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4

1Institut de Fı́sica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain5

2DIME, University of Genova, via all’Opera Pia 15, 16145 Genova, Italy6

3INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova, Italy7

4i2CAT Foundation, Edifici Nexus (Campus Nord UPC), Barcelona, Spain8

5Serra Húnter Fellow, Departament de Fı́sica, Universitat Autònoma de Barcelona, Bellaterra, Spain9
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ABSTRACT13

During the COVID-19 pandemic, effective public policy interventions have been crucial in combating virus transmission,
sparking extensive debate on crisis management strategies and emphasizing the necessity for reliable models to inform
governmental decisions, particularly at the local level. Leveraging disaggregated socio-demographic microdata, including social
determinants, age-specific strata, and mobility patterns, we design a comprehensive network model of Catalonia’s population
and, through numerical simulation, assess its response to the outbreak of COVID-19 over the two-year period 2020-21. Our
findings underscore the critical importance of timely implementation of broad non-pharmaceutical measures and effective
vaccination campaigns in curbing virus spread; in addition, the identification of high-risk groups and their corresponding maps
of connections within the network paves the way for tailored and more impactful interventions.
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Introduction16

The COVID-19 outbreak shed light on the critical role of timely and well-informed policy decisions in managing and mitigating17

the spread of infectious diseases. The challenge that policymakers have to face in an interconnected, global society is to find the18

correct balance between the economic and social impacts, together with psychological implications, of various interventions19

and public health considerations. Policies need to be adaptive, responding to quickly changing circumstances and emerging20

information. In this context, the significance of highly customizable simulations of epidemic models becomes evident: they21

provide not only valuable insights about the outbreak dynamics but also a versatile platform to promptly test scenarios in which22

different explicit containment measures (e.g., selective lockdowns, restrictions on specific mobility patterns, group-oriented23

vaccination campaigns) are put in place.24

Mathematical modelling of sophisticated social environments can be consistently achieved within the framework of agent-25

based models (ABMs), computational models that simulate the emergent behaviour of complex networks starting from the26

structure of the interactions between the individual entities (the agents) of the system. Agents behave and interact with other27

agents and the environment in certain ways that would produce emerging effects that may differ from the effects of individuals.28

Concerning public health, this can be intuitively understood as the study of the spread of a certain disease – or, more in general,29

of unhealthy behaviours – in a community as a result of the demographic characteristics of single individuals and their social30

relations. The (abstract) control of the behaviour of each agent allows the evaluation of the response of the network to a given31

change and a relatively simple playground to identify the groups, or the links in the social network, where interventions could32

have the greatest impact1.33

Epidemic ABMs can in principle provide a set of solution-focused tools to single out the most effective among various34

containment strategies. However, the robustness of the outcome of a simulation compared with the real spatiotemporal35

evolution of a disease is tightly entangled with the quality and volume of available socio-demographic data. To be realistic, the36

ABM-based simulation should rely on a network whose characteristics and properties reproduce, as closely as possible, the37

actual population. This implies having access to up-to-date granular repositories with high-resolution individual data, which,38
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unfortunately, are not always available, rarely ready-made, and seldom public. Socio-demographic data provides a snapshot of39

the substratum in which the disease may propagate. The disease itself with its bio-medical characteristics plays as well a key40

role. This information must be incorporated in any attempt to spread modelling.41

In this paper, we use real, disaggregated census and mobility data of the population of Catalonia with its ∼8M people to42

build a network model and simulate the sequence of events that characterised the natural history of COVID-19 in Catalonia. To43

the best of our knowledge, our census dataset (including over 120 socio-demographic variables for a representative sample of44

600k single agents in Catalonia) is one of the largest, raw datasets ever used to this scope.45

The COVID-19 pandemic unfolded across the globe in early 2020, creating widespread disruptions in our societies. Many46

countries faced recurring waves of the virus, particularly intense in the initial two to three years. Stringent initial lockdown47

measures were followed by extensive vaccination campaigns that, together with the evolution of the virus into less deathly48

variants helped in restoring the situation to a level manageable by national health systems. Nevertheless, even four years later,49

new strains of the virus continue to circulate, posing ongoing challenges. Our time scope, which includes years 2020 and50

