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ABSTRACT 
 
Purpose. Myelofibrosis (MF) is the most severe myeloproliferative neoplasm (MPN) where there remains 
a need for improved risk stratification methods to better inform patient management. Since MF is a stem 
cell driven disease and stem cell informed transcriptomic information has been shown to be prognostic 
across other clinical settings we sought to use this information to generate novel transcriptomic-based risk 
stratification models that could complement current approaches. 
Patients and Methods. We identified 358 MF patients from the MPN registry at the Princess Margaret 
Cancer Centre (ClinicalTrials.gov Identifier: NCT02760238) from whom peripheral blood mononuclear 
cells were collected and clinical data was available. We randomly split our cohort into a 250-patient training 
set and a 108-patient test set to train and validate prognostic models, respectively. 
Results. Within the training set we used repeated nested cross validation together with LASSO regression 
from various starting gene sets and found that the best prognostic models were consistently derived from 
transcriptomic variation among MF stem cells. From this gene set we trained our final model, a 24-gene 
weighted expression score (termed, MPN24) that is prognostic for overall survival. Patients were classified 
as MPN24-High or MPN24-Low risk depending on whether their scores were above or below the within 
cohort median defined in the training set. The prognostic power of MPN24 was validated in the test set 
patients with stark differences in survival outcomes for MPN24-High (5-year survival rate = 21% [95% CI 
9%- 52%]) and MPN24-Low risk patients (5-year survival rate = 71% [95% CI 57-88%]) patients, resulting 
in a HR of 5.3 (95% CI: 2.6-10.5; p=2.08e-6). MPN24 captures unique prognostic information to current 
risk stratification models such as DIPSS, MIPSS70 and the Genomic-Personalized Risk scores. Therefore, 
we present a novel 3-tier risk stratification approach that integrates DIPSS and MPN24 to more effectively 
risk stratify MF patients, particularly via up or downscaling patient risk within the DIPSS-Intermediate-1/2 
categories. In this integrated model patients were classified as Integrated-Low, Integrated-Intermediate or 
Integrated-High, and experienced 5-year survival rates of 88.2% [95% CI 77.9% - 99.9%], 39.3% [95% CI 
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19.9% - 77.7%], and 10.8% [95% CI 2.1% - 55.8%], respectively (likelihood ratio test p = 1e-8). Finally, 
from MPN24 genes we derived a 13-gene subsignature (termed, MPN13) from the training set patients that 
was validated to predict time-to-transformation in the test set patients when classified as MPN13-High or 
Low relative to the 80th percentile of MPN13 scores from the training set (p=0.0047). In the test set, 
MPN13-High and MPN13-Low patients experienced 3-year cumulative incidences of transformation of 
5.2% [95% CI 0.2%-10.2%] and 28.6% [95% CI 3.1%-54.0%] respectively, after adjusting for death as a 
competing risk. 
Conclusions. Transcriptomic information informed by MF stem cells offer novel and unique prognostic 
potential in MF that significantly complements current approaches. Future work will be needed to validate 
the robustness of the approach in external cohorts and identify how patient management can be optimized 
with these novel transcriptomic biomarkers. 
 
Keywords: myelofibrosis, gene signatures, prognosis, survival, stem cells 
 
INTRODUCTION 
Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that originates at the level of the 
hematopoietic stem cell (HSC). Patients with polycythemia vera (PV) and essential thrombocythemia 
(ET) can experience progression of disease to myelofibrosis (post-PV MF and post-ET MF, respectively), 
and upon progression, have clinical features and disease course similar to PMF (Sangle et al. 2014; 
Masarova et al. 2017). These disease entities are collectively referred to as MF in this report. Patients with 
MF experience vastly different clinical outcomes, with survival ranging from months to years and 
variable risk of transformation to blast phase (BP) at which point survival outcomes are dismal (Kennedy 
et al. 2013). Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative 
approach, but is associated with high treatment-related morbidity and mortality (Gupta, Hari, and 
Hoffman 2012; Kröger et al. 2024). Meanwhile, wider availability of JAK inhibitor (JAKi) therapy, such 
as Ruxolitinib, has become standard of care but is limited to symptomatic control and may become 
inadequate for some patients. In this context, the optimal timing of HCT is not yet well defined and 
selection of upfront HCT versus transplant after the failure of JAKi therapy remains challenging (Maze et 
al. 2024; Rajendra and Gupta, Current Heme Malignancy Reports, 2024, paper under review). Accurate 
prognostication is key to guiding patient care in this clinically heterogeneous group. 
Current risk prediction models such as the DIPSS score use clinical and laboratory features such as age 
and blood counts to predict MF patient risk and help guide clinical decision-making (Passamonti et al. 
2010). More recently, MIPSS70, MIPSS70-plus and personalized risk scores (Genomic-PRS) have 
additionally incorporated mutation and/or cytogenetics data to augment risk stratification (Guglielmelli et 
al. 2018; Grinfeld et al. 2018). These tools highlight the added prognostic value of incorporating 
molecular information pertaining to genomics. Yet, existing prognostic models in MF lack transcriptomic 
information, which has been shown to be highly prognostic in other cancers (Nielsen et al. 2010). 
Furthermore, features of disease-driving stem cells have been used successfully to derive prognostic 
scores in other blood cancers (Ng et al. 2016; Gentles et al. 2010). Thus, we hypothesized that 
transcriptomic variation among disease-driving MF stem cells may provide novel prognostic information 
independent from the genomic and clinical features used in present-day clinical practice. Further, a 
biomarker that captures this variation may complement and improve existing approaches for prognostic 
stratification of MF. 
 
