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2 

Abstract 1 

Background: 2 

Atrial fibrillation (AF) is a prevalent clinical condition worldwide, with a high global incidence that 3 

significantly impacts disease burden and mortality rates. Single nucleotide polymorphisms in 4 

ABCB1, ABCG2 and CYP3A5 are common, but the clinical outcomes are poorly understood. This 5 

study examines the association between the genetic variations of ABCB1, ABCG2 and CYP3A5 and 6 

the risk of AF in a Taiwanese population. 7 

 8 

Methods: 9 

This case-control study recruited 216 AF patients from two hospitals in Taiwan between 2021 and 10 

2023. Control groups were matched by age (± one year), gender, and AF-related variables from the 11 

Taiwan Biobank. Logistic regression analyzed the association between three genetic variants and 12 

AF risk. 13 

 14 

Results:  15 

A significant association was noted between ABCG2 rs2231142 and AF risk. Those with ABCG2 16 

rs2231142 G/T and T/T genotypes had a 1.91-fold (95% CI = 1.04-3.53) increased risk of AF 17 

compared to those with the G/G genotype. This association was particularly pronounced in males in 18 

those carrying ABCG2 rs2231143 T/T genotype having a 4.47-fold (95% CI = 1.02-19.67) increased 19 

risk after adjusting for covariates. There were no overall significant associations between AF risk 20 

and the polymorphisms of ABCB1 rs4148738 and rs1128503, nor CYP3A5 rs776746. 21 

 22 

Conclusion: 23 

A robust risk association between the ABCG2 rs2231142 T allele and AF in Asian populations, 24 

particularly in male adults, suggests that genetic testing for this polymorphism could be integrated 25 

into risk assessment models for AF. 26 

 27 

Keywords: Single nucleotide polymorphisms, Atrial fibrillation, ABCB1, ABCG2, CYP3A5 28 
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Nonstandard Abbreviations and Acronyms 31 

1000Genomes 1000 Genomes Project 

AF Atrial fibrillation 

ABCB1 Adenosine triphosphate binding cassette subfamily B member 1 

ABCG2 ATP-binding cassette subfamily G member 2 

ATPase  Adenosine triphosphatase 

BCRP Breast cancer resistance protein 

CYP3A5  Cytochrome P450 family 3 subfamily A member 5 

CYP450  Cytochrome P450 proteins 

DOACs Direct oral anticoagulants 

GBD 2017  Global Burden of Disease Study 2017 

gnomAD  Genome Aggregation Database 

GWAS Genome-Wide Association Studies 

HbA1C Glycated hemoglobin 

IRB Institutional Review Board 

KMUH  Kaohsiung Medical University Hospital 

KMTTH  Kaohsiung Municipal Ta-Tung Hospital 

LDL  Low-density lipoprotein cholesterol 

MYOZ1  Myozenin 1 

P-gp  P-glycoprotein 

PITX2  Paired like homeodomain 2 

SNPs  Single Nucleotide Polymorphisms 

TG  Triglyceride 

TWB  Taiwan Biobank 

ZFHX3  Zinc finger homeobox 3 

 32 
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Introduction 35 

Atrial fibrillation (AF) is recognized globally as a prevalent clinical condition that elevates the 36 

risk of systemic thromboembolism, heart failure, stroke, dementia and mortality, significantly 37 

impacting disease burden and mortality rates worldwide. 
1,2

 Current estimates indicate that 38 

approximately 33 million people are affected by AF globally, demonstrating its extensive reach and 39 

the urgency for comprehensive understanding and effective management strategies. 
3
 The 40 

prevalence of AF differs markedly between genders, with rates of 1.4% in males and 0.7% in 41 

females. Additionally, incidence rates are reported at 1.68 per 1000 males and 0.76 per 1000 42 

females, highlighting a substantial gender disparity in AF occurrence. 
1,2

 Age also plays a crucial 43 

role, with the Global Burden of Disease Study 2017 (GBD 2017) revealing that AF prevalence 44 

increases with age—from 0.07% among those aged 30 to 34, to 8.18% for those aged 95 and above. 45 

