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Abstract 

Polygenic diseases require the co-occurrence of multiple risk variants to initiate a pathology. An 
example is preeclampsia, a hypertensive disease of pregnancy with no known cure or therapy 
other than the often-preterm delivery of the neonate and placenta. Preeclampsia is challenging to 
predict due to symptomatic and outcome heterogeneity. Transcriptomic and genetic analysis 
suggests that this is a multi-syndromic and multigenic disease. Previous research applications of 
traditional GWAS methods to preeclampsia identified only a few alleles with marginal 
differences between cases and controls. We seek to identify genetic networks related to the 
pathophysiology of preeclampsia as potential avenues of therapeutic investigation and early 
genetic testing. We created a novel systems biology-based method that identifies networks of co-
occurring SNPs associated with a trait or disease. The co-occurring pairs are assembled into 
higher-order associations using network graphs. We validated our method using simulation 
modelling and tested it against maternal genetic data of a previously assessed preeclampsia 
cohort. The genetic co-occurrence network identified SNPs in or near genes with ontological 
enrichment for VEGF, immunological and hormonal pathways, among others with known 
physiological disruption in preeclampsia. Our findings suggests that preeclampsia is caused by 
relatively common alleles (<5%) that accumulate in unfavorable combinations. 
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Introduction 

Preeclampsia is a hypertensive disorder of pregnancy that globally causes over 70,000 maternal 

deaths and 500,000 neonatal deaths annually1. Preeclampsia is largely untreatable aside from 

medically induced delivery to limit fetal and maternal mortality2. In high-resource settings, it 

accounts for $10s of billion in health care costs annually and a large proportion of maternal and 

neonatal admissions to hospital and intensive care. Preeclampsia is challenging to detect before 

the onset of overt symptoms of hypertension and kidney dysfunction (proteinuria), and the 

disease can progress rapidly3,4. Most early detection methods, such as sFLT/PGF ratios, have 

high negative predictive value to help rule out people5. Symptomatic onset is variable, occurring 

between week 24 and term6. The preeclampsia pathology is multifactorial, with most cases 

presenting with maternal systemic inflammation of the vascular system (hypertension) and 

inflammation of the liver, kidney and heart7,8. On the fetal side, there can be fetal and placental 

growth restriction. Most frequently discussed are various pathologies involving defective 

angiogenesis and vascular remodelling6,9. Others more strongly favour immunological and 

metabolic origins of the disease10,11. There are likely many subtypes of the disease, and our 

previous work identified major histological and transcriptional subtypes involving placental 

development, maternal cardiovascular and immune systems12–14.    

The maternal and fetal genomes appear to potentially contribute to disease risk, with an 

estimated contribution of over 50% 15. Genetic testing is sought to identify early disease markers 

and targets for therapeutic intervention and prevention. Genome-wide association studies are 

generally used to find polymorphisms (SNPs) associated with a disease. GWAS studies on 

preeclampsia find few associated SNPs and do not replicate well between populations15. 

Maternal studies identified SNPs in the INHBB gene in both Australian and Han Chinese cohorts 
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but not in a Norwegian/Finnish cohort16,17. Inhibins are thought to play a role in spiral artery 

remodelling critical to proper placental development, oxygenation and nutrient transfer 16.  In an 

Icelandic/UK cohort, SNPs near the FLT1 gene were found to be associated with PE in a GWAS 

of the placental (fetal) genome18. The FLT1 gene encodes the vascular endothelial growth factor 

receptor that binds vascular endothelial growth factor alpha (VEGFA). In fetal trophoblasts, the 

soluble sFLT1 isoform is expressed and released into maternal circulation at levels higher on 

average than preeclampsia19. It is thought that circulating sFLT-1 binds VEGF A (VEGFA), 

preventing activation of the transmembrane receptor and inhibiting angiogenesis. While these 

may relate to the common vascular pathologies observed, the association of the SNP with the 

disease is weak, representing a minority of cases, as many healthy pregnancies carry the alleles.  

