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Brief Summary: Exposure to antibiotics causes differential transcriptional signatures in susceptible vs. 23 

resistant bacteria. These differences can be leveraged to rapidly predict resistance profiles of Escherichia coli 24 

and Klebsiella pneumoniae in clinical positive blood cultures.  25 
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ABSTRACT 30 

Antimicrobial resistance is a growing health threat, but standard methods for determining antibiotic 31 

susceptibility are slow and can delay optimal treatment, which is especially consequential in severe infections 32 

such as bacteremia. Novel approaches for rapid susceptibility profiling have emerged that characterize either 33 

bacterial response to antibiotics (phenotype) or detect specific resistance genes (genotype). GoPhAST-R is a 34 

novel assay, performed directly on positive blood cultures, that integrates rapid transcriptional response 35 

profiling with detection of key resistance gene transcripts, thereby providing simultaneous data on both 36 

phenotype and genotype. Here, we performed the first clinical pilot of GoPhAST-R on 42 positive blood 37 

cultures: 26 growing Escherichia coli, 15 growing Klebsiella pneumoniae, and 1 with both. An aliquot of each 38 

positive blood culture was exposed to 9 different antibiotics, lysed, then underwent rapid transcriptional 39 

profiling on the NanoString® platform; results were analyzed using an in-house susceptibility classification 40 

algorithm. GoPhAST-R achieved 95% overall agreement with standard antimicrobial susceptibility testing 41 

methods, with the highest agreement for beta-lactams (98%) and the lowest for fluoroquinolones (88%). 42 

Epidemic resistance genes including the extended spectrum beta-lactamase blaCTX-M-15 and the 43 

carbapenemase blaKPC were also detected within the population. This study demonstrates the clinical feasibility 44 

of using transcriptional response profiling for rapid resistance determination, although further validation with 45 

larger and more diverse bacterial populations will be essential in future work. GoPhAST-R represents a 46 

promising new approach for rapid and comprehensive antibiotic susceptibility testing in clinical settings.  47 
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 48 

INTRODUCTION 49 

Infections due to antimicrobial resistant (AMR) bacteria are a major cause of global mortality, accounting for 50 

1.27 million deaths in 2019 alone1, and result in increased length of hospital stays2, higher healthcare costs3, 51 

and higher mortality2. Delays in appropriate antimicrobial therapy, often due to bacterial resistance to empiric 52 

antibiotic selection, directly correlate with increased in-hospital mortality4,5. This can push clinicians toward 53 

excessively broad spectrum therapies that may result in worse patient outcomes6 and the development of 54 

resistance7, which underscores the broad potential benefits of rapid antimicrobial susceptibility testing 55 

(AST)8,9,10.  56 

 57 

The gold standard for AST involves growing isolates in the presence of an antibiotic to determine the lowest 58 

concentration that inhibits bacterial growth11. While reliable, growth-based AST can be time-consuming, taking 59 

up to 72 hours from the time of sample collection to the final susceptibility profile. A growing number of 60 

alternative, rapid AST methods address this challenge in two broad ways: genotypic and phenotypic assays. 61 

Genotypic approaches directly identify specific genes or mutations known to confer resistance. This approach 62 

relies on detecting a limited subset of genes, however, and so is unable to detect novel or complex resistance 63 

mechanisms, especially in gram-negative pathogens12. Phenotypic assays, conversely, assess bacterial 64 

response to antibiotics based on different cellular properties, such as growth13, metabolic activity14, or bacterial 65 

motility15,16. Although generally applicable across resistance mechanisms, this approach does not provide 66 

information about bacterial genotypes, potentially omitting key data that could inform antibiotic selection17 and 67 

epidemiologic inquiries18,19. 68 

 69 

In recent years, our group developed a method that combines both genotypic and phenotypic information into a 70 

single, rapid AST assay termed Genotypic and Phenotypic AST through RNA detection (Go-PhAST-R)20. Go-71 