2021, did not require us to consider evolving viruses and multi-strain overlapping waves, but ABMs allow relatively easy51

implementation of such an effect when necessary.52

In a first paper2, we focused on the province of Barcelona, employing an ABM to track the contagion that originated from a53

small set of randomly chosen infected individuals in early 2020. Residence location, household structure, employment situation,54

and mobility routines, along with the resulting pattern of contacts, including incidental contacts such as those arising in public55

transportation or due to increased social activities during holidays, were inferred from detailed, disaggregated census data56

and information supplied by mobile network operators. The evolution of the disease in the host and its intensity were taken57

to be age-dependent and modelled according to the first observations available at the time. In the first phase of our work, we58

successfully reproduced the curve of diagnosed cases in 2020, highlighting the distinct characteristics of the two main waves59

based on individuals’ age and place of residence.60

In the current simulation, covering both 2020 and 2021 across all four provinces of Catalonia, several improvements and61

additional features have been introduced. Notable enhancements include accounting for the impact of vaccination campaigns62

with different vaccines and a strongly age-dependent vaccination timeline. The wave patterns as revealed by epidemiological63

data varied among provinces due to differences in mobility, contacts, and the presence of distinct population groups affecting64

the disease propagation. Health personnel, residents in long-term care facilities, and workers in nursing homes have been65

treated separately given their roles during the outbreak. With these refinements, we have been able to simulate the five waves66

that occurred in 2020-21; we underscored the pivotal roles of lockdown measures and the vaccination campaign in controlling67

the pandemic and delved into the potential impact of different vaccine characteristics and vaccination timelines.68

Methods69

The Basic Health Area (known as Àrea Bàsica de Salut, or ABS, in Catalan) serves as the fundamental territorial unit used by70

the Catalan Health Department for the organization of primary healthcare services in Catalonia3. Typically, each ABS caters to71

approximately 20,000 individuals and is linked to its respective network of hospitals and health proximity centres. Catalonia72

is home to 374 such areas, distributed across its four provinces, as depicted in Figure 1. The demarcation of these areas is73

influenced by a combination of factors, including geography, demographics, and social dynamics. Notably, close to major cities,74

especially Barcelona, ABS areas tend to be more compact with a higher population density.75

By integrating census data aggregated at the ABS level and daily mobility information between ABSs, we constructed a76

comprehensive model capturing realistic patterns of contacts and movements related to both work/school and social activities77

for the entire population. Healthcare system data on the daily counts of COVID-19 cases are used to calibrate our simulation.78

Information on the extensive vaccination campaign against COVID-19 launched in 2021 is also included.79

Census data80

The “Cens de Població”, or population census, which provides socio-demographic information by categorizing the Catalan81

territory into 5,107 census sections, was made available upon request by the Spanish National Statistics Institute (Instituto82

Nacional de Estadística, INE4). The latest available census (2011) contains detailed information on around 10% of the83

population, covering aspects such as housing, education, work, family structure, etc. Considering the effective weight of each84

of these individuals, the dataset yields insights into the 7,472,937 inhabitants of Catalonia at that time. The original 2011 set85

has been reorganized to match the ABS structure (see Section 1 of the Supplementary Material (SM) for further information).86

The census used for population reconstruction lacks information on individuals aged 65 years and above residing in nursing87

facilities. To address this gap, we consulted the list of 1,002 official long-term care facilities established in 2019, incorporating88

details on available spaces therein5. The age distribution among the elderly residing in these facilities displays an almost89

symmetrically inverse pattern compared to those in family dwellings6. The oldest individuals among the elderly predominantly90

reside in residential care facilities, while the younger ones live in private homes. An additional segment was introduced into the91
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Figure 1. Map of Catalan ABSs. The map displays the 374 ABSs across the Catalan provinces of Barcelona, Girona, Lleida,
and Tarragona (thick black lines); each ABS is depicted by a color code corresponding to its population size.

census file to accurately represent this specific demographic. Considering the average occupancy rate of nursing facilities at92