Moving away from univariate testing and single gene associations to disease, we propose that PE 

is a polygenic disease resulting from an accumulation of co-occurring SNPs within genes 

belonging to pathways critical to the observed pathophysiology. The polygenic risk score (PRS) 

is a current method to address polygenic disease20. These scores are created by conducting a 

GWAS analysis and using the statistical test results to rank and select SNPs based on an arbitrary 

cut-off, leading to models with dozens to 1000s of SNPs. The prediction is made by weighting 

SNPs by their effect sizes and summing them20. PRS methods highlight that having more SNPs 

associated with a trait will increase the risk of developing that trait. However, it should be noted 

that not all SNPs included in the score are biologically relevant, and consequently, scores with 

fewer SNPs can perform better than those with many20. Accepting single polymorphisms above 

the statistical threshold inflates false discovery and diminishes the ability to discover gene set 

enrichments. Polymorphisms that contribute to disease are likely to appear in multiple 
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biochemical pathways21,22. However, PRSs still utilize a univariate signal and do not consider 

how many pathways or how severely pathways are hit.  

We propose that an improvement is to utilize a framework similar to a synthetic lethal screen, 

where two or more genes are disrupted simultaneously23,24. If the two co-occurring mutations 

create a phenotype, these are scored as a gene-gene interaction23,24. These interacting genes are 

typically enriched in protein-protein interactions and may be in the same pathway24. 

Alternatively, genetic interactions may occur in parallel pathways such that there is a loss of 

redundancy24.  

To address the limitation of GWAS and the PRS methods, we created a novel method that first 

tests for SNP co-occurrence and then tests for the enrichment of the co-occurrence to a pathology 

or trait. Importantly, individual SNPs are not strictly required to be enriched to the trait. Co-

occurring SNPs enriched to a trait are assembled into higher order structures using network 

graphs revealing a complexity of genetic interaction associated with preeclampsia. These larger 

networks are then tested using ontology enrichment to identify key pathways with enriched 

polymorphic variants in preeclampsia.  

Results 

Simulated random genomes show low background co-occurrence of SNPs 

We used data modeling to establish a ground truth data set to evaluate if co-occurrence could 

used identify polymorphic variants associated with disease. The R package minutest was used to 

simulate 6,000 individuals with 4000 alleles through random breeding. Linkage disequilibrium 

was simulated at values like those observed in the 1000 genomes project25. First, we aimed to 

establish the background false discovery rate of SNP cooccurrence using simulated small 
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genomes where alleles could be spiked to associate with the disease. To establish the background 

rate, we randomly drew 1000 individuals from the population for cases and controls each 

(without replacement). We did so ten times (with replacement) to form paired datasets for ten 

trials. These should have no true differential co-occurrence. 

Since the cohorts comprised 4000 alleles, each trial tested 7,998,000 SNP pairs for co-

occurrences. An average of just 3 SNP pairs passed the co-occurrence filter (FDR-adjusted p-

value ≤ 0.05 from a hypergeometric test for co-occurrence and FDR-adjusted p-value from a chi-

squared test for co-occurrence in case vs control) used to create networks. Additionally, after 

spiking independent SNPs (either with disease or in LD models), paired datasets had no 

individual SNPs that were associated with disease (p-value ≤ 5 x 10-8 from Cochrane-Armitage 

trend test). These findings established that our methods produced a low background rate of co-

occurring SNPs in the simulations.  

 

Co-occurring SNPs in cases, controls are separable by graph properties. 

Next, we aimed to identify the true discovery rate, sensitivity and specificity in simulated small 

genomes. Additionally, we aimed to determine if network graph properties could be used to 

identify true discoveries. We used the case-control cohort we generated above to simulate a 

disease state with co-occurrence (Fig. 1A). In the cases, a range of spiked SNPs (5-80) were 

selected and forced to correlate at different phi values (0.2, 0.3 and 0.4). Critically, when spiking 

co-occurring SNPs we did not alter the frequency of the SNPs between the cases and controls 

ensuring that no individual SNPs was enriched. Each combination of spiked alleles and phi 

values was evaluated in 10 trials of 1000 cases and 1000 controls and we evaluated their means 

and distributions.  
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Figure 1. Method Overview. (A) Simulation workflow. (i) A general population of genomes is 

generated: 6000 individuals, each with 4000 SNPs. SNPs are coded as binary genotypes with 

0s and 1s representing the absence or presence of a minor allele, respectively. At this stage, 

6
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We observed that the models with more spiked SNPs had a higher correlation between spiked 

SNPs and returned a greater number of SNP pairs as statistically significant into the co-

occurrence network (Wilcox test, FDR adjusted p-value ≤ 0.05). The model with five spiked 

SNPs at a correlation of 0.2 had, on average, 41 SNP pairs placed into the co-occurrence 

network. The model with 80 spiked SNPs at a correlation of 0.4 had, on average, 4003 SNP pairs 

placed into the network. As the number of SNP pairs passing into the network increased, the total 

number of SNPs increased, averaging 56 SNPs in the former model and 1033 SNPs in the latter. 

