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Abstract 20 

Background: Multimorbidity, the co-occurrence of multiple long-term conditions (LTCs), is an 21 

increasingly important clinical problem, but often little is known about the underlying causes. 22 

Observational studies are highly susceptible to confounding and bias, and patients with multiple LTCs 23 

are usually excluded from randomised controlled trials. We investigate the role of a potentially critical 24 

multimorbidity risk factor, obesity, as measured by body mass index (BMI), in explaining shared 25 

genetics amongst 71 common LTCs. 26 

 27 

Methods and Findings: In a population of northern Europeans, we estimated unadjusted pairwise 28 

genetic correlation, �̂�𝑔 , between LTCs and partial genetic correlations after adjustment for the genetics 29 

of BMI, �̂�𝑔|𝐵𝑀𝐼. We compared these correlations using a bespoke block-jackknife approach to assess 30 

whether differences between the estimates were statistically meaningful.  We then used multiple 31 

causal inference methods to confirm that BMI causally affects not only individual LTCs, but also their 32 

co-occurrence. Finally, we attempted to quantify the population-level impact of intervening and 33 

lowering BMI on the prevalence of 15 key common multimorbid LTC pairs. Our results showed 34 

evidence that BMI partially explains some of the shared genetics for 740 LTC-pairs (30% of all pairs 35 

considered). For a further 161 LTC-pairs, the genetic similarity between the LTCs was entirely 36 

accounted for by BMI genetics. This list included  diabetes and osteoarthritis: �̂�𝑔 = 0.221 (𝑆𝐸 =37 

0.021) ; �̂�𝑔|𝐵𝑀𝐼 =  −0.019 (𝑆𝐸 = 0.030), as well as those involving LTCs from the same broad family, 38 

or `domain’, such as gout and osteoarthritis: �̂�𝑔 = 0.192 (𝑆𝐸 = 0.023) ; �̂�𝑔|𝐵𝑀𝐼 = 0.019 (𝑆𝐸 =39 

0.029). Causal inference methods confirmed that higher BMI acts as a common risk factor for a subset 40 

of these pairs, and therefore BMI-lowering interventions would reduce the prevalence of these pairs 41 

of LTCs. For example, we estimated that a 1 standard deviation  or 4.5 unit decrease in BMI would 42 

result in 17 fewer people with both chronic kidney disease and osteoarthritis per 1000 who currently 43 

have both LTCs. 44 

 45 

Conclusions: Our genetics-centred approach shows that obesity is an important mechanistic cause of 46 

many shared long-term conditions. We identify LTC pairs for which obesity is the predominating shared 47 

risk factor, and cases where it is one of the several shared risk factors involved. Our method for 48 

calculating full and partial genetic correlations is published as an R package {partialLDSC} for use by 49 

the research community.  50 

 51 
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Introduction 54 

Multimorbidity, defined as the coexistence of two or more long-term conditions (LTCs), is an important 55 

public health challenge. The prevalence of multimorbidity differs across geographic regions, age 56 

groups and between genders. It is also higher in more deprived individuals and is often associated with 57 

lower quality of life and increased healthcare costs [1]. Many observational studies have focused on 58 

defining and measuring multimorbidity [2,3]. However, disparate definitions have led to variations in 59 

its characterisation [4]. For example, a thorough definition of chronicity and a list of chronic LTCs have 60 

been proposed by [5] and new approaches to cluster LTCs and identify patterns of multimorbidity have 61 

been developed [6,7]. These approaches have limitations, as they often involve single datasets and 62 

modalities, and cluster identification might differ depending on the algorithm [8].  63 

Investigating the role of common epidemiological risk factors for multimorbidity is vitally important, 64 

as it can provide a better understanding of the mechanisms underlying the co-occurrence of LTCs and 65 

help to develop efficient prevention strategies. For example, using observational data to study the 66 

relationship between socio-economic status and multimorbidity, it has been shown that lower 67 

education level and higher deprivation were associated with increasing risk of multimorbidity [9]. A 68 

large multi-cohort prospective study provided evidence of associations between obesity and a wide 69 

range of LTCs, as well as with the number of LTCs developed, highlighting the potentially important 70 

role of obesity in multimorbidity [10]. 71 

We have previously assessed the genetic similarity between 2546 pairs of LTCs [11], allowing us to re-72 

examine associations from observational epidemiology. Using genetic predictors of a trait, rather than 73 

observational measures, reduces the impact of inherent issues such as confounding, measurement 74 

error and reverse causation [12]. These issues are particularly problematic for studies of 75 

multimorbidity. Over the last decade, genetic approaches have also greatly benefited from the increase 76 

in sample sizes, and methods that enable data from more than one cohort to be incorporated into the 77 

analysis, enabling researchers to work with data linking tens of thousands of cases for common LTCs 78 

from a large range of health exposures. This genetics-centred approach has been used to estimate the 79 

costs of obesity on healthcare systems [13].  Our previous work showed evidence of widespread 80 

genetic correlation across LTCs, with obesity being highly genetically correlated with a broad range of 81 

