ms (centered on the HFO event) and covers frequencies from 10 to 290 Hz. It was resized to a 64 x 64 

resolution and normalized to a range of 0 to 1 as the input of VAE. 

Self-supervised VAE training: The VAE encodes input images as latent code distributions and samples from them 

during decoding, allowing it to reproduce input images and generate similar new images (Figure 1b, 

Supplementary Figure 1). The self-supervised loss function includes reconstruction loss and variational 

regularization, which ensures the latent space follows a normal distribution. We used ResNet54 as the backbone 

for both the encoder and decoder, inspired by its success in capturing morphological features in time-frequency 

plots.27 The latent space was set to 8 dimensions, and an ablation study with 16 dimensions showed increased 

redundancy (Supplementary Figure 8). 

We trained our VAE over 80 epochs to reconstruct input images, using the Adam optimizer with a learning rate of 

3�×�10�� and a batch size of 512. To enhance the model's generalization ability, we augmented the time-

frequency plots by randomly flipping them along the time axis. Stratified sampling was employed to ensure even 

subject representation, capping the number of samples at 2,500 per subject per epoch. We selected perceptual loss 

as the reconstruction criterion to capture morphological discrepancies between input and output images more 

effectively. To achieve a more disentangled latent space, we adopted beta-VAE, using the loss function: 

loss = perceptual loss + β × KL divergence, with β = 0.1. At each training epoch, we monitored validation loss 

and selected the model checkpoint with the lowest validation loss for constructing the classifier and performing 

inference. 

Unsupervised discovery of HFO clusters: We developed a hierarchical two-stage Gaussian Mixture Model (GMM) 

clustering pipeline to identify morphologically distinct classes of HFOs (Figure 1c, Supplementary Figure 1). 

We extracted latent codes from the training dataset using VAE's encoder. In the first stage, we applied GMM 

clustering with k�=�2, using stratified sampling to balance subject contributions by capping events at 10,000 per 

subject. The cluster with high reconstruction loss was identified as artifacts (mArtifacts) due to their diverse 

morphologies and poor reconstruction by the VAE. In the second stage, we further clustered the non-artifact 

events into two clusters using another GMM, capping events at 2,000 per subject. To assign pathological (mpHFO) 

or physiological (non-mpHFO) labels to these clusters, we minimally used clinical data: the cluster with a higher 

resection percentage in seizure-free patients was deemed pathological. An ablation study exploring different 
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stratified sampling methods showed similar performance in predicting surgical outcomes (Supplementary 

Figure 9). 

HFO morphology inference pipeline: To predict new HFO events, time-frequency plots were computed and latent 

codes were extracted by VAE encoder. The trained hierarchical GMM then predicted each latent code, assigning 

class label (mpHFO/non-mpHFO/mArtifact) to each event. 

Interpretability analysis: 

We conducted an interpretability analysis of HFO classification within the VAE model. Pixel-wise t-tests 

on time-frequency plots extracted from the trained model were performed to identify distinct morphological 

characteristics of mpHFOs. Latent space visualization (t-SNE) and classification evaluated demographic and 

anatomical factors impacting HFO morphology. By latent space disentanglement and latent dimension 

perturbation, we aimed to map each latent dimension to meaningful neurophysiological characteristics and 

identify specific latent dimensions related to pathological features of mpHFOs. Time-domain perturbation was 

also performed to examine gamma-band activity's role in HFO morphology. Further details of the interpretability 

analysis are described in the Supplementary Methods Section. 

Clinical correlation: Predicting surgical outcomes:  

We assessed the effectiveness of the mpHFO by extracting subject-specific features and training 

predictive models to determine postoperative seizure-free outcomes in subjects who underwent resection 

following iEEG monitoring with grid or strip electrodes. Key features included the resection ratio (number of 

events including in the resected brain regions divided by the total number of detected events; we merged 

overlapped events between STE and MNI detectors in the calculation, Supplementary Table 4), demographic 

data such as sex and age, and the resection status of SOZ, which is a clinical standard for guiding epilepsy surgery. 

We employed two validation approaches. First, we evaluated the separation between seizure-free and non–

seizure-free subjects in the feature space and assessed the balance of performance across five-fold cross-validation 

(i.e., seizure-free subjects should have a higher resection ratio in all folds and vice versa.). We trained single and 

multivariable logistic regression models on features from all test sets and compared their area under the curve 

(AUC). Additionally, we employed a non-linear predictive model (random forest) (Figure 6c) aiming to forecast 

postoperative seizure freedom based on subject-specific features identified through subject-wise five-fold cross-

validation (Supplementary Figure 3). To better assess performance given the label imbalance, we reported both 

accuracy and the F1 score, including their respective means and standard errors of the mean. 