Next, we graphically evaluated the models using networks (Fig. 2A-C). Each node represents a 

SNP, and an edge was drawn between all pairs of SNPs that passed the co-occurrence filter. For 

the LD parameter was varied to allow the proposed co-occurrence network to be tested on 

different LD models. (ii) Random sampling is used to create control and disease populations. 

Ten pairs of datasets are generated for a given model. (iii) In the disease population, a subset 

of SNPs are randomly selected and forced to correlate with one another while their 

frequencies are maintained. These are referred to as the spiked SNPs. Different disease 

models are represented by varying the number of spiked SNPs and the correlation level 

between them. (iv) The proposed co-occurrence method was tested. All possible pairs of SNPs 

were analyzed. Pairs that significantly co-occurred at significantly different rates in the two 

populations were placed into a co-occurrence network. (B) Workflow for real-world data. (i) 

Control and PE data were downloaded from EBI. (ii) Standard GWAS protocols were applied 

to the data for quality control. To match the input data size in simulations, 4000 SNPs with the 

smallest p-values from GWAS were selected for further analysis. (iii) The proposed co-

occurrence method was applied as in the simulations. (iv) Pathway analysis was conducted on 

several SNP sets. 
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all models, the network had a structure where spiked nodes appeared to be the network's hubs, 

belonging to a larger, more connected sub-network (Fig. 2A-C). Surrounding the connected sub-

network are smaller disconnect sub-networks that did not contain spiked nodes/alleles. 

We evaluated the graph properties of the spike nodes relative to the non-spiked (background) 

nodes in the network graphs. Across all models, the mode of the spiked SNPs’ degrees was 

significantly higher than the mode of the background SNPs’ degrees (Fig. 2D). Furthermore, the 

minimum degree of the spiked SNPs and the maximum degree of the background SNPs was 

significantly different for disease models with a correlation of 0.3 or 0.4 (Wilcox test, FDR 

corrected P value < 0.05). At the 0.2 correlation level, only the model with 80 SNPs had 

significantly different extremes for the degree of spiked and background SNPs(Wilcox test, FDR 

corrected P value < 0.05) (Fig. 2 D). Based on the recall properties of the spiked SNPs, we 

estimated a study could be powered with a minimum of 250 each case and controls for a weak 

correlation (phi=0.2) and 100 cases and controls for a strong correlations (phi=0.4) to exceed an 

80% recall rate (Fig. S1).  

LD block size does not affect SNP co-occurrence identification 

LD block size varies with genetic subpopulations, which can be problematic when making 

comparisons between populations. To address block size, we re-evaluated the simulated case-

control models while varying the LD block size when generating the simulated genomic 

populations (prior to any creation of paired control and disease datasets). Network structure 

appeared to be relatively unaffected by variation in LD. Graphs of different LD models were 

highly similar, where spiked nodes were again network hubs with a higher degree than 

background nodes and part of a larger, more connected sub-network. (Fig. 2E-G). 
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Figure 2. In simulations, the co-occurrence method identified SNP networks with lo

background. (A - C) Networks generated by disease models with 5 SNPs at a correlation of 0.2, 2

SNPs at a correlation of 0.3, and 80 SNPs at a correlation of 0.4, respectively. Nodes represe

SNPs and edges link pairs that passed the co-occurrence filter. Spiked SNPs are gree

Background SNPs in the connected subnetwork are orange. The connected subnetwork is the set 

nodes that connect to spiked nodes, either directly as neighbours or indirectly via other node

Background SNPs in the disconnected subnetwork are purple. (D) relationship between th

degrees of spiked nodes (green boxplots) vs. background nodes (blue boxplots) by the number 
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Co-occurring SNPs in preeclampsia 

To evaluate the performance of our co-occurrence method on real-world data, we accessed a 

previously published GWAS data set on a case-control study of preeclampsia (Fig. 1B). 