4
 46 

Reports have also suggested potential disparities in the incidence and characteristics of AF 47 

across different racial and ethnic groups. 
5-7

 In Taiwan, heart disease, primarily driven by AF, ranks 48 

as the leading cause of death in individuals aged 65 and above and the second leading cause of 49 

death overall, following cancer, according to the 2021 national mortality statistics from the Ministry 50 

of Health and Welfare. 
2
 Extensive research has been directed towards unraveling the mechanisms 51 

underlying AF. Predominantly, AF is seen as a consequence of diseases such as hypertension, 52 

ischemic and structural heart disease, which contribute to the electrical and structural remodeling of 53 

the atria. 
8-10

 Despite the known risk factors such as advancing age, heart disease, elevated blood 54 

pressure and excessive alcohol consumption, a significant number of cases occur without 55 

identifiable risk factors, hinting at a potential genetic predisposition to AF. This gap in 56 

understanding limits the development of effective treatments and highlights the necessity for further 57 

investigation, particularly in the realm of precision medicine. 
2,11

  58 

Over 60% of AF variability is attributed to genetic factors heightening AF susceptibility, 59 

influencing AF development and maintenance. 
12-14

 Genetic variations in the genes ABCB1 60 

(adenosine triphosphate (ATP) binding cassette subfamily B member 1), ABCG2 (ATP-binding 61 
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cassette subfamily G member 2), and CYP3A5 (cytochrome P450 family 3 subfamily A member 5), 62 

responsible for encoding P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and 63 

cytochrome P450 proteins (CYP450) respectively, play a significant role in altering transporter 64 

function. These genetic variations impact crucial aspects of AF, including cardiac electrical 65 

conduction, ion channel function and structural remodeling. 
15,16

 Studies have found specific single 66 

nucleotide polymorphisms (SNPs) such as rs1128503 and rs4148738 in ABCB1, which modify P-gp 67 

expression; furthermore, ABCG2 rs2231142 G>T genotype has been linked to decreased BCRP 68 

protein expression, 
17,18

 while CYP3A5 is crucial in metabolizing anticoagulants and 69 

stroke-prevention drugs, and this process significantly impacts the achievement of appropriate 70 

anticoagulation levels in patients with AF. 
19

 71 

Understanding the relationship between these genetic variants and the risk of developing AF is 72 

essential as it can provide insight into underlying molecular mechanisms and potentially guide the 73 

development of targeted therapies in the era of precision medicine. 
20

 In recent years, precision 74 

medicine has garnered increasing attention, emphasizing the significant relationship between 75 

diseases and genes. 
21

 Each individual possesses a unique genome that can influence their disease 76 

susceptibility, treatment response and drug metabolism, 
22

 and through genetic testing and analysis, 77 

researchers can establish correlations between genetic variants and particular diseases. 
23

 This 78 

knowledge can predict an individual's disease risk, facilitate accurate disease diagnosis, and aid in 79 

selecting the most suitable treatment options; 
24

 however, the current understanding of the 80 

relationship between these gene variants and the risk of AF remains unclear. In this study, we aimed 81 

to investigate the association between genetic variants of ABCB1 (rs1128503, rs4148738), ABCG2 82 

(rs2231142) and CYP3A5 (rs776746), and the risk of AF. 83 

 84 

Materials and methods 85 

Study subjects 86 

 This is an ongoing case-control study. The case patients diagnosed as AF by board-certified 87 

cardiologists were recruited from Kaohsiung Medical University Hospital (KMUH) and Kaohsiung 88 
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Municipal Ta-Tung Hospital (KMTTH) between January 2021 and January 2023. The study 89 

subjects included individuals aged 20-85 years and willing to cooperate with blood-draw procedures. 90 

Patients undergoing cancer treatment, those with impaired renal function (eGFR<15 ml/min/1.73 91 

m
2
) and those who could not cooperate were excluded from the study.  After the written informed 92 

consent was received, a designated researcher administered a standardized and structured 93 

questionnaire and reviewed the medical charts to collect age, gender, history of hypertension and 94 

diabetes and blood test data such as glycated hemoglobin (HbA1C), serum creatinine, triglyceride 95 

(TG) and low-density lipoprotein cholesterol (LDL)). A total of 216 AF patients were enrolled in the 96 

study period. 97 

    Potential healthy controls were selected from the Taiwan Biobank (TWB) cohort, a 98 

community-based cohort comprising healthy adults recruited from all over Taiwan. The TWB 99 

cohort, established in 2005, aimed to collect genetic and medical information from 200,000 ethnic 100 

Taiwanese individuals aged 20 years or above without a history of cancer, where this cohort 101 

underwent comprehensive data collection including questionnaires, physical examinations and 102 

biochemical tests on blood and urine samples, and has continued to collect biological samples 103 

to-date, including DNA, blood plasma and urine from study subjects, which can be provided to 104 

researchers in Taiwan for study purposes at a minimal cost. As of 2020, the TWB cohort had 105 

enrolled 122,068 potential study adults aged 30-75 years with baseline data. The Institutional 106 