86%7 and their respective locations, we reconstructed the demographic profile for an estimated population of 53,000 individuals93

residing in these homes. Ages were randomly assigned to individuals based on the overall age structure.94

Additionally, during the summer season, Catalonia experiences an influx of temporary workers in the agricultural sector,95

with the province of Lleida hosting the largest proportion (see Section 1.2 in SM). We created an additional segment of the96

census file with over 4,000 temporary workers randomly assigned to mock farming companies. They reside in the same ABS as97

their workplace, share housing and are assigned social contacts like the rest of the population.98

We devote special attention to two specific categories of sanitary workers (see Section 2.2 in SM). Sanitary workers engaged99

in geriatrics are estimated to be around 34,000, and sanitary workers operating in hospitals in close contact with infected100

patients at approximately 18,000.101

Healthcare system data102

We obtained comprehensive and anonymized data on the daily counts of COVID-19 cases, hospitalizations, intensive care103

unit (ICU) admissions, and deaths through the Program of Data Analysis for Research and Innovation in Health (“Programa104

d’Analítica de Dades per a la Recerca i la Innovació en Salut”, PADRIS8). PADRIS operates under the auspices of the Agency105

for Health Quality and Assessment of Catalonia (“Agència de Qualitat i Avaluació Sanitàries de Catalunya”, AQuAS9). The106

data consist of two sets covering the period 2020-21: one providing the clinical history of individuals testing positive at least107

once (taken as a reference), and another with aggregated data by ABS and five-year age intervals. The latter includes details on108

the number of positive and negative test results, as well as information about the vaccination campaign categorized by age109

interval, along with specific details for nursing homes and healthcare workers.110

Figure 2 illustrates the daily record of COVID-19 cases detected through PCR tests for the reference set. The data exhibit111

weekly fluctuations in the number of registered cases. These dips primarily result from reduced healthcare staffing and patients’112

reluctance to seek medical attention for mild symptoms during weekends, leading to lower daily case counts across Catalonia.113

A noteworthy aspect is a disparity of approximately 10% between the two data sets, arising from their collection from different114

databases and variations in anonymization criteria. We recognize this as a systematic uncertainty in our analysis.115

Mobility116

In this study, we leverage two sets of processed mobility data sourced from the INE and from the Barcelona Supercomputing117

Center (BSC)10. Both datasets are derived from the analysis of the same raw data, detailing the positions of 80% of mobile118

phones with Spanish numbers over time, offering insights into population movements. Both studies quantify mobility based on119

trips between origins and destinations, with a minimum duration of 2 hours for INE and 20 minutes for BSC. INE attributes120

weekday mobility to work activities and weekend mobility to leisure activities. In contrast, BSC captures both work and leisure121
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Figure 2. COVID-19 data in Catalonia. Total number of diagnosed people with PCR tests in Catalonia split by age categories:
less than 15 years old, from 15 to 64 years old, and older (65+y) living at home. In the inset, people older than 64 years old
living either at home or in nursing facilities, as well as nursing facilities and hospital workers, are shown.

trips during both weekdays and weekends. BSC employs a general approach to project data across different geographical layers,122

going from higher granularity (mobility areas ranging from districts to municipalities depending on the density of population)123

to lower granularity (such as, in order, municipalities, ABSs, provinces, etc.). The highest precision is achieved by weighting124

the information based on the number of inhabitants, available in the form of a 1 km2 grid from GEOSTAT11. In this work we125

use the mobility data from the BSC projected on the ABSs and those from the INE averaged for all of Catalonia.126

Figure 3 illustrates the weekly evolution relative to a pre-COVID-19 reference week for both sets of data aggregated127

over Catalonia. The mobility variation pattern is correlated between the two datasets and shows a consistent alignment with128

lockdown measures and holiday periods, as previously explored in our study2 and discussed by BSC12. While the level of129

mobility is similar for work/school activities, there are notable differences in leisure activities. BSC conducted a comparative130

analysis of their data with that of INE10. On average, BSC reports approximately ten times more trips than INE: the difference131

has to be traced back to the two distinct definitions of trips previously detailed, requiring longer stays in the case of INE. The132

correlation remains robust, with a Pearson’s coefficient close to one when aggregating over larger areas like Catalonia, but133

slightly diminishes to about 0.8 when comparing data from smaller geographic areas.134