LTCs [11]. Depending on context, obesity can be considered a risk factor for multiple LTCs or an LTC in 82 

its own right. In this work, we focus on using statistical genetics methods to quantify the role of obesity 83 

as a common risk factor for multimorbidity.  84 

Genetic correlation is driven by pleiotropy, when a genetic locus affects several traits, and can reflect 85 

different scenarios: a direct relationship between the two traits (vertical pleiotropy – when the two 86 
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traits are part of a causal cascade), a common biological process or the effect of a common risk factor 87 

on both traits (horizontal pleiotropy – when the two traits have no direct effect on each other) [14] 88 

(Supplementary Figure 1). Often, genetic correlations are driven by a combination of both vertical and 89 

horizontal pleiotropy [15]. We propose an approach to help differentiate these mechanisms in 90 

multimorbidity, focussing on obesity as a well-known risk factor for several long-term conditions [16]. 91 

We chose the most common, general clinical measure of obesity for this investigation: body mass index 92 

(BMI).  93 

We use data from the GEMINI collaborative for 71 long-term common LTCs comprising 2485 distinct 94 

pairs. We propose an approach to compare pairwise unadjusted genetic correlations to partial genetic 95 

correlations that accounts for BMI genetics, formally testing whether BMI explains a portion of the 96 

genetic correlation for a given LTC pair.  We also applied causal inference methods to elucidate the 97 

causal (biological) mechanisms through which BMI affects the genetic correlation between LTCs, 98 

quantifying its pivotal role as a common risk factor in multimorbidity.  99 
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Methods 100 

- Data resources 101 

We used GWAS summary statistics, derived from individuals of European descent, for 71 common and 102 

heritable LTCs, encompassing 13 distinct disease domains, grouped according to the International 103 

Classification of Disease (ICD): such as cardiovascular or respiratory domains [17]. These GWAS data 104 

are described in detail in [11]; relevant diagnostic and analytical code is available on the project GitHub 105 

pages [https://github.com/GEMINI-multimorbidity]. LTCs were defined by adapting existing diagnostic 106 

code lists with input from clinical experts. LTCs were selected for genetic analyses if reaching a 107 

prevalence greater than 0.5% in people over 65 in each of two large population-based cohorts in the 108 

UK and Spain [18,19]. Heritability measures the proportion of phenotypic variance explained by 109 

genetics. We estimated this in UK Biobank [20] to identify a subset of LTCs with a genetic basis.  Finally, 110 

for each condition, we used the largest sample size available by combining GWAS data from up to three 111 

sources: UK Biobank, FinnGen, and condition specific consortium data (details available in 112 

Supplementary Table 1). For many of these LTCs, the meta-analysed data used represents the largest 113 

sample size used to date. We refer to these meta-analysed GWAS summary statistics as "GEMINI 114 

summary statistics" for the rest of the paper. 115 

We also used two different sets of GWAS summary statistics for BMI. First, we used the largest data to 116 

date (𝑁 ≈ 700,000), combining results from the GIANT Consortium and UK Biobank [21], to estimate 117 

partial genetic correlations. We also used earlier results from the GIANT Consortium (𝑁 ≈ 340,000 – 118 

minimal overlap with the GEMINI summary statistics) [22], to perform causal inference analyses, after 119 

ensuring that the partial genetic correlations results were consistent with the ones obtained using the 120 

larger dataset.  121 

The GWAS summary statistics for the 71 LTCs, as well as BMI, were pre-processed using the munging 122 

function from the LD-score regression (LDSC) [23] and for all LDSC analyses we used LD-scores 123 

estimated from the 1000G EUR reference panel.  124 

- Covariance and correlation 125 

Covariance measures the extent to which the observed value of one quantity predicts the value of 126 

another quantity. For example, in the case of two such quantities – osteoarthritis (OA) and type 2 127 

diabetes (T2D) diagnoses in a study population - a positive covariance would indicate that having T2D 128 

increases the probability of having OA.  Correlation is simply a scaled version of covariance that lies 129 

between -1 and 1.  If all individuals in a population with T2D also have OA, the two would have a 130 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.10.24309772doi: medRxiv preprint 

https://github.com/GEMINI-multimorbidity
https://doi.org/10.1101/2024.07.10.24309772
http://creativecommons.org/licenses/by/4.0/


   

 

6 
 

correlation of 1. If all individuals in a population with T2D do not have OA, the two would have a 131 

correlation of -1. 132 

- Partial genetic covariance and correlation 133 

In this paper we extensively study the genetic covariance and correlation between two LTCs. That is, 134 

the degree to which genetic variants that predict one LTC also predict the other LTC.  Furthermore, we 135 

focus on understanding how the genetic covariance between two LTCs changes when we remove the 136 

genetic effects of a common risk factor.  137 

 Using the Schur complement, the partial (or `adjusted’) genetic covariance between LTCs 𝑘 and 𝑙 138 