Review Board (IRB) of KMUH approved this study. 107 

    Among the 216 AF patients, 185 subjects have provided blood samples for genotyping results. 108 

In addition, in order to match the AF patients of similar age with healthy controls from TWB cohort, 109 

we further excluded 44 patients aged over 76 years and left 141 eligible cases in the study (Figure 110 

1). Then, the case patients were matched with the controls (1: 1 ratio) based on age within a range 111 

of ±1 year and the same gender from TWB cohort with specific genotypes of ABCB1 (rs1128503, 112 

rs4148738), ABCG2 (rs2231142), and CYP3A5 (rs776746) (n = 108,829). The final study subjects 113 

were 141 AF cases and 141 healthy controls.   114 

 115 
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Genotyping of ABCB1 (rs1128503, rs4148738), ABCG2 (rs2231142) and CYP3A5 (rs776746) 116 

polymorphisms from the case study group 117 

    The QIAamp DNA Mini Kit (Qiagen, Germany) was used to extract genomic DNA from 118 

peripheral blood samples collected from patients in the case study group, following the 119 

manufacturer's instructions, while TaqMan probes designed explicitly for standardized SNPs assays 120 

(Thermo Fisher Scientific, Inc) were employed to assess single nucleotide polymorphic variations 121 

in the ABCB1 (rs1128503, rs4148738), ABCG2 (rs2231142) and CYP3A5 (rs776746) genes. Probe 122 

IDs and SNPs regions are listed in Table S1. 123 

    For SNPs genotyping, a reaction mixture containing 10 μL was prepared, containing 10 ng of 124 

genomic DNA, 2X TaqMan® Master Mix, 20X Assay Working Stock probe and nuclease-free water. 125 

A negative control (no template) was included in the experiment. The cycling conditions adhered to 126 

the manufacturer's standard protocol as recommended where real-time PCR was conducted on all 127 

samples using the QuantStudio 3 instrument (Applied Biosystems) and QuantStudio™ Design & 128 

Analysis Software was employed to analyze the data and identify homozygous and heterozygous 129 

alleles. To ensure the reliability of the genotyping assays, approximately 9.4% of patients (n = 130 

15/141) were randomly selected for the genotyping of each polymorphism; this additional step 131 

being performed to validate the consistency and accuracy of the genotyping results. The reaction of 132 

PCR for direct sequencing is shown in Supplemental Material and Table S2 that was also 133 

performed to confirm the genotyping results (Figure S1). For TWB cohorts, we extracted the 134 

genotype information of ABCB1 (rs1128503, rs4148738), ABCG2 (rs2231142), and CYP3A5 135 

(rs776746) genes from Genome-Wide Genotyping: Affymetrix Axiom TWB and TWB 2.0 database, 136 

in which genotype analysis was either from the Axiom Genome-Wide TWB array or Axiom 137 

Genome-Wide TWB 2.0 array. 
25

 138 

 139 

Statistical analysis 140 

    The frequencies of ABCB1 (rs1128503), ABCG2 (rs2231142) and CYP3A5 (rs776746) 141 

genotypes were assessed for Hardy-Weinberg disequilibrium in the TWB-1 control group (n = 141). 142 
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A comparison of demographic characteristics and genotypes between the case group (n = 141) and 143 

the TWB-1 control group (n = 141) was performed. Logistic regression models were employed to 144 

investigate the impact of ABCB1 (rs1128503, rs4148738), ABCG2 (rs2231142), and CYP3A5 145 

(rs776746) genotypes on AF risk, both before and after adjusting for covariates, including age 146 

(continuous variables), gender, diabetes, hypertension, HbA1C, serum creatinine, TG and LDL. 147 

Odds ratios (OR), confidence intervals (CI) and p-values were calculated and presented. If both 148 

ABCB1 (rs1128503, rs4148738), ABCG2 (rs2231142) and CYP3A5 (rs776746) genotypes showed 149 

significant differences between case patients and controls, the combined effect of both genes was 150 

further examined. These analyses were also stratified by gender. All statistical analyses were 151 

conducted using IBM SPSS Statistics 25 software.  152 

 153 

Results 154 

Characteristics of the Study Population  155 

The demographic characteristics of 141 AF patients and the 141 TWB-1 controls are shown in 156 

Table 1. Among these 141 AF patients, 48 (34.0%) were female and 93 (66.0%) were male, while 157 

the percentages of gender, age group (40-60 and > 60 years) and educational levels were identical in 158 