The ratio between the average daily mobility derived from BSC and INE datasets is close to one for work activities but135

increases to around two for leisure activities. Moreover, in correspondence with the outbreak peaks (periods characterized by136

stricter lockdown measures), the ratio tends to be higher, indicating a more pronounced reduction in longer trips compared137

to shorter ones (see SM Figure S.2). Our model incorporates mobility information in two fundamental ways: firstly, to138

approximate the impact of containment measures on people’s contact patterns, and secondly, to delineate various population139

characteristics, as elucidated in the next sections. We hypothesize that a decrease in mobility corresponds to a reduction in the140

viral load to which individuals are exposed, although the precise effectiveness of this reduction remains uncertain. To address141

this uncertainty, we have introduced a calibration factor matched to data that translates the level of mobility into an estimate of142

the reduction in effective viral load, which in the case of leisure activities depends on the level of restrictions.143
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Figure 3. Mobility Evolution. The average daily mobility in Catalonia for (a) work/school activities and (b) leisure activities
during weekdays and weekends, from INE and BSC analyses. Shaded vertical bands highlight periods of varying mobility
restrictions, corresponding to the first, second, and fourth/fifth waves of the pandemic.

Workplaces, schools, and places for leisure activities144

Each member of the population is assigned a workplace or a school/university, if applicable, as well as a location for leisure145

activities based on their age and information obtained from the census. Census data provide insights into the occupational146

category of individuals, which we categorize into six sectors: primary sector, industry, construction, services, education, and147

healthcare. IDESCAT13, drawing from data in the “Directori central d’empreses” (DIRCE)14, furnishes details about the size148

and distribution of companies per sector. Schools typically consist of 30 classes of varying sizes, depending on age (0-18y)149

(see ref.15 and table S.11). Synthetic schools are established per ABS to accommodate the corresponding number of pupils150

living therein. University campuses are established based on official data regarding the location and the registered number of151

students16. Similarly, nursing homes and hospitals are created according to their respective locations and bed capacities5, 17.152

We use mobility data to discern patterns of movement between different ABSs for work/school and leisure activities. For153

trips from home to work, we identify, for each ABS, the corresponding list of target work ABSs ranked by frequency and154

distance. Census data provide information on the duration it takes for individuals to commute to work (or for children to travel155

to school), as well as their mode of transport. This is translated into distance, and a destination ABS could be in principle156

chosen accordingly. In the case of work/school, we distinguish two cases: companies for which the exact ABS and size are157

known (e.g. universities or residencies) and those for which these data are not known. In the first case, we assign the company158

to workers according to distance; otherwise, we use census data to simulate a geographical distribution of businesses and159

educational institutions, and accommodate the list of workers of the corresponding ABS. ABSs visited for leisure activities160

during weekdays and weekends are allocated to single individuals based on the ABSs list provided by mobility data.161

The BSC data enables monitoring of the total population residing in ABSs over time. Significant population movements162

are observed during the summer, with approximately 0.4 million people departing from Barcelona to visit Mediterranean163

coast resorts and other destinations. This is factored into the simulation, resulting in adjustments to the set of leisure contacts164

accordingly.165

Vaccines and vaccination campaign166

In 2021, Spain launched an extensive vaccination campaign against COVID-19. The campaign commenced in January, priori-167

tizing healthcare workers, followed by subsequent rollouts organized by age groups from oldest to youngest8, 13. Participation168

in the vaccination drive was voluntary, and the level of uptake was notably high, exceeding 90% for individuals over 45 years of169

age, albeit slightly lower among younger demographics. Children under 12 were not eligible for vaccination.170

The campaign administered four different vaccines belonging to two types: mRNA-based vaccines including Pfizer-171

BioNTech18 and Moderna19, and viral-based vaccines such as AstraZeneca20 and Janssen21. While the majority of individuals172

received mRNA-based vaccines, those in the 60-69 age group were primarily vaccinated with viral-based vaccines. The173

vaccination process typically involved administering a first dose followed by a second dose one month later (or two months for174

viral-based vaccines), followed by a booster dose six months later. Figure 4 illustrates the vaccination profile, depicting the175

distribution of first, second, and eventual third doses across the entire population, as well as aggregated within various age176

categories, according to PADRIS data.177
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Figure 4. 2021 vaccination campaign in Catalonia. (a) Time profile of vaccination campaign in 2021: the first dose started
to be administered in January, the second dose one month later and the third dose six months later. (b) Administration of the
first dose, (c) second dose, (d) third dose, by age category.