PhAST-R uses NanoString® RNA hybridization chemistry21 to quantify multiple bacterial transcripts from crude 72 

lysate samples and infer resistance patterns. To do so, it leverages the marked differences in gene expression 73 

profiles of susceptible isolates compared to species-matched resistant isolates when exposed to antibiotics: 74 

resistant isolates are relatively unperturbed, whereas susceptible isolates, physiologically distressed and dying 75 
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or growth-arrested, demonstrate large transcriptional changes in response to the antibiotic. We previously 76 

showed that a small subset of genes undergo large, predictable expression changes upon exposure to a class 77 

of antibiotics22, such that the change in expression of these marker genes reflects phenotypic antibiotic 78 

susceptibility, independent of resistance mechanism. Using this principle, we designed and validated 79 

GoPhAST-R probesets to classify susceptibility of Escherichia coli and Klebsiella pneumoniae to 80 

aminoglycosides, fluoroquinolones, and beta-lactams22. Additionally, transcripts from high-risk resistance 81 

genes, such as extended spectrum beta-lactamases (ESBLs) and carbapenemases, were simultaneously 82 

interrogated to identify high-risk genotypes of epidemiologic relevance. In prior work done on blood cultures 83 

spiked with laboratory strains with pre-specified resistance patterns, Go-PhAST-R achieved 94-99% accuracy, 84 

required minimal technical expertise and hands-on time, and returned results as soon as <4 hours after a 85 

positive blood culture20.   86 

 87 

In this work, we implement this assay in a clinical setting for the first time, testing 42 blood cultures that grew E. 88 

coli or K. pneumoniae from the clinical microbiology laboratory at Massachusetts General Hospital (MGH). 89 

Transcriptional responses to antibiotic exposure clustered by susceptibility classification (i.e., susceptible 90 

strains and resistant strains exhibited distinct transcriptional responses), with 95% overall categorical 91 

agreement to standard clinical testing. These results are the first demonstration in a clinical setting of an assay 92 

based on the new paradigm of using bacterial transcriptional responses to predict antibiotic susceptibility. 93 

 94 

METHODS 95 

Bacterial Collection and Routine Culture Methods 96 

A total of 66 unique positive blood cultures with gram-negative rods on Gram stain were collected; only one 97 

sample per patient was included. At the time a blood culture bottle signaled positive on the BACTEC FX 98 

system (Becton Dickinson, Sparks, MD), a 1mL aliquot was taken for processing as below. The remainder was 99 

carried forward for routine clinical processing, including subculture to solid media followed by colony 100 

identification via MALDI-TOF mass spectrometry (VITEK MS, version 3.2 in vitro diagnostic Knowledge Base, 101 

bioMérieux, Durham, NC) and antimicrobial susceptibility testing (AST) using the VITEK 2 AST-GN81 Gram 102 

Negative Susceptibility Card (bioMérieux), clinically validated for use with Clinical and Laboratory Standards 103 
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Institute (CLSI) breakpoints published in M100-Ed3123. Aztreonam and cefazolin were tested by the CLSI disk 104 

diffusion method24 due to limitations of the VITEK 2 AST card; aztreonam was not included on the card, and 105 

the lowest concentration of cefazolin did not permit susceptible and intermediate minimum inhibitory 106 

concentrations (MICs) to be distinguished. Cefazolin susceptibility was further tested by broth microdilution25 in 107 

the research laboratory. 108 

 109 

Antibiotic treatment 110 

As in prior implementations of GoPhAST-R20, a 1mL aliquot of each positive blood culture was first spun down 111 

at 100g for 10min to pellet red blood cells. The supernatant was then spun at 16,000g for 3min to pellet 112 

bacteria. The supernatant was removed, and the bacterial pellet resuspended in cation-adjusted Mueller-113 

Hinton broth (CAMHB, ThermoFisher Scientific, Lenexa, KS) to a final volume of 500uL. Separate 45µl aliquots 114 

were added to pre-diluted 5 uL aliquots of cefazolin (CFZ), ceftriaxone (CRO), aztreonam (ATM), piperacillin-115 

tazobactam (TZP), cefepime (FEP), ertapenem (ETP), meropenem (MEM), ciprofloxacin (CIP), levofloxacin 116 