AF patients and TWB-1 controls. Additionally, between the two groups of AF patients and TWB-1 159 

controls, the aforementioned variables (gender, age groups and other variables including diabetes, 160 

hypertension, HbA1c, serum creatinine, TG and LDL) were not significantly different (all p > 0.05). 161 

Of the 141 AF patients, 24.8% had diabetes and 35.5% had hypertension; additionally, the HbA1c 162 

level (6.2%) was higher than the normal range of 4.0-5.6%. 163 

 164 

Allele frequencies in TWB cohort 165 

The prevalence of ABCB1 rs1128503 A/A, A/G, and G/G was 41.8%, 46.8% and 11.3% 166 

respectively, for TWB-1 (n = 141). For ABCB1 rs4148738 T/T, C/T, and C/C, the prevalence was 167 

34.0%, 41.8% and 24.1% respectively, for TWB-1. ABCG2 rs2231142 G/G, G/T, and T/T were 168 

59.6%, 33.3% and 7.1% respectively, in TWB-1. CYP3A5 rs776746 C/C, T/C, and T/T were 46.1%, 169 
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44.0% and 9.9% respectively, in TWB-1 (Table S3). All frequencies of ABCB1 (rs1128503, 170 

rs4148738), ABCG2 (rs2231142), and CYP3A5 (rs776746) genotypes in TWB-1 were consistent 171 

with the statistics of the Hardy-Weinberg equilibrium, which were insignificant (p > 0.05) (Table 172 

S3). 173 

 174 

Association of ABCB1, ABCG2 and CYP3A5 polymorphisms 175 

    Table 2 shows the association of ABCB1 (rs1128503, rs4148738), ABCG2 (rs2231142), and 176 

CYP3A5 (rs776746) genotypes with AF risk before and after adjusting for other covariates 177 

(including diabetes, hypertension, HbA1c, serum creatinine, TG and LDL). Genotypes of ABCG2 178 

rs2231142 G/T and T/T exhibited a significant risk of developing AF compared to G/G genotypes 179 

after adjusting for other covariates (AOR = 1.912, 95% CI = 1.035-3.53), although no significant 180 

difference was observed in the other three SNPs after adjustment. 181 

    Categorized by sex, the significant effect of ABCG2 rs2231143 remained present in males but 182 

not females, likely due to the small sample size of female AF patients (n = 48) (Table 3). Males 183 

with the combined genotypes of ABCG2 rs2231143 G/T and T/T had a significant risk of AF when 184 

compared with males carrying ABCG2 rs2231143 G/G genotype (crude OR=2.005, 95% 185 

CI=1.118-3.596; AOR=2.179, 95% CI=0.894-5.307). There was also a trend toward statistical 186 

significance for the association between male subjects and AF (p = 0.021 and 0.041 before and after 187 

adjusting for other covariates), suggesting a potential risk factor associated with this haplotype in 188 

males.  189 

 190 

Discussion 191 

This hospital-based case-control study underscores the importance of the ABCG2 rs2231142 G/T 192 

and T/T genotypes, which exhibit a higher risk of developing AF than those with the G/G genotype, 193 

particularly among male patients. However, no associations were identified between the 194 

polymorphisms of ABCB1 rs4148738 and rs1128503, and CYP3A5 rs776746 genotypes and AF 195 

risk. 196 
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ABCG2 belongs to a superfamily of 48 human ATP-binding cassette transporters, which 197 

typically facilitate the transport of various substrates and rely on ATP-binding for activation. The 198 

ABCG2 rs2231142 variant results in a substitution of glutamine with lysine (Q141K) in exon 5. 199 

Previous studies have reported that individuals carrying the ABCG2 rs2231142 variant (G/T and T/T) 200 

exhibit significantly lower levels of ABCG2 protein within red blood cells as well as reduced 201 

ABCG2 adenosine triphosphatase (ATPase) activity compared to those with the G/G genotype.  202 

The presence of the ABCG2 rs2231142 T allele leads to an approximately 50% reduction in 203 