Statistical analysis:  
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Statistical analyses were performed using Python (3.9.1), and the deep neural network was developed in 

PyTorch (2.1.0). Quantitative data are reported as medians with interquartile ranges or means with standard 

deviations. Group comparisons used chi-square tests for distributions and Student's t-tests for means, with 

significance set at p < 0.05 unless stated otherwise. Machine learning model performance was evaluated using 

accuracy and F1 score. Specific statistical tests for each experiment are detailed in their respective sections. 

 

RESULTS 

Cohort characteristics: 

We studied 185 patients (91 females) from two centers who met the eligibility criteria (Table 1). The 

median age at surgery was 13 years (range: 2–44 years). A total of 18,265 artifact-free electrode sites (median: 

106 per patient; range: 29–152) within 34 ROIs were available for analysis (Figure 1a). There were 1,670 

electrode sites sampled within the SOZ and 7,960 sites sampled within non-epileptogenic brain regions, defined 

as spared brain regions in patients with postoperative seizure freedom (Table 2). The median duration of analyzed 

EEG data for the UCLA grid/strip dataset was 91.5 min [IQR: 90.6-94.8 min], and for the UCLA SEEG, it was 

90.3 minutes [IQR: 87.1-96.8 min]. The median analyzed EEG recording duration for the Detroit grid/strip dataset 

was 5.3 minutes [IQR: 5.1-5.7 min]. In total, 686,410 putative HFOs were detected from all the datasets. The 

median rate of HFOs (number of detections/min) within SOZ contacts was 3.11 (range: 0.73-7.17), and the 

median rate of HFOs within the non-epileptogenic contacts was 1.08 (range: 0.63-2.15) across the ROIs. There 

were 162 patients who underwent resective surgery, and 113 patients (69.8 %) achieved seizure freedom. Of the 

patients who had resection, pathology results were as follows: focal cortical dysplasia (FCD) (41.4%), 

hippocampal sclerosis (HS) (6.8%), tumor (19.1%), and others (32.7%).  

 

Characterization of pathological HFOs based on the self-supervised VAE algorithm:  

With five-fold subjective-wise cross-validation, 80.1% of the mpHFOs were classified as spkHFOs, 

84.87 % of the non-mpHFOs were classified as non-spkHFOs, and 93.56% of mArtifacts were classified as 

artifactual HFOs. Clustering results were visualized on a two-dimensional plane and were consistent across folds 

(Figure 2a,b; Supplementary Figure 4). Moreover, the mpHFO rate (count/channel/min) was significantly 

higher than the non-mpHFO rate (count/channel/min) in the SOZ channels across three datasets (p < 0.05) and did 

not exhibit significant difference within the non-SOZ channels (Detroit grid/strip: p = 0.1, UCLA SEEG: p = 0.49, 

UCLA grid/strip: p= 0.38) (Figure 2c). The morphological analysis demonstrated that mpHFOs had higher 

amplitude values throughout the HFO band (≥ 80 Hz), around the center (detection) point (0�ms, where HFOs 
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were detected) than non-mpHFOs (Figure 2d, e). Furthermore, there were statistically higher values of mpHFOs 

at the sub-HFO band (10-80 Hz) throughout the time window compared to non-mpHFOs. These bands together 

lead to a cone-shaped template in the time-frequency plot (Figure 2e). Such a template showed consistency 

regardless of the variables, including sex, the origin of the dataset, pathology, and age categories (Supplementary 

Figure 5). The application of a 10-80 Hz bandpass filter revealed spike-like EEG signals in mpHFOs (Figures 

2f–h), which were absent in non-mpHFOs (Figures 2i–k). 

 

HFO morphology analysis based on dataset origin, sex, age, and pathology: 

We analyzed whether HFO morphology was influenced by recording sites/type (UCLA grid/strip, UCLA 

SEEG, Detroit grid/strip), sex (female vs. male), age (0-5, 6-10, 11-15, 16-20, and 21+), and pathology (HS, FCD, 

Tumor, others). We projected latent codes of HFOs into 2D space, color-coded by subcategories (Figure 3a, c, e, 

g). A statistical test (Supplementary Method) showed there was no significant differentiation in HFO 

morphology based on dataset sources (p = 0.13), sex (p = 0.44), age (p = 0.10), or pathology (p = 0.83) (Figure 

3b, d, f, h). 