(LVX), or gentamicin (GEN) to expose at CLSI breakpoint concentrations23 (Table S1). Bacteria were exposed 117 

at 37° C to each non-beta-lactam antibiotic for 60min, or 120min for beta-lactams given the slower response 118 

for this class22. In prior work, we found that the beta-lactam inoculum effect26 required exposure at standard 119 

CLSI-recommended inocula in order for the transcriptional response to reflect susceptibility22. Thus, beta-120 

lactam treated samples and one untreated control were diluted 1:100 (targeting 5e5 cfu/mL) prior to incubation 121 

and plated at the time of antibiotic exposure to enumerate colony forming units to confirm. To assess baseline 122 

transcriptional signatures, two aliquots of each sample were each added to 5ul of CAMHB without antibiotics, 123 

and these untreated cultures were removed at either 60min (for comparison with aminoglycosides and 124 

fluoroquinolones) or 120min (for comparison with beta-lactams). Lysis buffer was added, and the samples 125 

were flash-frozen and stored at -80°C for subsequent batch processing.  126 

 127 

Lysis and Hybridization 128 

Samples for which routine clinical testing identified E. coli or K. pneumoniae were thawed and lysed on the MP 129 

FastPrep™ bead beater22. Crude lysates were carried forward on the NanoString® platform per manufacturer’s 130 

protocols. RNA probe sets were designed as per prior work20.  Samples were hybridized for 1 hour as per our 131 
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prior protocol20,22,  except for those treated with beta-lactams, which were hybridized for 16 hours to ensure 132 

sufficient signal from the lower initial inoculum.  133 

 134 

Quantification of Transcriptional Response and Genotyping 135 

Data were partitioned by each antibiotic and species combination. Raw transcript counts were first normalized 136 

to NanoString® spike-in controls per manufacturer’s protocol, and then to housekeeping genes selected to 137 

have consistent expression to control for bacterial cellular density, as previously described20. To assess 138 

transcriptional response, we next calculated log2 fold change in normalized transcript counts between treated 139 

and untreated samples. To characterize resistance genotypes, probes were measured that targeted conserved 140 

regions of the carbapenemase genes blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48 and the extended spectrum 141 

beta-lactamase gene blaCTX-M-15
20

. If any of these probes were detected above background, the gene was 142 

considered present. 143 

 144 

Model Construction and Resistance Prediction 145 

To represent the entire transcriptional response profiles in a single quantitative metric, we used a method of 146 

one-dimensional projection called squared projected distance (SPD)27 to summarize each sample's 147 

responsiveness in comparison to reference data from samples with known MICs. In brief, centroids 148 

representing the average transcriptional response of known susceptible and resistant isolates are computed for 149 

each antibiotic and species combination from highly susceptible and resistant strains from a reference set22. 150 

Distance from the susceptible centroid is calculated for each new transcriptional profile and scaled by the 151 

distance between the sensitive and resistant centroids; thus, an SPD of 0 represents a response similar to that 152 

of the control set of susceptible strains, whereas an SPD of 1 represents a resistant-like response.  153 

 154 

We used support vector machine (SVM) modeling for each species and drug class as a tool to report the 155 

degree to which our susceptible and resistant isolates separate from each other by their SPD values. SVM is 156 

an unbiased, algorithmic method of identifying natural separation in data that minimizes overfitting by 157 

maximizing distance between boundaries and each class of data28. We implemented SVM models using the 158 

e1071 package29 on a dataset that included both the current samples as well as a larger collection with a 159 
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higher proportion of resistant isolates from prior work22, using clinical susceptibility classifications as “ground 160 

truth”. To minimize the most clinically important discrepant classifications, we set the model to penalize very 161 

major discrepancies (VMDs) (R strain misclassified as S) twice as much as major discrepancies (S strain 162 

misclassified as R). For the genotypic portion of the assay, we incorporated whether resistance gene of a given 163 

class were detected, and if so, we considered the isolate to be resistant to the relevant antibiotic regardless of 164 

the SVM prediction (Supplemental Fig. S1). While the assay was run for cefazolin, the results were excluded 165 