(�̂�𝑔{𝑘,𝑙 | 𝑥}), which corresponds to their genetic covariance while holding the genetic effects of the trait 139 

𝑥 (in our case, BMI) constant, can be defined as follows: 140 

 �̂�𝑔{𝑘,𝑙 | 𝑥} =  �̂�𝑔{𝑘,𝑙} −  
�̂�𝑔{𝑘,𝑥}∗�̂�𝑔{𝑥,𝑙}

ℎ̂{𝑥}
2 ,                                                                                             (1) 

      

where                 �̂�𝑔{𝑘,𝑙}  is the genetic covariance between condition 𝑙 and 𝑘,  

                                      �̂�𝑔{𝑘,𝑥} is the genetic covariance between condition 𝑘 and trait 𝑥, 

                                      �̂�𝑔{𝑥,𝑙} is the genetic covariance between trait 𝑥 and condition 𝑙, 

                                      ℎ̂{𝑥}
2  is the heritability estimate for trait 𝑥. 

 

 141 

Genetic covariance and heritability estimates were obtained from GWAS summary statistics using 142 

cross-trait LD Score regression (LDSC), as previously described by  [24]. 143 

Similarly, the partial heritability for LTCs 𝑘 and 𝑙 (ℎ̂2
{𝑘 | 𝑥} and ℎ̂2

{𝑙 | 𝑥}, respectively) can be estimated: 144 

 
   ℎ̂2

{𝑘 | 𝑥} =  ℎ̂2
{𝑘} −  

�̂�𝑔{𝑘,𝑥} ∗ �̂�𝑔{𝑥,𝑘}

ℎ̂{𝑥}
2

 ,

ℎ̂2
{𝑙 | 𝑥} =  ℎ̂2

{𝑙} −  
�̂�𝑔{𝑙,𝑥} ∗ �̂�𝑔{𝑥,𝑙}

ℎ̂{𝑥}
2

,

where ℎ̂2
{𝑘}  is the heritability estimate for condition 𝑘,

             ℎ̂2
{𝑙}  is the heritability estimate for condition 𝑙.

 (1) 

 145 

Finally, the (unadjusted) genetic correlation (�̂�𝑔{𝑘,𝑙}) and the partial genetic correlation (�̂�𝑔{𝑘,𝑙 | 𝑥}) 146 

between LTCs 𝑘 and 𝑙 can be derived: 147 
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   �̂�𝑔{𝑘,𝑙} =   

�̂�𝑔{𝑘,𝑙}

√ℎ̂{𝑘}
2 ℎ̂{𝑙}

2

 ,

        �̂�𝑔{𝑘,𝑙 | 𝑥} =   
�̂�𝑔{𝑘,𝑙 | 𝑥}

√ℎ̂{𝑘 | 𝑥}
2 ℎ̂{𝑙 | 𝑥}

2

.

 (2) 

 148 

To test if the partial (or adjusted) genetic correlation estimate is different from the unadjusted genetic 149 

correlation estimate, the following test statistic was used: 150 

 
𝑡{𝑘,𝑙} =

�̂�𝑔{𝑘,𝑙} −  �̂�𝑔{𝑘,𝑙 | 𝑥}

√𝑉𝑎𝑟(�̂�𝑔{𝑘,𝑙}) + 𝑉𝑎𝑟(�̂�𝑔{𝑘,𝑙 | 𝑥}) − 2𝐶𝑜𝑣(�̂�𝑔{𝑘,𝑙}, �̂�𝑔{𝑘,𝑙 | 𝑥})

. (3) 

 151 

The variance of the unadjusted genetic correlation (𝑉𝑎𝑟(�̂�𝑔{𝑘,𝑙})), the variance of the partial genetic 152 

correlation (𝑉𝑎𝑟(�̂�𝑔{𝑘,𝑙 | 𝑥)) and the covariance between the two (𝐶𝑜𝑣( �̂�𝑔{𝑘,𝑙}, �̂�𝑔{𝑘,𝑙 | 𝑥})) were 153 

obtained using a novel block-jackknife approach (see details in Supplementary Note 1). This enabled 154 

us to rigorously test for a difference between the two, for the first time. 155 

We estimated partial genetic correlations between all pairs of LTCs, using two different sets of GWAS 156 

summary statistics for BMI [21,22]. False discovery rate (FDR) correction (𝑄 − 𝑣𝑎𝑙𝑢𝑒 <  0.05) was 157 

applied for both unadjusted and partial genetic correlations, and the differences between the two, to 158 

account for multiple testing. LTC pairs were then first classified according to the difference between 159 

the two (FDR-corrected statistically significant difference or not). Significant LTC pairs were then 160 

further classified into four categories:  161 

• Both unadjusted and partial genetic correlations were statistically non-significant (FDR of 5%); 162 

• Both unadjusted and partial genetic correlations were statistically significant; 163 

• Only unadjusted genetic correlations were statistically significant; 164 

• Only partial genetic correlations were statistically significant. 165 

Here, we  focus on the results with evidence of genetic similarity before and/or after adjustment for 166 