Genotyping data was obtained from the EGA dataset repository as PLINK files (control dataset 

EGAD00000000022 and PE dataset EGAD00010000854). Control data was a general control 

population used by WTC to study other diseases and therefore contained males and additional 

SNPs26. Males were filtered out, and only SNPs genotyped in the PE population (maternal 

genomes) were retained. Of note is that controls were not collected to exclude PE cases, though 

PE has a low prevalence of about 5% worldwide15. Standard GWAS quality control procedures 

were applied with no imputation. The final dataset contained 3172 individuals (1320 control, 

1852 PE) and 509,532 SNPs.  

To correct and control for probes with a high degree of collinearity due to batch effects of cases 

and controls, we modelled the association of SNPs to patient classes was tested assuming an 

spiked SNPs from 5 to 80, representing ten trials. Each plot is a different correlation level (phi 0.2 

to 0.4). At a phi=0.2 only 80 SNPs was significant(Wilcox test, FDR corrected P value so symbol< 

0.05), at all other phi values all ranges of SNPs significantly different(Wilcox test, FDR corrected 

P value so symbol< 0.05). (E, F) Networks generated by LD models with 1 and 9 SNPs per LD 

block, respectively. Colours are described in A – C. (G) Degree of nodes across LD models. Each 

pair of boxplots represents all nodes from 10 trials of a given model. Green boxplots represent 

spiked nodes, and blue boxplots represent background nodes. Models are laid out left to right from 

one to nine SNPs per LD block. 
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additive model using logistic regression with five multidimensional scaling components as 

covariates to account for ancestry. After correction, 93 SNPs still passed a Bonferroni 

significance threshold (9.8 x 10-8), and 350 SNPs failed due to multi-collinearity. We removed 

all 350 failing SNPs. This is a minimal loss relative to the over 500,000 SNPs passing QC.  

Preeclampsia genetics produce a co-occurrence network 

As the co-occurrence network method was applied to data with unusually high GWAS-

significant SNPs, we evaluated data sets with and without the 93 passing SNPs. We assumed that 

most of these Bonferroni passing SNPs represent spurious differences due to a residual batch 

effect of merging the two cohorts. While this was not a systematic assessment of all SNPs and 

does not guarantee all spurious signals were removed, it removes SNPs with the strongest 

univariate signals, which are the SNPs most likely to affect the co-occurrence network by adding 

random noise. 

SNP ranking is a common approach used in polygenic risk models of GWAS data20. We 

identified the top 4000 SNPs ranked by their p-value for differential enrichment between cases 

and controls. Of the 4000 input SNPs, our cooccur method placed 2895 in a network of 9755 

pairs that passed the co-occurrence filter. Graphing the network (Fig. S2A) showed that although 

the size of the network was more extensive than observed in simulations (Fig. 2A-C), the 

structure of the network remained consistent (Fig. S2A). The preeclampsia data network 

produced a larger connected sub-network and a separate set of many smaller discrete sub-

networks, herein referred to as the disconnected sub-network. We observed that the disconnected 

sub-network was primarily composed of small (<9 nodes) self-contained modules (Fig. 3A). 

These were removed for clarity in the graph (Fig. 3B). As expected from our simulations, the 

distribution of degree in the network was bimodal (Fig. 3C and inset i), as co-occurring disease-
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associated SNPs should have higher degrees than other nodes in the network as indicated by our

modeling (Fig. 2). Excluding the 93 GWAS-significant SNPs from the network resulted largely

in removal of nodes from the disconnected subnetwork (Fig. S2B). As the disconnected network

is predicted to be background we focused our investigation on the connected co-occurrence

network. 

 

Figure 3. Preeclampsia genetic co-occurrence network. (A) Filtered view. Clusters of less 

than nine nodes in size are removed to visualize the network structure better. Nodes represent 

SNPs and edges link pairs that passed the co-occurrence filter. Purple represents the 

disconnected sub-network, and orange represents the connected sub-network. (B) Distribution 

of size of clusters in the full network. The dotted grey line marks clusters of size 9. The clusters 

greater than 9 nodes are displayed in A. (C) Distribution of degree of nodes in the full network 

showing a bimodal distribution (inset figure i). D) Column and row names represent the SNP 
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sets for which pathway analysis was conducted. Numbers represent the Jaccard coefficient of 

overlap in significant pathways for two given SNP sets (0 means no overlap, and 1 represents 

complete overlap. The Top 400, Full Network and Disconnected Network all show a high level 

of overlap. The Connected Network is highly unique. The GWAS network is also unique but 

limited in total number of discovered pathways.  