ABCG2 protein expression. 
26

 Zhang et al. found that variations in the ABCG2 rs2231142 variant 204 

could impact the serum levels of pro-inflammatory and pro-angiogenic markers in chronic 205 

inflammatory arterial conditions, hinting at a correlation between inflammation and the ABCG2 206 

rs2231142 variant. 
27

 These findings suggest that ABCG2 rs2231142 could play a crucial 207 

physiological role as an excreter of environmental and endogenous toxins, and it might influence 208 

the multidrug transporter function in human erythrocytes, corresponding to pharmacologically 209 

relevant genetic variations. 
28

 Furthermore, recent studies have emphasized that the 210 

pharmacogenetic implications of these findings could connote the efficacy of direct oral 211 

anticoagulants (DOACs) being enhanced, as genetic variants influence drug metabolism and 212 

response. 
29,30

 213 

In recent years, DOACs such as apixaban, dabigatran, edoxaban and rivaroxaban have 214 

replaced vitamin K antagonists for treating AF due to their ease of use and better effectiveness. In a 215 

rat model of pharmacokinetic interaction, almonertinib significantly increased systemic exposure to 216 

apixaban and rivaroxaban by inhibiting ABCB1 and ABCG2. 
31

 Previous studies have shown 217 

variable results regarding the relationship between genotypes and DOACs in AF patients. Gulilat et 218 

al. reported that the ABCG2 rs2231142 T allele predicted higher concentrations of apixaban in 219 

Caucasian AF patients, 
32

 but was associated with a lower concentration and lower oral clearance of 220 

apixaban in Japanese AF patients. 
33,34

 Additionally, no correlations were observed between the 221 

ABCG2 rs2231142 and rivaroxaban concentrations in Japanese AF patients. 
35

 Nevertheless, we 222 

observed a significant increase in the risk of AF associated with the ABCG2 rs2231142 T allele in 223 
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patients treated with rivaroxaban (Table S4), indicating that this SNPs might affect the drug 224 

transporters and metabolism of DOACs, making additional studies necessary to clarify the role of 225 

this SNPs in DOACs pharmacokinetic interactions. 226 

Previous studies have shown that the loss-of-function ABCG2 rs2231142 T allele is associated 227 

with hyperuricemia, which might contribute to vascular damage and cardiovascular diseases such as 228 

atrial fibrillation, coronary artery disease, heart failure and stroke. 
36-38

 Similar observations were 229 

noted in an earlier prospective cohort study conducted in Taiwan, where hyperuricemia emerged as 230 

an independent risk factor for mortality from all causes, total cardiovascular disease and ischemic 231 

stroke. 
39

 In other studies, it is also suggested that the effect size of the ABCG2 rs2231142 is more 232 

significant in males. 
36,40,41

 Our current data showed a similar interaction, as we found a significant 233 

association between the rs2231142 T allele and AF risk in males, which was consistent with these 234 

Asian population studies, 
36-41

 and although previous studies have demonstrated that estrogen levels 235 

could affect ABCG2 expression, 
42,43

 this might explain why we observed the association with atrial 236 

fibrillation risk predominantly in males rather than females.  237 

    Currently, no studies have examined the AF risk linked to the ABCG2 rs2231142 genotype, but 238 

research on other SNPs regarding AF risk has been conducted. Genetic factors contributing to AF 239 

are gaining more attention, with estimates of heritability reaching 22% in the UK Biobank and 62% 240 

in a twin study conducted in Denmark. 
14,44

 Daniel et al. were the first to report the Genome-wide 241 

association studies (GWAS) for AF, where the upstream region of the transcription factor gene 242 

PITX2 on 4q25 was significantly associated with AF. 
45

 Several other genetic loci related to AF 243 

have been identified, including variants in or near ZFHX3 (Zinc Finger Homeobox 3), PITX2 244 

(paired like homeodomain 2), and MYOZ1 (myozenin 1), which show the most associations. 
46

  245 

Our research further highlights the significant relationship between the ABCG2 rs2231142 T 246 

allele and increased AF risk, particularly in males. This suggests that integrating genetic testing for 247 

this polymorphism into risk assessment models for AF could enhance precision in AF management 248 

strategies, especially in populations with a high prevalence of this risk allele. Past studies have 249 

primarily focused on pharmacogenomics or the risk of cardiovascular and hyperuricemia. 
36-41

 The 250 
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association between polymorphisms of ABG2 rs2231142 genotypes and AF subjects might result 251 

from the influence of hyperuricemia, obesity, hypertension and dyslipidemia, as well as sex 252 

differences caused by estrogen levels, or both. 
47

 In the study conducted by Doshi et al., 
48

 ABCG2 253 

expression was examined in male obesity mice. The findings indicated elevated levels of ABCG2 254 

protein, suggesting a potential association between increased ABCG2 expression and obesity-related 255 

AF, although the mechanism of the influence of the ABCG2 rs2231142 locus on the risk effect of 256 

developing AF still needs to be investigated. 257 

Table S5 shows the similar variant allele frequencies of ABCB1, ABCG2 and CYP3A5 258 

genotypes in East Asians from different databases and from the datasets of TWB, suggesting the 259 

robustness of target genotype frequencies in the public-domain databases. The 1000 Genomes 260 