from the final SVM model because (a) the CLSI breakpoint concentration falls within the MIC distribution of 166 

wild-type strains30, which in practice leads to classification challenges, exemplified in our collection by frequent 167 

discordance between susceptible and intermediate classifications for samples tested by disk diffusion and 168 

broth microdilution methods (Supplemental Fig. S2); and (b) cefazolin is not a recommended first-line therapy 169 

for gram-negative bacteremia, which was the focus of this study. 170 

 171 

RESULTS 172 

Bacterial collection and clinical AST determination 173 

A total of 66 positive blood cultures with gram-negative rods on Gram stain were exposed in real-time in the 174 

clinical microbiology laboratory to the selected antimicrobials (Supplemental Table S1; see Methods). Of these 175 

66 cultures, 26 were subsequently identified as E. coli and 15 as K. pneumoniae, for which we had previously 176 

designed probes for transcriptional susceptibility testing to beta-lactams, fluoroquinolones, and 177 

aminoglycosides22. In one case (sample 17), a blood culture was identified as having both species and was 178 

carried forward. The other 24 samples included species for which we do not have transcriptional probes and 179 

thus were not processed further. Routine clinical testing of these isolates found relatively low levels of 180 

resistance, with the highest rate of non-susceptibility found for ciprofloxacin at 26% (7/27) in E. coli and 19% 181 

(3/16) in K. pneumoniae, and the lowest rate seen for the carbapenems at 0% (0/27) and 6.3% (1/16) 182 

respectively (Table 1). While intermediate MICs were rare in the collection, we found 4 instances of 183 

intermediate MICs to levofloxacin in E. coli and 2 in K. pneumoniae.  184 

 185 

Transcriptional Response to Drug Treatment and Resistance Genotyping 186 
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To assess susceptibility from transcriptional profile, we measured levels of 10-13 transcripts per each drug 187 

class and calculated change in normalized expression between treated and untreated states20 (Figure 1A). 188 

While strain variation is present across drug treatments, E. coli and K. pneumoniae samples predominantly 189 

demonstrated one of two transcriptional profiles: susceptible isolates exhibited large perturbations in 190 

transcriptional responses upon antibiotic exposure, whereas resistant isolates demonstrated very little to no 191 

perturbation. When grouped by drug and species, transcripts from susceptible isolates were perturbed by an 192 

absolute log2-fold value of 1.0 to 4.0 averaged across all responsive genes, with most drug-species pairs 193 

falling between 1.5 and 3.0; while for resistant samples these values ranged from 0.2 to 1.8, with all but one 194 

falling below 0.9 (a carbapenem-resistant K. pneumoniae, see below) (Figure 1B). While uncommon, samples 195 

with intermediate MICs showed a wider average perturbation range of between 0.2 and 3.8 absolute log2-fold 196 

change.  197 

 198 

After condensing probe responses into squared projected distance (SPD)27 (Figure 2A and 2B, Supplemental 199 

Fig. S3), a metric we previously devised to represent transcriptional response to antibiotic (see Methods), 200 

samples categorized as susceptible by clinical AST had a mean SPD value of 0.027 (median 0.0, interquartile 201 

range [IQR] ±0.09), while resistant samples had a mean SPD of 0.975 (median 1.0, IQR ±0.31). Samples with 202 

intermediate susceptibilities had a mean of 0.23 (median 0.1, IQR ±0.184) (Figure 2C). 203 

 204 

In total, our genotypic probes detected blaCTX-M-15 in 2 E. coli isolates and 3 K. pneumoniae isolates, and a 205 

single carbapenemase gene, a blaKPC found in sample 48, a K. pneumoniae that displayed a transcriptional 206 

response to both ertapenem and meropenem despite harboring this resistance gene (Supplementary Fig S4).  207 