 

Co-occurring SNP network is enriched in pathways related to PE  pathophysiology 

We proposed that the accumulation of minor allele SNPs within pathways leads to poor function 

and risk of preeclampsia. To test this, we used over-representation analysis of significantly co-

occurring SNPs for the enrichment of Gene Ontology27. We accepted only Gene Ontology’s with 

a fold enrichment ≥ 2 and FDR-adjusted p-value ≤ 0.05 as significant. Critically, we evaluated 

multiple SNP groupings for enrichments to evaluate if the co-occurrence network contained 

more abundant and interpretable pathways in the context of PE pathophysiology. Specifically, 

we tested the full network, connected and disconnected sub-networks separately. The top 4000 

and GWAS-significant SNPs were also tested for pathway enrichment. To globally assess the 

enrichment similarities between the different SNP sets, we evaluated the overlap of discovered 

pathways using a Jaccard score (Fig. 3D). The top 4000 SNPs, the entire co-occurrence network 

and the disconnected network were highly overlapped with a Jaccard score greater than 0.5 for 

all comparisons. However, the connected network was highly different, with all Jaccard scores of 

0.1 or less relative to other comparisons. This was interesting as the connected network is a 

subset of all the top 4000 SNPs and the entire cooccurrence network. 

As enriched ontologies can be highly redundant due to genes sharing multiple annotations and 

the hierarchical nature of the ontologies, we used the Cytoscape28 plugin EnrichmentMap29 to 
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consolidate highly similar ontologies and create annotations based on high-frequency words in 

the ontology titles/descriptions30. The connected sub-network produced many ontological 

clusters that related to known aspects of PE pathophysiology (Fig. 4). Most prominent was a 

cluster of ontologies related to vascular endothelial growth factor (VEGF) signalling (Fig 4 and 

S3A). Defects in maternal vascular (spiral artery) remodelling are a hallmark of many PE cases. 

Although this is known, the SNPs discovered by co-occurrence may describe the genetic changes 

that lead to a poor maternal angiogenic response to pregnancy. Other pathways of interest 

involve immune functions, specifically leukocyte-mediated responses, chemokine interactions, 

interferon gamma signalling, antigen presentation and lymphocyte migration. We and others 

previously observed altered immune cell infiltration patterns in PE, including a subtype of PE 

that appears to be of a maternal immune system origin12,31. We verified these results after the 

removal of the 93 Bonferroni GWAS significant SNPs from the co-occurrence network. This 

produced a highly similar network graph enriched for the same ontologies (Fig. S3B), likely as 

the majority of the 93 SNPs are in the disconnected network. 

Our modelling predicted that the disconnected network would be background co-occurrence 

unrelated to PE, unexpectedly we observed a high number of enriched ontologies, many with 

known association to preeclampsia pathophysiology (Fig. S4A). Of interest and relating to 

previous observations in PE patients were pathway clusters related to plasma sodium/potassium 

transport, phagosome pH, atrial action, urea and creatine homeostasis, and steroid biosynthesis, 

including glucosylceramides and thyroid stimulation. 

However, a standard GWAS did not produce many enriched ontologies (data not shown). The 

top 4000 SNPs and the full network did not produce as many ontologies as the disconnect or the 

connect networks, despite a larger number of genes (Fig. S4B).  
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Figure 4. The connected sub-network is enriched in Gene Ontologies related to the PE 

pathophysiology. Nodes represent gene ontologies, and edges represent genetic overlap of 

ontologies (shared gene names). Clusters are named after the most common word patterns in 
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the ontologies they contain. The largest cluster related to VEGF signalling is highlighted in 

red. All ontologies had a fold enrichment ≥ 2 and FDR-adjusted p-value ≤ 0.05. 