 

HFO morphology analysis based on ROIs (anatomical location): 

We analyzed whether HFOs from different anatomical locations (frontal, temporal, parietal, occipital, 

limbic) exhibit distinguishable morphologies. A latent space plot of HFOs from the preserved regions in patients 

who remained seizure-free after resection, presumably physiological HFOs, revealed a cluster from the occipital 

region (Figure 4a, b). A statistical test (Supplementary Method) showed a classifier could distinguish these 

occipital HFOs with 62% accuracy (Figure 4c). Averaged time-frequency plots showed distinct peak frequency 

and power ratios for occipital HFOs compared to other regions (Supplementary Figure 6). However, HFOs from 

the SOZ, presumably pathological HFOs, did not show significant morphological differences across anatomical 

locations (Figure 4e-h). 

 

Disentanglement of the latent space to establish neurophysiological characteristics of pathological HFOs: 

We visualized each dimension of the latent space using boxplots to compare mpHFO and non-mpHFO 

groups. Some dimensions showed different distributions between these two groups (Supplementary Figure 7). 

With the latent space interpretation, we identified a dimension that separated mpHFOs from non-mpHFOs. 

Interpolating this specific dimension resulted in generated images with increased power within the gamma band 
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and HFO band within the cone-shaped template (Figure 5a, b). At the population level, interpolating this 

dimension led to decoded images showing increased power in both the gamma and HFO bands within the cone-

shaped template region (Figure 5c, Supplementary Figure 10). Predicting these images by the inference pipeline 

demonstrated that the model confidence toward mpHFOs increased as the value of this dimension increased 

(Figure 5d). Although we identified dimensions representing beta band power and peak frequency, their latent 

space interpolation did not affect the mode confidence toward mpHFOs (Figure 5e-h, Supplementary 

Figure 11). With the time-domain perturbations on the original signals, we demonstrated that decreasing the 

frequency of the signal in the sub-HFO band (10-80 Hz) can transform a predicted mpHFO into a non-mpHFO 

(Figure 5i-k). At a population level, we observed that at least 40% of predicted mpHFO events were transformed 

to non-mpHFO after stretching the sub-HFO band horizontally by a factor of five (Supplementary Figure 12). 

Prediction of postoperative seizure outcomes using the classified HFOs:  

Using logistic regression with five-fold cross-validation, we found that the resection ratio of mpHFOs 

(AUC�=�0.64) outperformed the resection ratio of unclassified HFOs (AUC�=�0.53) and the traditional 

expert-driven classification, spkHFO (AUC�=�0.62) (Figure 6a). A multivariable logistic regression 

incorporating demographic data (age and sex) and the status of SOZ resection showed that the use of mpHFO 

resection ratio as a primary predictive variable demonstrated slightly better predictive performance than the use of 

spkHFO resection ratio (AUC�=�0.71 vs. 0.70) (Figure 6b). The random forest trained exclusively with the 

mpHFO resection ratio demonstrated better predictive performance (F1�=�0.72) compared to using unclassified 

HFOs (F1�=�0.68, p�<�0.01) and spkHFO (F1�=�0.68, p�<�0.01). It also achieved competitive 

performance compared with predictions based on demographic information and SOZ resection status 

(F1�=�0.74). Furthermore, a comprehensive model that included all features—demographic data, SOZ resection, 

and mpHFO resection ratio—achieved superior predictive power (F1�=�0.83, p�<�0.01) over models using 

traditional expert-driven HFO classification (F1�=�0.81) (Supplementary Table 2). An ablation study, in 

which we trained random forest only included patients with a higher number of HFOs, demonstrated consistent F1 

scores, underscoring the robustness of our framework (Supplementary Figure 13). 

 

DISCUSSION 

In this study, we developed and implemented a self-supervised deep learning approach to classify 

pathological HFOs in a large cohort of 185 epilepsy patients who underwent iEEG monitoring with grid or SEEG 

electrodes across various brain regions. Our approach utilized VAEs to analyze the latent space of HFOs, 

revealing distinct morphological features that differentiate pathological HFOs (mpHFOs) from their physiological 
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counterparts. A novel finding was that pathological HFOs exhibited notably high signal intensity within the HFO 

band at detection, extending across the sub-HFO band (10-80 Hz). This feature was consistently observed across 

various patient characteristics, including recording sites, pathology, and anatomical locations. Both latent space 

interpolation and time-domain perturbation further highlighted the critical role of gamma-band activity (30–80 

Hz) and the high intensity of HFO band activity in distinguishing mpHFOs from non-mpHFOs. Incorporating the 

resection status of the mpHFOs into prediction models significantly enhanced the accuracy of postoperative 

seizure freedom forecasts.  