Project (1000Genomes) and the Genome Aggregation Database (gnomAD) are public websites that 261 

respectively encompass data from more than 2,500 individuals representing global populations and 262 

aggregate over 800,000 exome and whole-genome sequences from seven ethnic groups, sharing 263 

summary data with the scientific community (https://www.internationalgenome.org/ and 264 

https://reurl.cc/RWnZzg, accessed on 2024/4/18). The TWB is an ongoing prospective study that 265 

involves over 200,000 individuals aged 20–70 in Taiwan. 266 

The distributions of genotype and allelic frequencies in Taiwan and other populations such as 267 

American, European, African, South Asian, Central Asian and East Asian are summarized in Table 268 

S6. The distributions of allelic frequencies in other populations were taken from the database of 269 

NCBI (https://www.ncbi.nlm.nih.gov/, assessed on 2024/4/18). The ABCB1 rs1128503 G allele and 270 

rs4148738 T allele have a higher prevalence among Africans, with frequencies of 80% and 77% 271 

respectively, while the ABCG2 T allele is more common in American, East Asian and Taiwanese 272 

populations consistent with the findings reported by Alrajeh et al. 
49

 Their reports noted that the 273 

frequency of the allele associated with reduced ABCG2 function is exceptionally high among 274 

Asians while the frequency of the CYP3A5 C allele is lower in African populations, with a 275 

frequency of 31%; interestingly, the prevalence of the ABCG2 T allele is higher in East Asian, 276 

Taiwanese and American populations (29.8%, 31.5% and 22.5%, respectively) compared to 277 
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European, South Asian and African populations (9.8%, 9% and 2.6%, respectively). These 278 

differences may be attributed to factors such as database sources, study designs and ethnicities. 279 

 280 

Conclusion 281 

    In conclusion, the findings suggest a strong association between the ABCG2 rs2231142 T allele 282 

and a higher risk of AF among Taiwanese male subjects, with a 4.5-fold higher risk compared to 283 

controls, and a 1.9-fold risk when combining ABCG2 genotypes in the overall population. However, 284 

no significant associations were identified between the polymorphisms of ABCB1 rs4148738 and 285 

rs1128503, as well as CYP3A5 rs776746 genotypes and AF risk. Further studies with larger sample 286 

sizes are necessary to investigate the interaction of the ABCG2 rs2231142 genotype with AF risk. 287 

  288 
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 497 

Figure Legends 498 

 499 

Figure 1. Flow chart comparing the genetic risk of AF in our study patients and Taiwan biobank’s 500 

healthy subjects. 501 

  502 
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Table 1. Demographic characteristics of atrial fibrillation and their comparison groups 503 

Demographic characteristics 
Number (%) 

Cases (N=141) TWB-1 (N=141) 

Gender 

  Male 

  Female 

 

93 (66.0) 

48 (34.0) 

 

93 (66.0) 

48 (34.0) 

Age (years) 

< 40 

40–60 

> 60 

 

1 (0.71) 

26 (18.44) 

114 (80.45) 

 

1(0.71) 

26 (18.44) 

114 (80.45) 

Mean ± SD 

Median 

IQR 

66.3±7.8 

68.0 

63.0-72.0 

66.3 ±7.8 

68.0 

63.0－72.0 

Diabetes 

No 

Yes 

 

106 (75.2) 

35 (24.8) 

 

116 (82.3) 

25 (17.7) 

Hypertension 

No 

Yes 

 

91 (64.5) 

50 (35.5) 

 

100 (71.0) 

41 (29.0) 

HbA1c (%) 

Mean ± SD 

Median 

IQR 

 

6.2±1.1 

6.0 

5.6-6.6 

 

6.2 ± 1.1 

5.8 

5.5-6.3 

Serum creatinine (mg/dl) 

Mean ± SD 

Median 

IQR 

 

1.2 ± 0.7 

1.1 

0.8-1.3 

 

0.8 ± 0.3 

0.8 

0.6-0.9 

TG (mg/dl) 

Mean ± SD 

Median 

IQR 

 

102.6 ± 53.7 

90.0 

66.0-126.0 

 

116.5 ± 68.8 

99.0 

70.0-134.0 

LDL (mg/dl) 

Mean ± SD 

Median 

IQR 

 

78.5 ± 30.8 

73.9 

55.8-95.8 

 