The effectiveness of the vaccines is inferred from published data22. Figure 5 delineates the two effects of the vaccine178

considered in the simulation: the reduction of the probability of infection and the attenuation of symptoms with a corresponding179

decrease in viral load emission. For mRNA-based vaccines, the efficacy (contagion probability reduction) stands at 47% after180

one dose and rises to 92% after two doses. This effectiveness remains stable for four months before gradually declining to181

47% during three months. On the other hand, viral-based vaccines exhibit 40% efficacy after one dose, increasing to 76% after182

two doses. This efficacy remains steady for three months before decreasing to 40% during three months. All booster doses183

administered are of the mRNA type, reinstating efficacy to 92%, which remains constant throughout the simulation period.184

Additionally, the reduction in viral load shedding, associated with symptom alleviation and disease severity, results in a 10%185

reduction for every administered dose23.186

Tables S.8 and S.13 in the SM provide comprehensive insights into the model for the vaccination campaign – encompassing187

age categories, vaccine types, initiation dates, intervals between doses, and population coverage for each dose –, as implemented188

by default in the simulation. Each age category required approximately 40 days for complete vaccination. Since details189

regarding the administration of the third booster dose are lacking, we presume that individuals who received two doses190

eventually received a third. This assumption underpins the simulation’s continuity and ensures a comprehensive representation191

of vaccination dynamics. We have tested several scenarios, exploring diverse vaccine efficacies and timelines of administration192

to assess their impact on outbreak evolution.193

Model design for the COVID-19 spread194

In our model, each individual in the population of Catalonia is assigned to one (and only one) of the following compartments at195

any given time: susceptible, exposed, infected, diagnosed, dead, recovered, and immune (note that in our model we do not196

include traditional births dynamics). When susceptible individuals come into contact with infected persons, their state may197

transition to exposed based on the probability198

P = 1− e−λi·F i
EfficiencyVaccine(t)·∆t

. (1)
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Figure 5. Effects of vaccine. The vaccine has two effects: (a) Reduction of contagion probability due to vaccine. The
reduction of probability of becoming infected is shown for two cases: a single dose of vaccine, and three doses of vaccines for
Pfizer/Moderna and AstraZeneca/Janssens. (b) Moderation of the infectious process with the corresponding reduction of viral
load emission.

Here, the force of infection, λi, represents the total viral load a single individual i is exposed to per unit time (day).199

F i
EfficiencyVaccine(t) denotes the reduction in the risk of infection resulting from vaccination, and ∆t is the time interval (1/3 day).200

A comprehensive mathematical description of the estimate of λi is given in Section 2.1 of the SM. Here we will limit the201

discussion to a general description of the computational strategy.202

The total viral load exposure λi is a composite of exposures occurring throughout the day across various settings. It203

primarily encompasses contributions from three distinct eight-hour intervals corresponding to an individual’s time spent at204

home, work, or school, and engaging in social activities. To compute λi, we calculate the viral load emitted by every individual205

and multiply by matrices describing the network of contacts. Additional contributions are considered for individuals using206

public transportation or visiting particularly crowded areas during their daily routines (for example, tourist areas during summer,207

or commercial areas during season holidays). In that case, to compute λi, we estimate the average viral shedding of people208

involved in these activities or encountered within these settings, modulated by ABS-dependent mobility. We then multiply by209

the number of estimated contacts, e.g. during a typical trip in public transport, or the number of additional contacts during210

leisure activities (the latter are ABS-dependent and typically higher in summer coastal resorts or tourist areas of Barcelona).211