 208 

Susceptibility Predictions  209 

We used a support vector machine (SVM) model to find the natural separation in the SPD values that best 210 

delineated susceptible and non-susceptible isolates (per clinical AST) and incorporated this into an algorithm 211 

for resistance classification (see Methods and Supplementary Fig. S1). We had an overall categorical 212 

agreement of 95% (368/387 pairwise drug comparisons) with standard susceptibility profiling (Figure 3). In 213 

total, there was a 5% very major discrepancy (VMD) rate (2/42 resistant isolates), a 2% major discrepancy 214 
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(MD) rate (7/334 susceptible), and a 3% minor discrepancy rate (Supplementary Table S2). The best-215 

performing grouping was the beta-lactam class in E. coli, with 99% overall categorical agreement and zero 216 

VMDs. The worst performing combination was in the fluoroquinolone class, with categorical agreement rates of 217 

89% for E. coli and 88% for K. pneumoniae (Supplementary Table S2), and VMDs of 8% and 20%, 218 

respectively, representing one VMD in each species, with 12/13 correct resistance predictions for E. coli and 219 

4/5 correct predictions for K. pneumoniae. Both misclassifications were in ciprofloxacin for isolates with VITEK 220 

2 MICs at the resistant clinical breakpoint (Figure S3). 221 

 222 

Unexpectedly, we obtained one mixed culture of E. coli and K. pneumoniae during our collection (sample 17). 223 

Since each NanoString probe is species-specific in its reactivity pattern, we reasoned that we might see 224 

species-specific transcriptional responses for each species without subculture, so we carried the sample 225 

through gene expression profiling and analysis, using both E. coli and K. pneumoniae probesets for this 226 

sample (Figure S3, samples 17ec and 17kp). 18 of 20 SPD-based predictions for these two strains were in 227 

categorical agreement with clinical AST testing, with discrepancies only in fluoroquinolone susceptibility of the 228 

E. coli strain (one major discrepancy and one minor discrepancy for ciprofloxacin and levofloxacin, 229 

respectively; Supplementary Table S3). When this isolate was regrown and tested in laboratory monoculture, 230 

it demonstrated the expected susceptible transcription profile, with its SPD dropping from 0.93 to 0.15 (Figure 231 

S5). The K. pneumoniae in the mixed culture, by contrast, had perfect agreement with clinical AST results 232 

performed on the subcultured isolate (Supplementary Table S3). 233 

 234 

DISCUSSION 235 

Here, we present the first pilot implementation of a transcription-based AST assay performed directly on 236 

positive blood cultures from clinical samples. This novel approach utilizes a single platform to concurrently 237 

assess bacterial phenotypic response to antimicrobials and identify high-risk AMR resistance genes in an 238 

integrated assay, culminating in a susceptibility prediction. The assay demonstrated strong overall 239 

concordance with routine AST methods, with some variation observed across antibiotic classes. Notably, beta-240 

lactam antibiotics achieved 98% categorical agreement with standard clinical testing for six commonly used 241 

beta-lactams across both species and had no very major discrepancies (VMDs). Gentamicin also exhibited no 242 
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VMDs in either species. However, two E. coli isolates classified as susceptible by standard testing were 243 

misclassified as resistant by the assay (major discrepancies) and one intermediate K. pneumoniae isolate was 244 

misclassified as resistant (minor discrepancy). Fluoroquinolones displayed the least favorable performance, 245 

with VMD rates of 8% (1/13) and 20% (1/5) in E. coli and K. pneumoniae, respectively, which represented the 246 

only VMDs across our entire sample set. 247 

 248 

We examined each case in which the transcriptional response differed from expectation based on routine 249 

clinical susceptibility classification. In total, we observed four instances of resistant samples transcriptionally 250 

responding to treatment, which generally occurred in samples with MICs near the breakpoints (Supplemental 251 

Fig. S3). However, in two of these instances, the correct susceptibility prediction was made through genotypic 252 

detection. In these strain and antibiotic pairings, the K. pneumoniae isolate expressing blaKPC (#48) showed 253 

considerable perturbations in the presence of both meropenem and ertapenem. While detecting blaKPC is 254 

sufficient to eliminate carbapenem drugs as treatment options31, it has been noted previously that blaKPC-255 

producing strains may display low MICs to carbapenems32, especially at low inocula26. In a different case, one 256 

blood culture (#17) was polymicrobial, growing both E. coli and K. pneumoniae. While the K. pneumoniae 257 

behaved as expected, the E. coli was susceptible to ciprofloxacin by MIC testing but did not demonstrate a 258 

strong transcriptional response, leading to a miscall as a resistant isolate by our model. The transcriptional 259 

response of this sample, however, looks qualitatively different than the “true” resistant profiles (Supplemental 260 