 

Discussion 

Little progress has been made on the treatment and predictive diagnosis of preeclampsia2. Likely 

this results from the high heterogeneity between patients due to subtypes of the disease observed 

by us and others12,32–35. We modelled PE genetics as sets of interacting SNPs/alleles that 

frequently co-occur in PE to improve predictive testing and spur new avenues for PE therapy 

development.  

Our modelling of the co-occurrence method indicated that bona fide co-occurring SNPs would 

form networks with high degrees and interconnectivity. Spurious co-occurrence tended not to be 

connected to the high-degree network and is composed of low-degree nodes. This finding fits our 

proposal that these multigenic causes of PE are due to the accumulation of minor alleles within 

pathways. Encouragingly we observed an overall similar graph topology using real-world PE 

data, with a highly connected central SNP network and smaller discrete networks disconnected 

from the central network. The agreement between the model data and the real-world data 

suggests that the method is working to identify SNPs associated with PE.  

Significantly the connected network was highly enriched in biological processes with many 

related to the pathophysiology of PE. These included VEGF signalling. Poor VEGF signalling 

and angiogenesis are frequently observed as a feature of pathology, circulating biomolecules and 

genetic associations13,15,19,36,37. Other enriched ontologies of interest were related to immune cells 

and the presentation and trafficking of antigens. Paternal antigens are thought to play a role in PE 

risk for first pregnancies38. Our previous analysis of PE cohorts identified a maternal immune 
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subtype with molecular and histopathology signs of graft versus host disease12,13,31. Generally, 

subsequent pregnancies with the same partner are at a lower risk due to maternal immune 

priming or adaptive tolerance to the paternal epitopes/antigens22. 

Unexpectantly, the outer disconnected network was enriched in gene ontology terms related to 

possible roles in PE. If disconnected network were random noise, we would expect few enriched 

ontologies. Ontology enrichments of the disconnected network that may be related to PE 

pathophysiology were sodium-potassium plasma regulators, atrial action39, urea creatine 

homeostasis40, steroid biosynthesis and thyroid stimulation41. A possibility is that the 

disconnected network may contain genetic co-occurrence networks for associated comorbidities. 

Pre-existing conditions such as chronic hypertension and obesity are considered risk factors for 

PE but can occur independently of PE42. Potentially some forms of preeclampsia are the 

accumulation of a series of comorbidities that reduce the ability of the mother's physiology to 

adapt to pregnancy. The genetic presence of a comorbidity may synergize with PE causal SNPs. 

A more rigorous case-control design that balanced obesity and other patient demographics could 

test this hypothesis.  

An additional explanation for the enrichment of ontologies to the disconnected network is that 

the network is incomplete. As we used only 4000 ranked SNPs, using more SNPs might produce 

a larger co-occurrence network that links members of the disconnected network to the connected 

network. The poorer performance of ontology enrichment analysis using either the top 4000 

SNPs or the full network is likely due to false positives let in by the permissive p-value in the 

absence of a second test (such as co-occurrence). 

We encountered a few hundred probes with spurious correlation to patient classes likely due to 

residual batch effects, which further resulted in 93 SNPs passing a Bonferroni correction using 
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standard GWAS method. However, the potentially spuriously passing SNPs that reached the 

cooccurrence network generally fell within the disconnected network. Our simulation models 

indicate that the disconnected network is background noise. The identification of the spuriously 

passing SNPs in the disconnected network indicates that our method may be robust to noisy data, 

potentially due to the application of two significance tests and the demand of cooccurrence 

embedded in a higher order structure of the connected network.  

Importantly, the results of our study remaining to be reproduced in other cohorts of PE cases. 

Similar to typical GWAS findings, we cannot conclude that the observed co-occurrence SNPs 

are causal to the pathology of PE but may be linked to the causal SNPs. A possible approach is 

the imputation of genotypes to resolve the potential causal alleles. Our method may be applicable 

to sequencing-based variant discovery, such as exome resequencing or genome sequencing, but 

we have not validated this approach. Currently, we are working to improve this method to enable 

a more significant number of alleles to be tested for co-occurrence and to identify genetic 

subtypes of disease.  