Details about relative contributions are given in Section 5 of the SM.212

After the exposure, our population model considers personalized disease progression for each individual, with characteristics213

such as age-dependent symptoms and viral shedding levels (a survey of the epidemiological data used in the model is available in214

a previous publication2). These factors influence other outcomes, such as the likelihood of diagnosis or hospitalization. Infected215

individuals are classified based on symptoms (symptomatic or asymptomatic) and viral shedding intensity (strongly infectious,216

moderately infectious, or non-infectious). Three key combinations emerge: asymptomatic non-infectious (ANI), asymptomatic217

moderately infectious (AMI), and symptomatic strongly infectious (SSI). Age plays a crucial role, with older individuals more218

likely to exhibit symptoms and higher infectiousness, while children tend to be ANI. Additionally, symptomatic individuals are219

typically twice as infectious as asymptomatic ones. The overall infectiousness level is set for every individual according to220

these categories.221

The model also incorporates probabilities of hospitalization and intensive care unit (ICU) admission, which correlate222

with symptom intensity. However, detailed temporal dynamics post-diagnosis, including hospitalization progression, are not223

explicitly modelled. Upon diagnosis, a portion of the population is tagged as hospitalized or in ICUs. Death can occur regardless224

of diagnosis or hospitalization, while recovery follows a fixed time frame unless death intervenes. Recovered individuals are225

considered immune against further infection for an average of nine months, with a root mean square (RMS) deviation of three226

months. In the case of a reinfection, their viral load emission is reduced (see Table S.6).227

Model Calibration228

Our simulation model is constructed upon 194 parameters to account for the population description, the disease characteristics,229

the modelling of contacts, and the vaccination campaign (see Section 6 of the SM for a compilation). Most of the parameters can230

be set a priori from existing data (see Subsection 3.1 in the SM). Nevertheless, given that some of them are poorly known and231

difficult to determine precisely only from this comparison, we study the individual sensitivity of the model to each parameter232

and further calibrate the model via a goodness-of-fit test algorithm.233
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Ideally, to reproduce more accurately the observed evolution of diagnosed people, a simultaneous fit of all parameters234

should be performed (cf. Subsection 3.3 of the SM). However, this would require a complete modelling of the correlations235

between all parameters, with their respective ranges of variation, for which there is not enough knowledge. We follow instead236

an approximate procedure, concentrating on the most sensitive parameters. The fits are done successively one at a time with237

their respective systematic and statistical uncertainties. The cost function for each parameter is based on a χ2 statistic.238

Only the three most sensitive parameters – broadly affecting age, spatial and time dependence – are calibrated using239

this procedure; in decreasing order of sensitivity, these are related to the mobility of people for leisure activities, the global240

infectiousness of the virus, and the relative weight of this infectiousness across different age groups. The calibrations are241

performed over the first year of the evolution of the disease, before the data and model are directly influenced by the active242

vaccination campaign. Additionally, due to shortcomings in the real-life data collection process, it is not possible to perform243

comparisons on a daily basis; instead, data has to be aggregated on a weekly basis, taken from Friday to Thursday to account244

for delayed registers. Further details on these considerations and the calibration process can be found in Section 3 of the SM.245

We estimate a minimum of 10% relative uncertainty to be associated with the calibration of these three parameters, which is246

represented in the figures by a shaded area. This does not include the uncertainty that may originate from imperfect knowledge247

of the other parameters.248

Results249

The natural history of COVID-19 in Catalonia250

Figure 6 shows the results of our simulation after the model calibration process, extended to the full two-year evolution and251

compared against the collected data, aggregated across all provinces and age groups. The results span from February 14, 2020,252

to the end of October 2021, the period with consistent data availability.253

During 2020, Catalonia experienced two distinct waves. An initial wave in March, whose shape is influenced by the specific254

characteristics of the disease and the mobility trends. Among these factors, the force of infection, pre-symptomatic viral255

shedding, and disease duration stand out, as well as changes in mobility patterns and the gradual recovery of work-related256

mobility. Thanks to the strict lockdown measures implemented, this initial outbreak was mitigated, and it was followed by a257

plateau. The summer plateau’s level and shape are linked to post-lockdown contacts, especially summer activities, and their258

timing. As lockdown restrictions eased and activities resumed — partially at first, then almost fully — after the summer, the259

increase in disease incidence at the end of this season prompted the emergence of a second wave in October. This latter wave260

was effectively curtailed by ad-hoc lockdown measures.261

In 2021, the vaccination campaign played a crucial role in managing subsequent waves, although three additional waves262

were observed, each triggered by social gatherings during holiday periods: Christmas, Easter break, and summer holidays.263