Fig. S3, ciprofloxacin panel, sample 17ec). On examination of the raw data from this sample, sample 17ec had 261 

low total transcript counts, likely introducing noise into the transcriptional signature, perhaps because E. coli 262 

was present at lower abundance than usual when the bottle signaled positive. As we have not previously 263 

included polymicrobial samples in the assay, further dedicated exploration will be needed to determine the 264 

optimal method for handling such samples. However, the ability in principle to simultaneously profile responses 265 

to multiple strains is a potentially appealing feature of this assay, as we observed 90% categorical agreement 266 

with standard AST testing across 20 phenotypic tests for these two isolates. The majority of the remaining 267 

errors were minor discrepancies in samples with MICs near CLSI breakpoints (Fig S3), which are inherently 268 

challenging classifications even in gold-standard AST methods33,34.  269 

 270 
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Our assay also captured genotypic information regarding the presence of key beta-lactamases, adding several 271 

useful features beyond phenotypic testing alone. First, as outbreaks of carbapenem-resistant bacteria may be 272 

caused by the spread of epidemic beta-lactamases18, knowledge about their presence has implications for 273 

infection control practices35. Second, a growing number of clinical decisions are determined by bacterial 274 

genotype. Current IDSA guidelines, for example, recommend carbapenems as first-line therapy for complicated 275 

infections caused by ESBL-producing organisms17. Finally, the emergence of novel beta-lactamase inhibitors 276 

with specificities for different carbapenemases underscores a role for gene identification to guide optimal 277 

antibiotic selection. Ceftazidime-avibactam, for instance, is effective against blaKPC and blaOXA-48 278 

carbapenemase-producing isolates but has no activity against metallo-beta-lactamases such as blaNDM
36. As 279 

additional inhibitors to specific beta-lactamases are developed, the utility of defining genotype and phenotype 280 

together will likely grow in importance. 281 

 282 
One limitation of our study is the low rates of bloodstream infections from resistant organisms within the cohort, 283 

resulting in a low number available for testing. However, we previously validated the assay on spike-in samples 284 

overrepresented for resistant isolates20,22. Second, the greatest discordance compared to standard testing 285 

occurred in those samples with MIC values near the clinical breakpoints, especially in the fluoroquinolone 286 

class. The inclusion of additional samples near breakpoints will be key to improving performance for this 287 

subset of isolates. Third, as CLSI clinical breakpoints evolve, the models would need to be retrained on 288 

updated guidelines to maintain the greatest accuracy. Fourth, our comparator method was not the reference 289 

standard of broth microdilution, but rather VITEK 2 (and disk diffusion in select cases), due to pragmatic 290 

considerations; however, this comparator reflects standard practices in many clinical microbiology laboratories, 291 

including our own. Most importantly, in this study we used SVM modeling to separate SPD values, and in order 292 

to have a sufficient number of resistant samples for model training, we combined data from prior work22 with 293 

the current population. This approach was necessary due to the low total numbers of resistant organisms, but 294 

as a result we do not have a fully independent validation set. We previously used a more sophisticated strategy 295 

using machine learning to train random forest models on the responses of each individual probe to create a 296 

robust classifier for meropenem, ciprofloxacin, and gentamicin susceptibility20. However, this approach requires 297 

larger training datasets, including a sizeable number of resistant isolates, to rigorously train and independently 298 

validate in a multistep process. Because each individual antibiotic within a class elicits a distinct magnitude of 299 
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transcriptional response in each species (Supplemental Fig. S2), we could not use this original model without 300 

testing and retraining on hundreds of isolates, which was outside the scope of the current study. This additional 301 

training will be critical prior to clinical implementation and should improve classification accuracy. Finally, due to 302 

limited sensitivity of the stock NanoString nCounter Sprint detector system in our laboratory, we required a 16-303 

hour hybridization time to detect signal from the lower inoculum samples used for beta-lactam testing. Pilot 304 

instruments under development offer improved RNA detection sensitivity with much shorter hybridization 305 

times20, which would bring beta-lactam testing times in line with other antibiotics. 306 