BMI. LTC pairs were defined as within-domain, if both LTCs belong to the same disease domain, or 167 

cross-domain, if the two LTCs belong to different disease domains.  168 

Our analysis pipeline has been implemented in a R package - partialLDSC - and is available on GitHub 169 

[https://github.com/GEMINI-multimorbidity/partialLDSC]. All analyses have been performed using 170 

version 0.1.0.  171 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.10.24309772doi: medRxiv preprint 

https://github.com/GEMINI-multimorbidity/partialLDSC
https://doi.org/10.1101/2024.07.10.24309772
http://creativecommons.org/licenses/by/4.0/


   

 

8 
 

- Causal inference using Mendelian randomization 172 

To better understand the causal relationship between BMI and each individual LTC, we performed two-173 

sample Mendelian Randomization (MR) analyses. MR is a causal inference method that uses genetic 174 

variants as instrumental variables to estimate the causal effect of an exposure on an outcome. We 175 

used it to estimate the causal effect of intervening to lower BMI on each individual LTC (Supplementary 176 

Figure 2, Supplementary Note 2).  177 

Removing BMI causal effect from genetic correlations  178 

For LTCs found to be strongly causally affected by BMI (23 LTCs, Supplementary Note 2), we used a 179 

recently proposed Bayesian GWAS approach to derive direct effect estimates [25,26]. The direct effects 180 

were estimated by taking out the causal effect of BMI from the observed association effect between 181 

each genetic variant and the condition. They correspond to the direct association between genetic 182 

variants and the condition, not via the BMI pathway, and can be seen as BMI-corrected GWAS summary 183 

statistics. We ran the analysis for each condition using the bGWAS R-package (https://github.com/n-184 

mounier/bGWAS - version 1.0.3) [25], selecting instruments for BMI using a p-value threshold of 5*10-185 

8 with default values used for other parameters. We then used the summary statistics for the direct 186 

effects to re-estimate genetic correlations (denoted as bGWAS genetic correlations, �̂�′𝑔{𝑘,𝑙}) for 253 187 

pairs. We only reported the results for the 246 pairs for which we detected a statistically significant 188 

difference between the unadjusted and the partial genetic correlation estimates. We then compared 189 

partial genetic correlations to bGWAS genetic correlations to understand if the difference between 190 

unadjusted and partial genetic correlations are likely to be driven by the causal effect of BMI on LTCs, 191 

or solely by the correlation between BMI and the LTCs, which could be due to other mechanisms.  192 

Estimating the causal effect of BMI on co-occurrence of LTCs and estimating the effect of intervening 193 

on BMI  194 

To further understand the role of BMI in the co-occurrence of LTCs, we carried out additional analyses 195 

for the 15 pairs with the strongest difference, and no evidence of genetic correlation, after adjusting 196 

for BMI. First, we performed an additional GWAS in UK Biobank, defining cases for our analyses as 197 

individuals having been diagnosed with both LTCs (Supplementary Note 3). These GWAS summary 198 

statistics were then used to estimate the causal effect of BMI on the co-occurrence of each pair, using 199 

the same MR approach as for individual LTCs (Supplementary Note 2). The genetic associations used 200 

for MR are in standard deviation units for BMI (https://gwas.mrcieu.ac.uk/datasets/ieu-a-835/, 1SD = 201 

4.77), and are log odds ratios for the outcomes. Therefore, for each pair 𝑝, the causal effect estimate 202 

�̂�𝑝 represents log odds ratios per 1 standard deviation (𝜎) increase in the BMI on the pair, compared 203 

to the actual observed BMI in the sample (�̅�):    204 
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�̂�𝑝 =  log (

𝑜𝑑𝑑𝑠 𝑃 = 1 | 𝐵𝑀𝐼 = �̅� + 𝜎

 𝑜𝑑𝑑𝑠 𝑃 = 1 | 𝐵𝑀𝐼 = �̅� 
) (4) 

 205 

This causal effect estimate can then be used to evaluate how intervening to lower BMI would affect 206 

the number of people having both LTCs [27]. In practice, for each pair, we estimated the reduction in 207 

1000 individuals (�̂�𝑝) of reducing BMI by 1 SD: 208 

 
   �̂�𝑝 = 1000 ⋅ (�̂�𝑝 −

�̂�𝑝 �̂�𝑝

(1 − �̂�𝑝 +  �̂�𝑝 �̂�𝑝 )
) ,

where �̂�𝑝  is the observed prevalence for pair 𝑝,

 (5) 

using this risk reduction as the basis for further calculations. We used it to derive the number of cases 209 

that could be prevented from each pair following a hypothetical intervention in the sample used for 210 

our genetic analyses and estimated the impact on the prevalence of such an intervention.  211 
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Results 212 

BMI plays an important role in explaining genetic correlations between common long-term 213 

conditions.   214 

From the 2485 pairs defined from the 71 LTCs, we detected a statistically significant difference when 215 

adjusting for BMI genetics for 1362 pairs (Table 1, Supplementary Table 2). These pairs encompassed 216 