Novel self-supervised approach solves HFO research challenges 

HFO research has long faced significant challenges, particularly in differentiating between pathological 

and physiological HFOs. Despite promising results from numerous retrospective studies,5,28 a clinical trial failed 

to demonstrate the utility of HFOs in improving postoperative seizure outcomes.29 Traditional methods that 

attempt to identify pathological HFOs, such as associating them with spike-wave discharges,30-32 suffer from 

inconsistencies in expert labeling and poor inter-rater reliability.33 Moreover, simple analyses of HFO features 

such as frequency, amplitude, and duration have been ineffective in differentiating pathological from 

physiological HFOs.14,15 While fast ripples (250–500 Hz) may more accurately delineate epileptogenic zones than 

ripples (80–250 Hz), their low sensitivity complicates the applicability.34,35 Region-specific adjustments to HFO 

detection rates offer some insight into pathological states,22,36 but cannot reliably classify individual HFO events. 

Recent studies suggest using clinical evidence, such as resection status, seizure outcomes, or functional 

mapping, to design a weakly supervised framework rather than relying on expert labels.9,10,26 As these labels are 

noisy—not all HFOs in resected areas or the SOZ are pathological—extending this weakly supervised approach 

requires a large cohort with postoperative outcomes. This approach faces challenges: as more patients undergo 

SEEG for diagnostics or neuromodulation rather than resection, data for the weakly supervised method is limited. 

Additionally, variability in defining SOZ and resected regions across institutions may introduce noise in the 

training data, impacting its applicability.11,12 

We addressed these challenges by adopting a fundamentally different, data-driven strategy using VAEs. 

Unlike prior studies that relied on training neural networks on human-annotated or weak labels,9,10,26,37-41 which 

limited scalability on large datasets and were constrained by the limitation inherent in labeling, our self-

supervised model required no such annotations. Our approach builds on the premise that pathological HFOs 

exhibit distinct morphological characteristics that are separable from physiological ones. The biological 

plausibility of this hypothesis is grounded in the fact that pathological HFOs arise from abnormal synchronous 

burst firing, whereas physiological HFOs are generated by inhibitory synchronous postsynaptic potentials7,13. 

While these differences may be too subtle for traditional signal processing techniques using macroelectrodes, our 
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VAE model was able to effectively capture and cluster these features within a latent space. These clusters 

revealed diverse HFO morphologies, enabling direct visualization and latent space interpolations that allowed us 

to interpret the model's findings. By perturbing the latent space, we identified that the combination of high 

gamma-band and HFO-band activity correlated strongly with pathological HFOs, a finding further supported by 

time-domain perturbation. 

Our results are compelling, as our deep generative model identified pathological HFOs with features 

commonly recognized by experts, such as spikes, without relying on subjective "spike" annotations. The 

identified pathological HFOs were primarily localized around the SOZ, even though the model was trained 

without SOZ labels. The model objectively revealed increased signal activity in the HFO and gamma bands. The 

gamma-band EEG signals seemed to emerge as spike-like EEG activity (gamma-spike) in time series data.42,43  

Clinical implications 

Our findings provide clinically significant insights. Incorporating the resection ratio of mpHFOs into 

predictive models greatly improved accuracy in forecasting postoperative seizure freedom, outperforming 

traditional approaches. Our results are consistent with a recent international multicenter study analyzing 109 

subjects, demonstrating that the removal of brain regions with HFOs with spikes (spike ripples) correlated better 

with postoperative seizure outcomes than the removal of unclassified ripples, fast ripples, and spikes.44 Moreover, 

the potential clinical utility is evident as the use of resection ratio of mpHFOs achieves the same performance as 

the current clinical standards regarding the removal status of SOZ in predicting postoperative outcomes. The 

mpHFOs can be analyzed from short interictal EEG data, offering the potential to reduce the duration of EEG 

monitoring, hospital stays, and associated costs for the patient. Furthermore, combining the resection status of the 

SOZ with the proportion of mpHFO resection further enhanced the prediction, suggesting an additive effect when 

mpHFOs are combined with the current clinical standard. 