114.6 ± 28.8 

113.0 

95-134 
Abbreviations: TWB, Taiwan Biobank; SD, standard deviation; IQR, interquartile range; HbA1c, 504 
glycated hemoglobin; TG, triglycerides; LDL, low-density lipoprotein cholesterol.505 
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Table 2. Distribution of ABCB1, ABCG2, and CYP3A5 genotypes and odds ratios 506 

among atrial fibrillation cases and Taiwan biobank controls 507 

Genes/SNPs Genotypes 

Cases 

(N=141) 

TWB-1
a
 

(N=141) 
Crude OR AOR

b
 

N (%) N (%) (95% CI) (95% CI) 

ABCB1-rs1128503 

AA 65 46.1 59 41.8 1 

0.866 (0.529-1.419) 

0.738 (0.327-1.662) 

1 

1.001 (0.531-1.888) 

0.465 (0.168-1.285) 

AG 63 44.7 66 46.8 

GG 13 9.2 16 11.4 

p-trend     0.414 0.271 

AA+AG 128 90.8 125 88.7 1 

0.793 (0.367-1.717) 

1 

0.465 (0.177-1.224) GG 13 9.2 16 11.3 

ABCB1-rs4148738 

TT 48 34.0 48 34.0 1 

1.107 (0.594-1.741) 

0.971 (0.520-1.812) 

1 

1.190 (0.603-2.349) 

0.831 (0.369-1.873) 

CT 60 42.6 59 41.8 

CC 33 23.4 34 24.2 

p-trend     0.937 0.741 

TT+CT 108 76.6 107 75.9 1 

0.962 (0.556-1.664) 

1 

0.753 (0.368-1.541) CC 33 23.4 34 24.1 

ABCG2-rs2231142 

GG 63 44.7 84 59.6 1 

1.816 (1.103-2.989) 

1.867 (0.778-4.477) 

1 

1.880 (0.992-3.560) 

1.791 (0.599-5.356) 

GT 64 45.3 47 33.3 

TT 14 10.0 10 7.1 

p-trend     0.022 0.072 

GG 63 44.7 84 59.6 1 1 

GT+TT 78 55.3 57 40.4 1.825 (1.137-2.927) 1.912(1.035-3.530) 

CYP3A5-rs776746 

CC 63 44.7 65 46.1 1 

1.048 (0.640-1.716) 

1.105 (0.493-2.476) 

1 

0.879 (0.468-1.652) 

1.941 (0.675-5.578) 

TC 63 44.7 62 44.0 

TT 15 10.6 14 9.9 

p-trend     0.786 0.502 

CC+TC 126 89.4 127 90.1 1 

1.080 (0.501-2.330) 

1 

2.058 (0.293-2.085) TT 15 10.6 14 9.9 

Abbreviations: ABCB1, ATP binding cassette subfamily B member 1; ABCG2, ATP binding 508 
cassette subfamily G member 2; AOR, adjusted odds ratio; CYP3A5, cytochrome P450 3A5; TWB, 509 
Taiwan Biobank (https://taiwanview.twbiobank.org.tw/search). 510 
a
 TWB-1 using 1:1 individual matching of age (+/- 1 year) and genders from original 108,829 511 

subjects.  512 
b
 Adjusting by diabetes, hypertension, glycated hemoglobin (HbA1c), serum creatinine, 513 

triglycerides (TG) and low-density lipoprotein cholesterol (LDL). 514 

  515 
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Table 3. Logistic regression analysis with risk estimates of ABCB1, ABCG2, and CYP3A5 516 
genotypes in Taiwanese female and male atrial fibrillation patients 517 

Genes/SNPs  
(N, %) 

Cases 
(N=141) 

TWB-1
a 

(N=141) 
Crude OR

 

(95%CI)  
AOR

b 
(95%CI) 

Female (N=48)     
ABCB1- rs1128503     

AA 26 (54.2) 19 (39.6) 1 1 
AG 

20 (41.7) 23 (47.9) 
0.635 

(0.274-1.475) 
0.780 (0.266-2.284) 

GG 
2 (4.2) 6 (12.5) 

0.244 
(0.044-1.342) 

0.106 (0.015-0.724) 

p-trend   0.138 0.047 
AA+AG 46 (95.8) 42 (87.5) 1 1 

GG 2 (4.2) 6 (12.5) 
0.304 

(0.058-1.591) 
0.118 (0.018-0.761) 

ABCB1- rs4148738     
TT 15 (31.3) 17 (35.4) 1 1 
CT 

17 (35.4) 20 (41.7) 
0.963 

(0.373-2.488) 
1.516 (0.487-4.721) 

CC 
16 (33.3) 11 (22.9) 

1.648 
(0.586-4.641) 