 307 

In summary, in this study we perform the first clinical pilot using a diagnostic testing approach that 308 

simultaneously and rapidly detects bacterial phenotypic response to antibiotic exposure as well as epidemic 309 

AMR gene content. The synthesis of these complementary paradigms represents a promising step toward the 310 

next generation of clinical antimicrobial susceptibility testing. While further studies utilizing larger cohorts are 311 

necessary to refine the predictive algorithm and enhance its robustness, and automation of the process would 312 

be required before clinical utilization, this work establishes a framework for the continued development and 313 

ultimate clinical implementation of this novel transcriptional assay. 314 

  315 
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 441 

Figure 1. Assay Workflow and Summary of Transcriptional Profiles in Study Population. Transcriptional 442 

response to antibiotic exposure differs by susceptibility classification. (A.) Schematic workflow for an individual 443 

sample. (B) Clinical isolates show predictable transcriptional response to antibiotic treatment based on 444 

susceptibility profile. Absolute value of log2 fold-change of all transcript counts of genes targeted by the 445 

probeset upon antibiotic exposure averaged across isolates, subset by antibiotic and grouped according to 446 

clinical resistance profile (susceptible, intermediate, and resistant) and species (E. coli and K. pneumoniae). 447 

Antibiotics are abbreviated as per Table 1 and grouped by class. The color of each bar represents the average 448 

log2 fold change in transcript counts, while the height of each bar corresponds to the number of samples with 449 

that susceptibility profile for each antibiotic. 450 
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 452 

Figure 2: SPD Calculation from Transcriptional Response and Distribution. Transcriptional profile is 453 

distilled into a measure of treatment response with SPD, a single-value summary of the transcriptional 454 

response across the genes of interest (see Methods). (A-B). Heatmaps of the log2 fold change in 455 
transcriptional response of each (A) E. coli or (B) K. pneumoniae isolate after exposure to ceftriaxone. Each 456 

row corresponds to a different gene of interest, while each column is a different blood culture sample. KPC and 457 
CTX-M-15 genotypes are shown above the heatmap, while sample numbers, SPD values, and MICs (µg/mL) 458 

are shown below. (C) Box-and-whisker plot of SPD values for each species and antibiotic combination, 459 

grouped by clinical susceptibility profile. Antibiotic abbreviations are as listed in Table 1. 460 
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 461 
Figure 3: Predictions of Drug Susceptibility by SVM Modeling and Genotype. SVM thresholds for each 462 

drug class and bacterial species are shown by the dotted line. SVM is a model to find the optimal separation 463 

between two classes of data (see Methods). Each point corresponds to an SPD value (y-axis) and is shaped 464 

according to gene content and colored according to whether the SVM algorithm made the correct resistance 465 

assignment. Samples are grouped according to clinical susceptibility classification (x-axis). 466 
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 468 

  E. coli K. pneumoniae 
Antibiotic S I R S I R 
Ceftriaxone (CRO) 24 0 3 12 0 4 
Aztreonam (ATM) 24 1 2 12 0 4 

Piperacillin 
Tazobactam (TZP) 27 0 0 14 1 1 

Cefepime (FEP) 25 1 1 14 0 2 
Ertapenem (ETP) 27 0 0 15 0 1 

Meropenem (MEM) 27 0 0 15 0 1 
Ciprofloxacin (CIP) 20 0 7 12 1 3 
Levofloxacin (LVX) 17 4 6 12 2 2 
Gentamicin (GEN) 23 0 4 14 1 1 

 469 
Table 1: Isolates tabulated by their susceptibility profiles per standard testing in the clinical microbiology 470 
laboratory. 471 
 472 
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