Another notable discovery was that non-pathological HFOs originating from the occipital lobe displayed 

distinct morphological features compared to HFOs from other brain regions. Physiological HFOs were reportedly 

abundant in the occipital lobe45,46 and also showed distinct coupling with slow waves.47 This study added essential 

findings in the literature to establish the unique morphology of HFOs originating in the occipital lobe. These 

findings could potentially overcome the limitation faced by the HFO trial, which necessitated the exclusion of 

subjects with occipital lobe epilepsy due to the likelihood of abundant physiological HFOs in such patients.29  

Limitations and further work 

While our results are promising, several limitations should be considered. First, the study was conducted 

using macroelectrode recordings, which may not fully capture the fine-grained neurophysiological mechanisms at 
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the single-neuron level. Although our cohort included 185 patients, only 18 were monitored with SEEG, limiting 

our ability to sample from deeper brain areas. With more balanced coverage of both superficial and deep areas, 

network analysis to account for HFO propagation may provide better accuracy in the prediction of postoperative 

surgical outcomes.48 Additionally, the study focused primarily on pediatric patients, so expanding the adult 

population is needed for generalization. The EEG data consisted mostly of short, five-minute recordings, typically 

around five minutes from the initial night during sleep, with a sampling frequency limited to 1,000 Hz (Detroit 

dataset), which restricted fast ripple (250–500 Hz) analysis. Although our results suggest that the peak frequency 

of HFOs did not affect pathological classification, further investigation of the fast ripple band will be needed. 

Longer, multi-day recordings might reveal HFOs with potentially varying morphologies over time.49 The 

vigilance state should also be considered,50 as morphological differences between various sleep stages and 

wakefulness remain under-investigated. Finally, our sample size may not fully capture subtle HFO morphology 

differences across epilepsy pathology subtypes, such as focal cortical dysplasia or tumors. 

Our data and analysis code are now publicly available to enable other research groups to replicate our 

findings. Moving forward, we plan to collaborate with additional institutions to test the generalizability of our 

approach. As we establish definitions for pathological HFOs across different anatomical regions, this data can be 

integrated with other modalities, such as neuroimaging, to guide surgical resections and neuromodulation 

strategies. 
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FIGURE LEGENDS 

 

Figure 1. Study flow. (a) Spatial distribution of intracranial electrodes: Electrode contact locations within the 

standardized MNI brain space from various views (Lateral Left, Lateral Right, Anterior, Posterior). (b) 

Variational Autoencoder (VAE) training: Time-frequency plots representing HFOs serve as input into the VAE, 

which outputs a reconstructed image. The VAE's encoder generates a latent distribution of mean and variance 

while the decoder reconstructs the time-frequency plot from a sampled latent vector from the distribution. The 

loss function is a combination of perceptual loss (to capture morphological differences) and KL divergence 

(measuring the latent distribution's deviation from a normal distribution). (c) HFO classification pipeline: A two-

stage, morphology-based classification process uses Gaussian Mixture Models (GMMs) for unsupervised learning. 

The first stage identifies artifacts (mArtifact) by latent codes and reconstruction loss; the second stage 

distinguishes putative pathological HFOs (mpHFOs) cluster; the cluster with a higher resection percentage in 

seizure-free patients after resection was deemed pathological. This process trains two unsupervised classifiers to 

be used on the test set. (d) Interpretability analysis. Left: Latent space clustering, visualized via t-SNE, groups 

clinically relevant HFO classes, facilitating interpretation through consistency with the HFO classification. Right: 

Dimensional interpolation in latent space discovers specific neurophysiological features in reconstructed images, 

providing a bridge between clinical insights and the VAE's feature representations. 

 

Figure 2. Characterization of pathological HFOs (mpHFOs) based on the self-supervised VAE algorithm. 

(a). Projected latent space, color-coded by predicted results (mpHFO, non-mpHFO, and mArtifact) from VAE-

based HFO morphology inference pipeline on one fold, shows the 2D projected eight-dimensional latent codes by 

the t-SNE. (b). The same latent space is color-coded by conventional HFO classification (spkHFO, non-spkHFO, 

and artifact). (c) HFO rates (number of HFO detections [count/channel/min]) of mpHFO and non-mpHFO are 

plotted in box plots based on the location (SOZ versus non-SOZ) across three datasets (outliers were removed for 

better visualization quality). The rate of mpHFO (count/channel/min) was higher in the SOZ than in the non-SOZ. 