64 out of 71 LTCs. For most of these pairs (1078/1362), the partial genetic correlation estimates were 217 

weaker than the unadjusted ones, reflecting an attenuation of the genetic correlation when adjusting 218 

for BMI genetics.  219 

Table 1 220 
 221 

 
�̂�𝑔 

 (𝑄 − 𝑣𝑎𝑙𝑢𝑒 ≥ 0.05) 

�̂�𝑔  

(𝑄 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) 

�̂�𝑔|𝐵𝑀𝐼  

(𝑄 − 𝑣𝑎𝑙𝑢𝑒 ≥ 0.05) 

607 (𝐹𝐷𝑅 ≥ 0.05) 
308 

 

34 (𝐹𝐷𝑅 ≥ 0.05) 
161 

 

�̂�𝑔|𝐵𝑀𝐼 

(𝑄 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) 

5 (𝐹𝐷𝑅 ≥ 0.05) 
33 

 

477 ( 
860 

 

Description of the 1362 pairs with statistically significant differences (𝑄 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for the test statistics 222 
described in Equation 4), according to the statistical significance of unadjusted (�̂�𝑔) and partial (�̂�𝑔|𝐵𝑀𝐼) genetic 223 
correlation estimates. 224 

 225 

In most of the pairs (860/1362) for which a statistically significant difference was observed, we found 226 

evidence of shared genetics both before and after adjusting for BMI, indicating that while BMI 227 

influences the genetic correlation for these pairs, it does not account for all of it. These include 131 228 

within-domain pairs, and 769 cross-domain pairs, many of them encompassing LTCs from the “diseases 229 

of the circulatory system”, but also from the “diseases of the skin and subcutaneous tissue” and the 230 

“diseases of the digestive system” domains. For most of these pairs, the partial genetic correlation 231 

estimates were smaller (740/860). The majority of the 120 pairs where the partial genetic correlation 232 

estimates were larger were related to anxiety disorder (30), osteoporosis (27), schizophrenia and 233 

delusional disorders (12), as well as tinnitus (11).  The unadjusted and the partial genetic correlation 234 

estimates for the 20 pairs of these 860 with the strongest difference are presented in Error! Reference 235 

source not found.. Amongst these 20 top pairs, 12 distinct LTCs are represented, with some conditions 236 

common between pairs with cholelithiasis in 6 pairs and carpal tunnel syndrome, gout and chronic 237 

kidney disease in 7 pairs. This illustrates that BMI genetics tends to explain a larger proportion of 238 

genetic correlation in pairs that contain specific LTCs. Furthermore, these LTCs are also amongst the 239 
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ones with the strongest genetic correlations with BMI (Supplementary Table 1), and most strongly 240 

causally affected by BMI in our MR results (Supplementary Note 2). For 471 of these 860 pairs, our MR 241 

analysis showed that BMI is likely causal for both LTCs, providing further evidence that BMI is the likely 242 

source of the genetic correlation. 243 

Figure 1   244 

 245 

Unadjusted (blue circle) and partial (blue-green triangle) genetic correlation estimates and 95% confidence 246 
intervals for the 20 pairs with the strongest difference (𝑄 − 𝑣𝑎𝑙𝑢𝑒 indicated for each pair on the right) and 247 
evidence of shared genetics both before and after adjusting for BMI.  248 

 249 

For more than 10% of the pairs with a significant difference (161/1362), we showed that BMI is likely 250 

to account for a substantial component of the genetic correlation. For these pairs, BMI adjustment 251 

resulted in a greatly reduced partial genetic correlation estimate consistent with no remaining genetic 252 

similarity between the two LTCs. Many of these pairs (76/161) included at least one condition from 253 

the “diseases of the circulatory system” domain, and almost all the pairs were cross-domain pairs 254 

(154/161)for example 24 pairs had one condition from the “diseases of the circulatory system” domain, 255 

and one condition from the “diseases of the musculoskeletal system and connective tissue” domain. 256 
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For instance, we observed complete attenuation of the genetic correlation between: type 2 diabetes 257 

and osteoarthritis (�̂�𝑔 = 0.2216 (𝑆𝐸 = 0.0208) ; �̂�𝑔|𝐵𝑀𝐼 =  −0.0189 (𝑆𝐸 = 0.0296)); gout and 258 

osteoarthritis (�̂�𝑔 = 0.1920 (𝑆𝐸 = 0.0229) ; �̂�𝑔|𝐵𝑀𝐼 =  0.0191 (𝑆𝐸 = 0.0292)); and gout and sleep 259 

apnoea (�̂�𝑔 = 0.2313 (𝑆𝐸 = 0.0266) ; �̂�𝑔|𝐵𝑀𝐼 =  0.0118 (𝑆𝐸 = 0.0355)) (Supplementary Table 2, 260 