The results of our analysis may form the basis of genetic tests before or early in pregnancy. In 

the future, a combinatorial genetic test could classify a patient into PE subtypes and identify 

specific molecular and biochemical susceptibilities. Knowledge of the disrupted pathways is a 

start to personalized medicine approach to treating PE. Broadly this method could be applied to 

any disease or trait to identify co-occurrence genetic networks as the method uses standard SNP 

chip data sets. Other conditions known to be polygenic, including cardiovascular disease or 

neuropsychiatric disorders, may benefit from applying our co-occurrence method to existing data 

sets. To facilitate the application of the co-occurrence method to other data sets, we made the 

code available through a GitHub repository with supporting documents.  
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Methods 

Co-occurrence filter and network 

For case-control genomic data, pairs of SNPs passing two co-occurrence filters created networks. 

The first filter selected SNP pairs that co-occurred more or less frequently than expected in the 

control or case population. Co-occurring refers to at least one minor allele at both SNP loci. Co-

occurrence was calculated by a customized version of the co-occur function from the R package 

co-occur, which uses a hypergeometric test43. SNP pairs with FDR-adjusted p-values ≤ 0.05 

passed the filter. We parallelized the function to run more efficiently but limited all analyses to a 

maximum of 4000 input SNPs. The second filter selected for SNP pairs that co-occurred at 

significantly different rates in control vs case populations. A chi-squared test was used, and SNP 

pairs with FDR-adjusted p-values ≤ 0.05 passed the filter. Networks, with nodes representing 

SNPs and edges representing co-occurrences, were created with the graph package in R44.  

Simulations for method validation 

For validation, the co-occurrence method was applied to artificial case-control populations. A 

population of artificial genomes was generated with the R function to generate SNPs from the 

package minutest (version 1.7)45. Genotypes were re-coded to 0s or 1s to represent minor alleles' 

absence or presence. A population of 6000 subjects was generated. To generate a single trial of a 

case-control dataset, two sets of 1000 genomes were sampled from the population to form the 

case and control cohorts without replacement. Before altering the case-cohort, the co-occurrence 

method was applied to assess its results when no difference was expected.  
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In the case-cohort, the correlation was forced between a set of randomly sampled SNPs (herein 

called spiked SNPs). Individual frequencies of the SNPs were maintained to ensure no difference 

in individual SNP frequency between case and control. This was accomplished with the function 

rmvbin from the R package bindata46. When provided with a matrix containing the desired 

correlation level between sampled SNPs and the minor allele frequencies of the sampled SNPs, 

the function generates genotypes (0s and 1s) that satisfy both the desired correlation and minor 

allele frequencies. These genotypes replaced the original genotypes of the sampled SNPs in the 

disease population. In total, ten cohorts were generated. 

Fifteen disease models were generated by combinations of the number of spiked SNPs (5, 10, 20, 

40, or 80), and the correlation level (0.2, 0.3, or 0.4) was varied. For the disease models, the 

background genomic structure of the population was kept constant (2 SNPs per LD block, 8 LD 

blocks per gene, and 250 genes). For the disease models, ten pairs of case-control were drawn 

from the population (before spiking SNPs). Each of the 15 disease models that varied SNP 

number and correlation value was built from the same ten cohorts. 

Additionally, nine LD models were generated, where the number of SNPs per LD block varied 

from 1 to 9. The number of genes was set to keep the size of the simulated genome close to but 

under 4000 SNPs. The disease model used for LD models was kept constant (20 SNPs at a 

correlation of 0.3). As the population parameters were altered during the simulation, a new set of 

10 case controls for each LD model were used for each LD block size. 

Individual SNPs were tested for disease association using the Cochrane-Armitage trend test (p ≤ 

5 x 10-8) to demonstrate that the generated case-control datasets did not yield significant 

univariate results. The co-occurrence method described above was then applied to the datasets. 

The resultant networks were then assessed. Spiked nodes were coloured differently in the 
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network to determine if they were visually distinguishable from background nodes. Their degree 

(number of neighbouring nodes in the network) was assessed. A Wilcox test was used to 

determine if the mode of the ten cohorts spiked SNPs' degrees significantly differed from the 

mode of background SNPs' degrees (FDR adjusted p-value ≤ 0.05) within a given disease or LD 

model. Likewise, a Wilcox test was used to determine if the minimum of spiked SNPs’ degrees 

significantly differed from the maximum of background SNPs’ degrees (FDR adjusted p-value ≤ 

0.05).  

Preeclampsia data: QC, GWAS, and co-occurrence. 