The rates of non-mpHFOs (count/channel/min) did not differ between the SOZ and non-SOZ (*:p�<�0.05; **: 

p�<�0.01; ***: p�<�0.001). (d)  Morphological analysis of the time-frequency plot for an example subject in 

Detroit grid/strip, UCLA SEEG and UCLA grid/strip datasets. The pathological counterparts (mpHFOs) have 

higher values throughout the HFO band (> 80 Hz), around the center point (0�ms, where HFOs were detected) 

than non-mpHFOs; furthermore, higher values of mpHFOs at the sub-HFO band (10-80 Hz) throughout the time 

window compared to non-mpHFOs are exhibited. (e) The overall template (mean) of all subjects resembles a 

"cone-shaped" (pixel comparisons that were significantly higher in mpHFOs than non-mpHFOs in more than 50% 

of patients were colored orange). (f) Time-frequency plot of an example predicted mpHFO. (g)  EEG tracing of 

the same mpHFO with the detected HFO part colored in red. (h) EEG tracing bandpassed between 10 and 80 Hz 
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of the same mpHFO with HFO detection colored in red. (i/j/k) An example predicted non-mpHFO presented in 

the same fashion as the mpHFO example. Note the presence of a spike-wave activity in EEG in the mpHFO but 

not in the non-mpHFO. 

 

Figure 3. Investigating potential heterogeneity of HFO morphology based on variables. (a) Visualization of 

the latent space for HFOs, color-coded by different recording sites/types (UCLA SEEG, UCLA grid/strip, and 

Detroit grid/strip) on one fold. (b) Across five-fold, the classifiers trained using the actual recording sites/type 

labels (Real) did not show significantly better accuracy than those trained by using the permuted labels (Random). 

(c) Visualization of the latent space for HFOs color-coded by different sexes (male and female) on a specific fold. 

(d) Across five-fold, the classifiers trained using the actual sex labels (Real) did not show significantly better 

accuracy than those trained by permuted labels (Random). (e) Visualization of the latent space for HFOs color-

coded by different age groups (0-5, 6-10, 11-15, 16-20, and 21+) on one fold. (f) Across five-fold, the classifiers 

trained using the actual age group labels (Real) did not show significantly better accuracy than those trained by 

label permuted data (Random). (g) Visualization of the latent space for HFOs color-coded by different 

pathologies (HS, FCD, Tumor, and Others) on one fold. (h) Across five-fold, the classifiers trained using actual 

pathology labels (Real) did not show significantly better accuracy than those trained by label-permuted data 

(Random).  

 

Figure 4. Morphological investigations of HFOs from various anatomical regions. (a) Visualization of the 

latent space for HFOs from preserved brain regions of post-surgical, seizure-free subjects, color-coded by 

anatomical locations (frontal, temporal, parietal, occipital, and limbic regions) on one fold. (b) Across five-fold, 

the classifiers trained using actual anatomical location label (Real) showed significantly better (p = 6.67e-10) 

accuracy than those trained by permuted label (Random) (Real mean=0.286, std= 0.046, Random mean = 0.230, 

std= 0.033). (c) Averaged confusion matrix on the test set across five trials and five-fold (n=25 trials) using actual 

anatomical locations for HFOs from preserved brain regions of subjects who achieved postoperative seizure 

freedom. Note that HFOs from the occipital region were distinguishable. (d) Averaged time-frequency plots for 

each anatomical location for HFOs from each brain region. Note that HFOs from the occipital region exhibited 

distinct features on the time-frequency plot. (e) Visualization of the latent space for HFOs from SOZ channels, 

color-coded by anatomical locations. (f) Across five-fold, for HFOs from SOZ channels, the classifiers trained 

using the anatomical location label (Real) did not show significantly better (p = 0.090) accuracy than those trained 

by permuted label (Random) (Real mean=0.241, std=0.043, Random mean = 0.23, std=0.027). (g) Averaged 

confusion matrix on the test set across five trials and five-fold (n=25) using actual anatomical locations for HFOs 

from SOZ channels. Note that HFOs from the SOZ were indistinguishable from any anatomical origin. (h) 
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Averaged time-frequency plots for each anatomical location for HFOs from the SOZ channels. Note that HFOs 

from the SOZ exhibited similar features within time-frequency plots across the anatomical regions.  