Figure 2). For 93 of these pairs, including all the ones in Figure 2, our MR analysis detected a statistically 261 

significant causal effect of BMI on both LTCs. 262 

 263 

Figure 2 264 

 265 

Unadjusted (blue circle) and partial (blue-green triangle) genetic correlation estimates and 95% confidence 266 
intervals for the 10 pairs with the strongest difference (𝑄 − 𝑣𝑎𝑙𝑢𝑒 indicated for each pair on the right) and 267 
evidence of shared genetics only before adjusting for BMI.  268 

 269 

For 33 LTC pairs, there was no evidence (at FDR <0.05) of genetic correlation, but on adjustment for 270 

the genetics of BMI, a residual genetic effect was observed (Supplementary Table 2, Figure 3). These 271 

results are consistent with BMI masking shared genetic mechanisms between the two LTCs.  Most of 272 

these pairs were cross-domain pairs (28/33) and notably, 14 of these pairs were related to 273 

osteoporosis. This can be explained by the fact that lower BMI has been shown to be associated with 274 

higher osteoporosis risk [28]whereas for most other LTCs, higher BMI is suspected to be risk increasing. 275 

This is further supported by our MR analysis, as we found a statistically significant causal effect of lower 276 

BMI on osteoporosis (Supplementary Note 2).  For 19 of these pairs, our MR results showed that BMI 277 

is likely causal for both LTCs, but protective for one of them, consistent with the partial genetic 278 

correlation being stronger than the unadjusted genetic correlation. 279 

 280 
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Figure 3 281 

 282 

Unadjusted (blue circle) and partial (blue-green triangle) genetic correlation estimates and 95% confidence 283 
intervals for the 10 pairs with the strongest difference (𝑄 − 𝑣𝑎𝑙𝑢𝑒 indicated for each pair on the right) and 284 
evidence of shared genetics only after adjusting for BMI. 285 

 286 

For 1123 LTC pairs, adjusting for BMI genetics had no statistically significant effect on the genetic 287 

correlation between them, suggesting that other mechanisms are giving rise to the genetic similarity 288 

between these LTCs. For example, the strong genetic correlation between allergic rhinitis and bursitis 289 

(�̂�𝑔 = 0.3640 (𝑆𝐸 = 0.0777) ; �̂�𝑔|𝐵𝑀𝐼 =  0.3639 (𝑆𝐸 = 0.0795); difference 𝑄 − 𝑣𝑎𝑙𝑢𝑒 = 0.98), or 290 

between anxiety and schizophrenia (�̂�𝑔 = 0.4417 (𝑆𝐸 = 0.0234) ; �̂�𝑔|𝐵𝑀𝐼 =  0.4414 (𝑆𝐸 =291 

0.0232); difference 𝑄 − 𝑣𝑎𝑙𝑢𝑒 = 0.91), remain similar after adjusting for BMI genetics.   292 

These results were consistent with those obtained using less recent BMI data, excluding UK Biobank, 293 

with partial correlation estimates that were highly similar (correlation =  0.9974, Supplementary 294 

Figure 3-A), with evidence of the analysis using the more recent data being more powered 295 

(Supplementary Table 3, Supplementary Table 4, Supplementary Figure 3-B). 296 

BMI acts as a common risk factor in multimorbidity  297 

To compare our partial genetic correlations to another method (bGWAS) we estimated pairwise 298 

genetic correlations accounting for the estimated causal effect of BMI on both LTCs, for 246 pairs. We 299 

studied the 23 LTCs that were strongly causally affected by BMI and a subset of LTC pairs for which a 300 

statistically significant difference between unadjusted and partial genetic correlation estimates were 301 

observed. We used bGWAS to take out the causal effect of BMI on each individual LTC and re-estimated 302 

pairwise genetic correlations. These differ from the partial correlation estimates since they only 303 

remove the BMI genetics estimated to be due to the causal role of BMI on each condition. We observed 304 
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a strong agreement between the partial genetic correlation estimates and the bGWAS correlation 305 

estimates, with some of the bGWAS genetic correlation estimates being stronger (less attenuated) than 306 

the partial ones (Supplementary Error! Reference source not found.-A, Supplementary Table 5), 307 

suggesting that partial genetic correlation estimates might capture additional associations between 308 

BMI and the LTCs that are not due to these causal relationships. See Supplementary Note 4 for details.    309 

For a subset of pairs, the 15 pairs with the strongest difference and no evidence of genetic correlation 310 

after adjusting for BMI genetics, we performed genetic analysis for each pair and further investigated 311 

the role of BMI using MR results. We showed that higher BMI had a strong risk-increasing causal effect 312 

on every condition within these pairs. In addition, the unadjusted genetic correlation estimates were 313 

all positive, and higher BMI was shown to be risk increasing for all LTCs (Supplementary Table 6). This 314 

suggests that the attenuation of the genetic correlation is likely due to BMI acting as common risk 315 

factor. This is further confirmed by the MR analysis on the pairs, with all causal effect estimates being 316 

positive and statistically significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05/64, Bonferroni correction) (Supplementary 317 