Genotyping data was obtained from the European Genome-Phenome Archive's dataset 

repository. The Wellcome Trust Case Control Consortium (WTC) originally collected the data. 

The PE dataset (EGAD00010000854) containing maternal genomic data and the control dataset 

(EGAD00000000022) were collected separately though both cohorts were from the United 

Kingdom. The controls served as common controls for the WTC to study several diseases. They 

thus included males and were not described as excluding PE. However, PE has a low prevalence 

of around 5%8,15. 

A standard GWAS protocol, using PLINK47, KING48, and R, was applied to the data for quality 

control and to prioritize a set of 4000 SNPs to input into the co-occurrence method. Control and 

disease data were merged, and only SNPs in both datasets were kept. Only females were kept. 

No imputation was done as the co-occurrence method was applied to only 4000 SNPs. The 

following quality control measures were performed: individuals with discordant sex, genotype 

missing rates ≥ 0.025, heterozygosity ≥ 2 standard deviations away from the mean, and non-

northern European ancestry (inferred using KING) were removed. One individual from every 

related pair (IBS > 0.185) was removed. SNPs with genotype missing rates ≥ 0.05, with 
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genotype missing rates that differed between control and PE (FDR adjusted p-value from chi-

squared test ≤ 0.05), that deviated from Hardy-Weinberg equilibrium (p ≤ 1.0 x 10-6), and whose 

minor allele frequency was ≤ 0.05 were removed. Association was tested assuming an additive 

model using logistic regression with five multidimensional scaling components. Bonferroni 

significance level was used (0.05 divided by the number of SNPs).  

Only 4000 SNPs were input into the co-occurrence method to remain consistent and allow 

comparison to simulations. The 4000 SNPs with the smallest p-values from the GWAS were 

used. Genotypes of these SNPs were coded as 0s and 1s, and the co-occurrence method 

described earlier was then applied. 

Pathway enrichment of genotypes in co-occurrence network 

Pathway enrichment was conducted using GREAT49. This web-based tool assigns SNPs 

(including intergenic ones) to genes and then tests for their over-representation in pathways. The 

set of all SNPs passing quality control was used as the genomic background for these tests. The 

association rules used to assign SNPs to genes were left as their default: “basal plus extension” 

with proximal set to 5.0 kb upstream and 1 kb downstream, distal set to 1000 kb, and curated 

regulatory domains included. Gene Ontology pathways with fold enrichment ≥ 2 and FDR-

adjusted p-value ≤ 0.05 were considered significant. 

Cytoscape 28(version 3.7.2) was used to interpret the many pathways returned28 to create a less 

redundant network where pathways (nodes) with high genetic overlap are linked. Within 

Cytoscape, the Enrichment Map29 and Auto-Annotate30 apps were used to create the network and 

summarize its clusters. 
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Supplemental Figure 1. Power analysis simulation. Power was empirically estimated by

the ability to recall 80 spiked nodes in a simulation study. Ten simulations were performed

for populations of 100-1000 at phi 0.2 (weak effect) and 0.4 (strong effect).
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Fig S2

A B

Supplemental Figure 2. Other visualizations of the PE co-occurrence

network. (A) Unfiltered network. Nodes represent SNPs and edges link

pairs that passed the co-occurrence filter. Purple represents the

disconnected sub-network, and orange represents the connected sub-

network. All nodes are shown, including small subnetworks less than none

nodes; shown are 2859 nodes connected by 9755 edges. Nodes overlap due

to the large number of nodes, making the network structure challenging to

see. (B) Connected sub-network after removal of GWAS-significant SNPs.

Nodes that lost their connection to the main connected sub-network have

been re-coloured purple.
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Fig S3

A B

Supplemental Figure 3. VEGF signaling-centered network. A) detailed view of the

pathways with significant gene overlap and annotated to VEGF signalling and related

pathways. B) Enriched Gene ontologies after removal of the GWAS passing SNP/genes. A

minimal change in enrichment is observed.
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A

B

Supplemental Figure 4. The disconnected network is enriched in ontologies related to the
pathophysiology of preeclampsia. A) The enrichment map of the ontologies is significantly
associated with the SNPs of the disconnected network. Many are known to be related to the
pathophysiology of preeclampsia. B) The enrichment map of the top 4000 SNPs used to build the co-
occurrence networks.

Fig S4
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