 

Figure 5. Disentanglement of the latent space to establish neurophysiological characteristics of pathological 

HFOs (mpHFOs). (a) Pathological dimension visualization. This panel illustrates the VAE-identified latent 

dimension, which enables separation between mpHFOs and non-mpHFOs. (b) A traversal from the lower to the 

upper percentile of this dimension revealed morphological evolution from non-mpHFO to mpHFO characteristics 

for both mpHFO (orange) and non-mpHFO (blue) representatives in the decoded output, depicted in the image 

sequence. (c) Power trend within the pathological dimension at the population level. The box plot aggregates the 

percentage of power in the gamma band and HFO band (> 30Hz) within the designated pathological template (the 

cone-shaped) region of decoded images, showing an ascending trend with higher values, as indicated by the fitted 

median line. (d) Distribution of model probability scores for each sample. The red circles indicate the mean 

probability scores, showing increased confidence in the model as the value of the pathological dimension 

increases. (e) Beta band dimension visualization. This latent space represented the beta-band component of HFOs 

at 10-30 Hz, separated by mpHFO and non-mpHFO prediction. (f) The output of the decoder traversing the 

dimension, displayed in the image sequence, showed an increased trend in beta band power from lower to upper 

percentiles of the value of that dimension. (g) At the population level, the box plot demonstrated a positive 

correlation between beta band dimension values and beta band power within a cone-shaped template in decoded 

images, with a line fit illustrating the median trend. (h) Model probability scores distribution corresponding to 

each sample, where the mean of the probability marked as red circles, showed the average confidence of 

perturbed events was around 0.5. (i) An example of predicted mpHFO tracing, with corresponding time-frequency 

plot, with PmpHFO =0.983, (j) By stretching the signal in the subHFO band (10-80 Hz) by a factor of 3, the 

confidence of mpHFO went down to 0.411. (k) Further stretching the signal in the subHFO band by a factor of 5, 

this event becomes more toward non-mpHFO with PmpHFO =0.273. 

 

Figure 6. Clinical validation:  resection status of pathological HFOs (mpHFOs) helps predict postoperative 

seizure outcomes. (a) AUCs (area under the curve) of logistic regression (a single-variable classifier) using 

resection ratios as a variable to predict postoperative seizure freedom are shown based on different types of HFO 

resection ratios: HFO (unclassified HFO detection), spkHFO (HFO with spike), and mpHFO (pathological HFO 

defined by the VAE algorithm). (b) AUCs from multivariable logistic regression models with different types of 

HFO resection ratios as the main predictive variable while incorporating subject-wise demographic information 

(baseline demographics: age and sex) are shown. As an additional predictive variable, the resection status of SOZ 

was also included. Note that combining the baseline demographics (base), SOZ resection status (soz), and 

resection ratio of mpHFO (mpHFO) provided the most favorable performance (base.+soz+mpHFO, AUC=0.71). 
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(c) The mean F1 scores (F1) and standard error of the mean for the random forest models, trained on the training 

subjects using five-fold cross-validation and evaluated on the test subjects across the five folds and using different 

features, are shown. Note that the resection ratio of mpHFO achieved a competitive predictive performance 

compared to the current clinical standard (SOZ resection status). By combining all the features (baseline 

demographics, mpHFO resection ratio, and SOZ resection status), the model achieved high performance with an 

F1 score of 0.832. 
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Table 1: Patient Demographics 
    UCLA Detroit All 

Number of patients 50 135 185 
Median age in years (range) 14.5 (2-28)  12.0 (4-44)  13 (2-44) 
Proportion of female (%) 24 (48.0%) 67 (49.6%) 91 (49.2%) 
Proportion of grid case (vs. SEEG)  (%) 32 (64.0%) 135 (100.0%) 167 (90.3%) 
Sampled hemisphere (%) 

  Left 21 (42.0%) 61 (45.19%) 82 (44.3%) 
Right 11 (22.0%) 51 (37.78%) 62 (33.5%) 
Both 18 (36.0%) 23 (17.04%) 41 (22.2%) 

Seizure onset zone 
  Frontal 24 42 66 

Temporal 16 63 79 
Parietal 22 49 71 

Occipital 4 23 27 
Limbic 18 59 77 

Patients who underwent resection# 27 (54.0%) 135 (100%) 162 (87.6%) 

Patients with postoperative seizure-freedom (%)# 18 (66.7%) 95 (70.4%) 113 (69.8%) 
Pathology (%)* 