Table 6). 318 

For these pairs with directionally consistent individual causal effects, we also estimated how 319 

intervening on BMI would affect the number of people having both LTCs. To do so, we calculated the 320 

reduction in the number of cases for 1000 individuals expected by a one SD BMI reduction. Results 321 

were highly correlated with the observed prevalence of the pairs in our sample and lowering BMI had 322 

a stronger effect on pairs with higher prevalence (Supplementary Table 6). Results for the 5 pairs with 323 

a prevalence above 1% are presented in Table 2. For example, 16 out of 1000 people having both 324 

chronic kidney disease and osteoarthritis, and 9 out of 1000 people having both type 2 diabetes and 325 

osteoarthritis, would not have both LTCs after a one SD BMI intervention (1SD = 4.77). In the UK 326 

Biobank sample used for our analysis, this would translate into a 4.6% reduction in prevalence for the 327 

co-occurrence of chronic kidney disease and osteoarthritis, and 3.3% reduction in prevalence for the 328 

co-occurrence of type 2 diabetes and osteoarthritis. We postulate that the impact of such an 329 

intervention in the general population is likely to be stronger, since the prevalence of these pairs of 330 

LTC in UK Biobank is lower than in the general population (Supplementary Table 6), due to healthy 331 

volunteer bias in UK Biobank [29]. 332 

  333 
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Table 2 334 
 335 

condition 1 condition 2 
�̂�𝑔  

(SE) 
�̂�𝑔|𝐵𝑀𝐼  

 (SE) 
�̂�𝐼𝑉𝑊  

(SE ; 𝑝 − 𝑣𝑎𝑙𝑢𝑒) 
�̂� 

𝜋 

UK 
Biobank 

�̂�𝑅  

UK 
Biobank 

Chronic Kidney 
Disease 

Osteoarthritis 
0.1356 

(0.0330) 
0.0202 

(0.0359) 
0.38  

(0.0835 ; 4.2e-06) 
16.76 2.752 2.706 

Diabetes Type 2 Osteoarthritis 
0.2216 

(0.0208) 
-0.0189 
(0.0296) 

0.71  
(0.1820 ; 9.4e-05) 

9.69 3.434 3.401 

Cholelithiasis Osteoarthritis 
0.2110 

(0.0295) 
0.0538 

(0.0323) 
0.63  

(0.0775 ; 6.0e-16) 
8.83 2.406 2.385 

Asthma 
Chronic Kidney 

Disease 
0.0829 

(0.0353) 
0.0158 

(0.0361) 
0.35  

(0.1132 ; 2.1e-03) 
7.10 1.092 1.085 

Gout Osteoarthritis 
0.1920 

(0.0229) 
0.0191 

(0.0292) 
0.61  

(0.0963 ; 3.2e-10) 
6.47 1.657 1.646 

Mendelian randomization and BMI intervention results for 5 pairs with a prevalence above 1% in our sample. 336 
For each pair of LTC (condition 1 and condition 2), the unadjusted genetic correlation estimate and standard 337 
error (�̂�𝑔), the partial genetic correlation estimate and standard error (�̂�𝑔|𝐵𝑀𝐼), as well as the causal effect 338 

estimate (�̂�𝐼𝑉𝑊), its standard error and the corresponding p-value, of BMI on the pair, and the reduction in the 339 

number of cases with both LTCs when reducing BMI by one SD for 1000 individuals (�̂�), and the prevalence of 340 
cases with both LTCs in percentage in UK Biobank before (𝜋 UK Biobank) and after an hypothetical intervention  341 
(�̂�𝑅  UK Biobank), are reported. 342 

  343 
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Discussion 344 

Clinical trials and Mendelian randomization studies have shown that obesity is very likely to cause 345 

many individual LTCs [30]. However, the role of higher BMI in the co-occurrence of two LTCs and the 346 

extent to which it accounts for some, or all of the co-occurrence is less certain. In this study we 347 

combined genetics data from very large studies with a novel statistical analysis technique to estimate 348 

the extent to which higher BMI influences the genetic similarity between pairs of LTCs. Our analyses 349 

indicated that for a large proportion of pairs of LTCs, higher BMI is likely to explain part of the genetic 350 

correlation, but that other factors are likely to also contribute. For 55% of LTC-pairs tested we observed 351 

a change in the genetic correlations when accounting for BMI genetics. Using causal inference 352 

methods, we confirmed that BMI acts as a common risk factor for a subset of these pairs, and that 353 

intervening on BMI could help reduce the prevalence of pairs of multimorbid LTCs. 354 

Our analyses indicated that for 36% (740/2485) of LTCs pairs we studied, higher BMI could explain a 355 

significant proportion of their genetic correlation. Of these, 161 pairs were identified for which the 356 

estimates were consistent with a null partial genetic correlation, suggesting that the genetic similarity 357 

between these pairs of LTCs is entirely explained by the BMI. These included many pairs that spanned 358 

traditional disease domains, especially those involving osteoarthritis and metabolic diseases, and 359 