These waves, including those in January 2021, are similarly shaped by changes in contacts, with the impacts of the vaccination264

campaign becoming increasingly apparent.265
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Figure 6. Number of diagnosed people in Catalonia. Data on diagnosed people are compared to simulation results for the
period from 2020 to 2021.
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The analysis of the different components of the viral load λi (see SM Fig S.15) shows that the contribution from “home”266

dominates, especially in the periods of strong confinement. In the periods of more mobility, the “leisure” contacts are the267

second most relevant, followed by “work” activities.268

Similar results for more specific subgroups (children, adults, seniors, nursing home residents and workers, and hospital269

workers) are presented in the SM (see Figs. S.5-S.10), highlighting differences in symptomatology and testing patterns across270

waves. Children are mostly asymptomatic, while old people are mostly strongly infectious. During the first wave only people271

with strong symptoms were tested, so very few children were diagnosed. Later on, a broader spectrum of people were tested,272

including close contacts of diagnosed people.273

We also compare our model against data aggregated by provinces (SM, Figs. S.11-S.14). The Barcelona province, hosting274

the largest fraction of the population and with the strongest statistical power in the fit, is well reproduced in the simulation,275

along with the main features of the other less populated provinces. All three provinces exhibit essentially the same five waves276

as Barcelona, albeit with some differences in relative intensity. Notably, the summer 2020 “plateau” observed in Barcelona is277

absent in Girona and Tarragona, where a more gradual increase is observed. Additionally, Lleida featured an additional strong278

wave in July 2020 associated with the influx of temporary workers in the agricultural sector. The correlation between the daily279

evolution of waves in different provinces provides insights into their nature, as previously discussed24. Pearson’s correlation280

coefficients between diagnosed cases in the four provinces during the March and October waves exhibit a high degree of281

correlation, reflecting the synchronous spread of the virus (SM, Table S.4). However, during the summer period, characterized282

by increased holiday activities and foreign visitors, correlations are weaker, and in the case of Lleida, even negative due to283

specific local factors such as the influx of temporary workers in agriculture. The simulation generally reproduces the observed284

correlation patterns, indicating its capability to capture the essential features of disease spread within the Catalan territory.285

Estimates of contacts across provincial borders during leisure activities reveal higher exchange rates between Barcelona and286

its neighbours (see Table S.5 of the SM). This exchange disproportionately affects less populated provinces, with significant287

impacts during summer as residents from Barcelona (about 400k people) travel to Mediterranean coastal resorts and the288

Pyrenees region. The relative impact in the provinces of Girona, Tarragona, and Lleida is 30, 20, and 10%, respectively.289

This effect is incorporated into the simulation, virtually reallocating part of the population in different ABSs during summer,290

which also implies changing the list of potential contacts. In any case, the tendency for the simulation to overestimate disease291

incidence in the outer provinces is possibly due to assumptions about contact patterns not fully accounting for differences in292

population density.293

The 2021 vaccination campaign294

The prompt start of the vaccination campaign in 2021, along with its age-dependent profile and high level of participation,295

played pivotal roles in controlling the virus’s spread, limiting the number of infected cases, and facilitating the relaxation of296

containment measures to revive economic activities (details of the modelling of the vaccination campaign are collected in297

Table S.13 of the SM). Figure 7 demonstrates the significant impact of the vaccine campaign: in particular, the number of298

diagnosed cases, which would have shown a high peak during the summer if no vaccination measures were implemented, was299

instead reduced to a manageable level even while mobility was at its highest. The timeliness of the campaign was crucial,300

as a delay of three months would not have entirely prevented the summer peak but would only have decreased its severity.301