  Focal cortical dysplasia 18 (66.7%) 49 (36.3%) 67 (41.4%) 
Hippocampal sclerosis 0 (0.0%) 11 (8.15%) 11 (6.8%) 

Tumor 3 (11.1%) 28 (20.74%) 31 (19.1%) 
Others 6 (22.2%) 47 (34.81%) 53 (32.7%) 

*Pathology was considered only in resected patients. 
  #Only three patients in SEEG were resected. Therefore, they were excluded from the outcome analysis. 
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Table 2: Spatial distribution of intracranial electrode sampling 

Region of Interest (ROI) 

No. of 
contacts 

Left 

No. of 
contacts 

Right 

No. of 
contacts 

Total 

Proportion 
of Grid 
contacts 

(%) 

Proportion 
of SEEG 
contacts 

(%) 

No. of 
SOZ 

contacts 

No. of non-
epileptogenic 

contacts* 

HFO rate 
at SOZ 
(/min)# 

HFO rate at 
non-

epileptogenic 
contacts (/min)# 

Frontal: 3197 3074 6271 95.39 4.61 437 3015 3.60 1.08 

caudal middle frontal 477 400 877 97.38 2.62 52 442 2.77 1.10 

frontal pole 2 11 13 100 0 1 3 NA NA 

paracentral 71 99 170 98.82 1.18 12 93 5.68 1.31 

pars opercularis 325 203 528 95.27 4.73 33 292 3.14 1.31 

pars orbitalis 137 162 299 97.99 2.01 31 118 2.24 1.28 

pars triangularis 265 295 560 92.32 7.68 51 256 3.09 1.05 

precentral 920 797 1717 95.92 4.08 71 962 6.35 1.03 

rostral middle frontal 613 629 1242 95.09 4.91 116 517 2.84 1.04 

superior frontal 387 478 865 93.18 6.82 70 332 3.26 1.00 

Temporal: 2707 2128 4835 93.9 6.1 464 1864 2.99 1.05 

fusiform 481 391 872 97.82 2.18 108 360 2.56 1.02 

inferior temporal 469 395 864 97.11 2.89 92 302 3.76 1.06 

middle temporal 720 526 1246 89.41 10.59 99 469 2.51 0.98 

superior temporal 876 652 1528 92.87 7.13 115 639 3.35 1.04 

temporal pole 158 154 312 100 0 46 94 2.74 1.52 

transverse temporal 2 10 12 16.67 83.33 4 0 NA NA 

Parietal: 2231 1936 4167 96.02 3.98 393 1933 5.40 1.22 

inferior parietal 314 353 667 95.95 4.05 81 215 3.67 1.19 

postcentral 832 661 1493 97.19 2.81 91 806 7.17 0.94 

precuneus 137 142 279 96.42 3.58 31 144 4.91 1.14 

superior parietal 237 173 410 92.2 7.8 48 142 4.42 1.54 

supramarginal 711 607 1318 95.83 4.17 142 626 5.83 1.44 

Occipital 806 670 1476 98.98 1.02 135 653 3.19 0.81 

cuneus 79 62 141 100 0 17 60 4.04 0.87 

lateral occipital 504 356 860 98.84 1.16 78 365 3.13 0.87 
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lingual 219 249 468 99.79 0.21 40 226 2.95 0.68 

Limbic 808 708 1516 82.19 17.81 241 495 2.07 1.28 

hippocampus 32 28 60 0 100 9 7 1.65 1.23 

amygdala 18 14 32 0 100 0 4 NA NA 

caudal anterior cingulate 26 28 54 55.56 44.44 5 18 3.51 0.66 

entorhinal 164 169 333 99.7 0.3 83 89 1.86 2.15 

insula 40 52 92 0 100 17 21 1.22 0.63 

isthmus cingulate 66 59 125 97.6 2.4 8 55 0.73 1.62 

lateral orbitofrontal 226 179 405 94.81 5.19 50 155 2.42 1.09 

medial orbitofrontal 49 36 85 94.12 5.88 8 37 1.66 1.25 

parahippocampal 104 80 184 96.2 3.8 44 57 1.69 1.37 

posterior cingulate 68 48 116 89.66 10.34 10 49 4.77 0.93 

rostral anterior cingulate 15 15 30 56.67 43.33 7 3 2.67 NA 

*Non-epileptogenic contacts were defined as EEG contacts covering spared brain regions in patients who achieved postoperative seizure freedom   

# ROIs with contacts less than 5 were removed from the analysis 
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