COPD and metabolic diseases. For some of these pairs, previous studies have observed a similar strong 360 

attenuating effect of BMI, such as for type 2 diabetes and osteoarthritis and gout and sleep apnoea  361 

[31,32].    362 

Thirty-three pairs (about 1%) of LTCs showed no evidence of unadjusted genetic similarity, but after 363 

accounting for the genetic effect of BMI, a partial genetic correlation emerged.  These results suggest 364 

that shared genetic causes may exist for some pairs, but they could be masked by BMI having effects 365 

in opposite directions. Most of these pairs were related to osteoporosis, which may be explained by 366 

the fact that the direction of the effect of BMI on osteoporosis is opposite to the one on most other 367 

LTCs [33]. We observed for example a positive genetic correlation between osteoporosis and stroke, 368 

only after accounting for BMI genetics. Because genetic risk usually reflects life-long exposure, this 369 

correlation suggests the presence of shared risk factors for osteoporosis and metabolic traits, although 370 

we cannot rule out a genetic correlation resulting from reduced mobility and bone load reduction in 371 

stroke patients [34].   372 

Our results corroborate the role of BMI acting as a common risk factor for various pairs of LTCs. We 373 

have used causal inference approaches to test the causal relationship between BMI and the different 374 

LTCs, and we used the bGWAS approach to re-estimate genetic correlation estimates, adjusting only 375 
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for the part of the genetic correlation that is driven by the causal effect of BMI on the LTCs. Overall, we 376 

observed a strong agreement between partial and bGWAS genetic correlation estimates, providing 377 

further evidence that BMI does act as common risk factor. However, the bGWAS genetic correlation 378 

estimates were in general stronger, suggesting that the correlation between BMI and the LTCs is not 379 

entirely explained by the causal effect and that more complex relationships may exist. In addition, the 380 

effects derived from bGWAS would only capture linear causal effects, so any non-linear effects would 381 

not be accounted for, possibly explaining why the bGWAS genetic correlations estimates were stronger. 382 

We also showed that BMI has a strong, risk-increasing, causal effect on some pairs of LTCs, and that 383 

lowering BMI could help reduce the prevalence of these pairs.  384 

Many of the LTC pairs include those from across traditional clinical domains, and for a majority of these 385 

pairs, the attenuation after accounting for BMI was as strong as that for within-domain pairs. For 386 

example, based on our genetic approach, the role of BMI in explaining the co-occurrence of COPD and 387 

several metabolic LTCs and osteoarthritis and several metabolic LTCs, is just as strong as the role of 388 

BMI in explaining the co-occurrence of two metabolic LTCs. The reasons for these findings require 389 

further investigation but our results suggest that interventions aimed at weight loss should monitor 390 

these additional LTCs more closely, or conversely, patients with a combination of obesity and a 391 

metabolic condition should be monitored for less obvious non-metabolic LTCs.  392 

The definition of obesity, and other obesity-related measures and phenotypes that can be used as 393 

proxies in public health research, is critical [35] and which one is the best predictor for disease risk 394 

might depend on the condition [36–42]. For that reason, we believe that results using BMI, as a 395 

continuous phenotype that can be easily measured in the general population, are less likely to be 396 

biased and are easier to interpret. Further analyses, to better understand how exactly BMI affects each 397 

condition could be performed, using clustering-based MR approaches for instance [43]. Other obesity-398 

related phenotypes should be used to investigate the effect of body fat distribution, like waist-to-hip 399 

ratio for example, and these analyses would benefit from a sex-specific approach, to better account 400 

for the known sex-specific genetic architecture of such phenotypes [44,45].   401 

This work focused on individuals of European descent, mostly because of data availability, and analyses 402 

are needed in other ethnic groups, as it is known that both BMI distribution [46] and its effect on LTCs 403 

may vary depending on ethnicity [47,48], to further understand the role of BMI in multimorbidity in 404 

these groups. It is important to note that the relative paucity of data from people of non-European 405 

ancestry has a disproportionately large effect on the utility of genetics for multimorbidity, because 406 

missing data from only one condition will affect multiple pairs. 407 
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This work not only has important implications for research that aims at identifying shared biological 408 

pathways between pairs of LTCs but also has direct implications for potential intervention. We showed 409 

that intervening on BMI would directly impact the prevalence of pairs of LTCs, such as type 2 diabetes 410 

and chronic kidney disease, or type 2 diabetes and osteoarthritis. This is particularly important with 411 

the recent commercialisation of weight loss drugs that could be used to reduce the co-occurrence of 412 

LTCs through a better weight management strategy.  This work focused on individuals of European 413 

descent, mostly because of data availability, and analyses are needed in other ethnic groups, as it is 414 

known that both BMI distribution [46] and its effect on LTCs may vary depending on ethnicity [47,48], 415 

to further understand the role of BMI in multimorbidity in these groups.  416 

 417 

 418 

 419 

  420 
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