Such a scenario would likely have required the enforcement of stringent lockdown policies, with an adverse impact on society.302

Thus, vaccination emerged as a crucial component in the journey back to “normality”. We explored a scenario where vaccine303

effectiveness was reduced and assumed all vaccines administered were the same, with a 76% reduction in the probability of304

infection. This situation led to three times more diagnosed cases, underscoring the importance of vaccine efficacy in controlling305

disease transmission.306

Data limitations307

While the census data provide a detailed description of the population, including home composition, unavoidable simplifications308

arise due to data limitations. First, and more importantly, the reliability of the recorded number of positive cases is severely309

mined by under-reporting25–27 (for both infections and deaths). In the second instance, mobility data obtained from mobile310

phones lack age information and do not offer objective insights into age group differences. Furthermore, while mobile phone311

traffic provides geographic displacement data both for leisure and work-related activities, information regarding workplace312

size, location, and company type was unavailable at the desired granularity. Nonetheless, our analysis highlights the timely313

implementation of containment measures and vaccination campaigns by authorities as crucial factors in controlling epidemics.314

Conclusions315

We have developed an advanced agent-based simulation model tailored to accurately reproduce the dynamics of COVID-19316

spread in Catalonia throughout 2020 and 2021. This comprehensive simulation encompasses all the essential ingredients317

9/12

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.10.24310130doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.10.24310130
http://creativecommons.org/licenses/by-nd/4.0/


01/01/2021

02/03/2021

01/05/2021

30/06/2021

29/08/2021

28/10/2021

102

103

104

Nu
m

be
r o

f p
eo

pl
e 

/ d
ay

No vaccination
Pfizer & AstraZeneca 
Starting 3 months later
AstraZeneca
Data

0 40 80 120 160 200 240 280
Time [days]

(a)

04/01/2021

15/03/2021

24/05/2021

02/08/2021

11/10/2021
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ra
tio

 / 
da

y

0-14y
15-64y
65+y

0 10 20 30 40
Time [Weeks]

(b)

Figure 7. Diagnosed people for different vaccination scenarios. a Number of diagnosed people in 2021 in a no-vaccination
scenario compared with different vaccination campaigns, including the actual campaign implemented in Catalonia. b Ratio of
the number of diagnosed people in 2021 with and without vaccination for the vaccination campaign implemented in Catalonia
for different age categories. The 15-64y category includes hospital and residency workers, and the 65+y includes residents in
nursing homes.

with enough precision to reproduce the flows of the pandemic across various age groups and provinces over the entire period318

under study. Our approach relies on high-quality disaggregated data, and not only provides valuable insights into spatial319

autocorrelation concerning the COVID-19 incidence during different phases of the outbreak but also estimates the impact of320

external interventions on human behaviour.321

Several strengths of our method are worth highlighting. First and more importantly, our use of a granular representation of322

the population: the consistent availability of mobility, census, and health data at relatively small spatial units (ABSs) makes323

possible a robust calibration and comparison with real-world data, allowing for the discovery of important factors causing324

disease transmission; our agent-based model avoids the drawbacks of averaging population characteristics over broad regions325

and provides a more realistic description of local dynamics. Accurate modelling of contact patterns is ensured by the granularity326

of mobility data, which takes into consideration seasonal fluctuations and their impact on the virus spread. In this way, we327

are able to successfully capture both the effects of varied lockdown measures across different regions and the movements of328

populations with high temporal and spatial resolution.329

The combination of health data with our model provides also a faithful replica of the age- and time-dependent vaccination330

campaign, which is a crucial aspect for understanding changes in the population behaviour that occur during the second year of331

the outbreak. The model can be easily expanded to include additional (epidemiological and etiological) virus characteristics,332

as well as demographic factors. Furthermore, although initially developed for Catalonia, our simulator can be adjusted for333

analysing other contexts at different geographical scales, upon the availability of high-quality data.334

In conclusion, thanks to its accuracy, our model can serve as a reliable tool for assessing the efficacy of containment335

measures (in particular at a local scale) and providing invaluable insights to delineate targeted public health strategies.336
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