1.757 (0.522-5.918) 

p-trend   0.907 0.349 
TT+CT 32 (66.7) 37 (77.1) 1 1 

CC 16 (33.3) 11 (22.9) 1.682(0.683-4.144) 1.432 (0.489-4.191) 
ABCG2- 
rs2231142 

  
  

GG 26 (54.1) 31 (64.6) 1 1 
GT 

21 (43.8) 14 (29.2) 
1.788 

(0.762-4.200) 
2.080 (0.771-5.611) 

TT 
1 (2.1) 3 (6.2) 

0.397 
(0.039-4.054) 

0.143 (0.005-3.803) 

p-trend   0.609 0.682 
GG 26 (54.1) 31 (64.6) 1 1 

GT+TT 22 (45.9) 17 (35.4) 1.543(0.680-3.503) 1.692 (0.631-4.535) 
CYP3A5- rs776746     

CC 23 (47.9) 21 (43.8) 1 1 
CT 

17 (35.4) 22 (45.8) 
0.706 

(0.297-1.678) 
0.714 (0.261-1.951) 

TT 
8 (16.7) 5 (10.4) 

1.461 
(0.413-5.172) 

2.303 (0.555-9.599) 

p-trend   0.757 0.492 
CC+CT 40 (83.3) 43 (89.6) 1 1 

TT 8 (16.7) 5 (10.4) 
1.720(0.519-5.696) 2.767 

(0.710-10.784) 
Male (N=93)     
ABCB1- rs1128503     

AA 39 (41.9) 40 (43.0) 1 1 
AG 

43 (46.3) 43 (46.2) 
1.026 

(0.557-1.889) 
1.235 (0.490-3.115) 

GG 
11 (11.8) 10 (10.8) 

1.128 
(0.431-2.956) 

0.907 (0.215-3.825) 

p-trend   0.901 0.922 
AA+AG 82 (88.2) 83 (89.2) 1 1 

GG 11 (11.8) 10 (10.8) 1.113 (0.449-2.764) 0.792 (0.203-3.100) 
ABCB1- rs4148738     

TT 33 (35.5) 31 (33.3) 1 1 
CT 

43 (46.2) 39 (42.0) 
1.036 

(0.538-1.993) 
0.892 (0.333-2.387) 

CC 
17 (18.3) 23 (24.7) 

0.694 
(0.313-1.539) 

0.274 (0.071-1.053) 
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p-trend   0.577 0.089 
TT+CT 76 (81.7) 70 (75.3) 1 1 

CC 17 (18.3) 23 (24.7) 
0.681 

(0.336-1.379) 
0.317 (0.096-1.048) 

ABCG2- 
rs2231142 

  
  

GG 37 (39.8) 53 (57.0) 1 1 
GT 

43 (46.2) 33 (35.5) 
1.867 

(1.006-3.463) 
1.718 (0.667-4.425) 

TT 
13 (14.0) 7 (7.5) 

2.660 
(0.969-7.306) 

4.474 
(1.018-19.671) 

p-trend   0.021 0.041 
GG 37 (39.8) 53 (57.0) 1 1 

GT+TT 56 (60.2) 86 (43.0) 2.005 (1.118-3.596) 2.179 (0.894-5.307) 
CYP3A5- rs776746     

CC 40 (43.0) 44 (47.3) 1 1 
CT 46 (49.5) 40 (43.0) 1.265 (0.693-2.311) 0.756 (0.301-1.896) 
TT 7 (7.5) 9 (9.7) 0.856 (0.292-2.511) 0.885 (0.139-5.621) 

p-trend   0.806 0.646 
CC+CT 86 (92.5) 84(90.3) 1 1 

TT 7 (7.5) 9 (9.7) 
0.760 

(0.271-2.133) 
1.087 (0.187-6.326) 

Abbreviations: ABCB1, ATP binding cassette subfamily B member 1; ABCG2, ATP binding 518 
cassette subfamily G member 2; AOR, adjusted odds ratio; CYP3A5, cytochrome P450 3A5; TWB, 519 
Taiwan Biobank (https://taiwanview.twbiobank.org.tw/search). 520 
a 
TWB-1 using 1:1 individual matching of age (+/- 1 year) and genders from original 108,829 521 

subjects.  522 
b
 Adjusting by diabetes, hypertension, glycated hemoglobin (HbA1c), serum creatinine, 523 

triglycerides (TG) and low-density lipoprotein cholesterol (LDL). 524 
 525 

  526 
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 527 

 528 

 529 
Figure 1. Flow chart comparing the genetic risk of AF in our study patients and Taiwan biobank’s 530 

healthy subjects. 531 

 532 

 533 
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