Here we present a large-scale transcriptomic cohort of 358 MF patients linked to clinical outcomes 
captured in a prospective registry. We leverage transcriptomic variation corresponding to both intra- and 
inter-patient heterogeneity among MF stem cells to train and validate, a novel 24-gene weighted 
expression score (termed, MPN24) predictive of survival and a 13-gene subscore (termed, MPN13) 
predictive of blastic transformation in MF. Critically, MPN24 is independently prognostic after 
accounting for genomic and clinical features and complements present-day risk stratification approaches 
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in MF. Improved identification of high-risk MF patients enabled by MPN24 may facilitate clinical 
decision-making around optimal timing of HCT and prioritization of patients for clinical trials.  
 
PATIENTS AND METHODS 
Patient Cohort 
 
A total of 358 patients included in this study were identified from the MPN registry at the Princess 
Margaret Cancer Centre (ClinicalTrials.gov Identifier: NCT02760238) from whom peripheral blood 
mononuclear cells (PB-MNCs) were collected at the first visit to Princess Margaret. Inclusion criteria 
consisted of a diagnosis of MF including PMF, pre-fibrotic MF, post-ET MF or post-PV MF in chronic 
phase. Individuals were excluded if they received a diagnosis of MPN-Unclassified (MPN-U), 
MPN/myelodysplastic syndrome (MDS) overlap or lacked a biospecimen. All biological samples were 
collected under Research Ethics Board approval (REB#17-5601) with written informed consent as per the 
Declaration of Helsinki and viably frozen in the Princess Margaret, hematologic malignancies tissue 
bank. 
 
Sample preparation and RNA sequencing  
 
To prepare samples for RNAseq cells were thawed dropwise, centrifuged and resuspended in 1 mL of 
PBS 5% FCS with 100X DNase1. Up to 2 million unsorted viable cells were aliquoted into RNA Lysis 
Buffer (RLT; RNeasy Minikit; Qiagen). RLT samples were stored at -80C and RNA was later extracted 
using the RNeasy Minikit (Qiagen) following the “Quick-Start Protocol” with “On-Column DNase 
Digestion”. RNA was eluted in 30ul of molecular-grade water and quantified using the High-Sensitivity 
RNA Qubit Assay (Invitrogen). RNA samples were run on the High-Sensitivity BioAnalyzer (Agilent) to 
determine RNA quality. RNA samples with an RNA integrity number (RIN) > 8 proceeded to PolyA 
enrichment and directional library preparation at The Center for Applied Genomics (SickKids, Toronto, 
Canada). Libraries were sequenced on the NovaSeq S4 at a read-length of 100bp, targeting approximately 
50 million paired-end reads per sample.  
 
RNAseq alignment, transcript count data and normalization 

RNA-seq data was aligned to GRCh38 with STAR v2.7.9a using the two-pass mode. The following 
parameters were set: chimSegmentMin=12, chimJunctionOverhangMin=8, alignSJDBoverhangMin=10, 
alignIntronMax=100000, alignSJstitchMismatchNmax=5 -1 5 5, 
alignSplicedMateMapLminOverLmate=0, alignSplicedMateMapLmin=30, chimMultimapScoreRange=3, 
chimScoreJunctionNonGTAG=-4, chimMultimapNmax=20, chimNonchimScoreDropMin=10 
peOverlapNbasesMin=12 and peOverlapMMp=0.1. Reads were annotated with Ensembl v103. Count 
data was obtained using HTSeq v0.7.2. General stats were obtained using picard v2.10.9.   

The RNAseq data was processed through DESeq2 v1.32.0. Genes with less than 1 read were removed 
prior to normalization using variance stabilized transformation (VST). 
 
Machine learning approach for prognostic model generation 

To train and then validate novel prognostic scores in MF, we randomly split our cohort of PB-MNCs 
(n=358) into train (70%; n =250) and test (30%; n=108) sets, respectively. Importantly, we confirmed that 
there were no statistically significant differences between the train and test sets across 25 clinically 
relevant parameters. To train gene expression scores for predicting patient survival using a minimal set of 
features/genes, we employed Cox proportional hazards regression using least absolute shrinkage and 
selection operator (LASSO) on data generated only in the train set (n = 250). Further to this approach, we 
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used repeated nested cross validation to mitigate the risk of overfitting models to the train set. LASSO 
regression together with repeated-nested cross validation generates a distribution of p-values for a given 
model configuration (i.e. the specific starting genes inputted into the model, the regression approach used 
and the data associated with samples included in the training set) such that the configuration that 
consistently generates the best models can be identified and selected for use in the generation of a final 
prognostic model.  
 
Survival analysis 
 
Survival analysis was performed using the survival, survminer packages in R. Overall survival (OS) 
outcomes were censored at the time of transplant in order to focus on MF-related outcomes independent 
of transplant. Kaplan-meier plots were used to visualize differences in survival outcomes between groups 
of patients. Cox proportional hazards regression was used to quantify association with survival for both 
univariable and multivariable analysis. To assess for independent prognostic value of a biomarker in 
multivariable analysis, a nested likelihood ratio test was performed to quantify significance in model 
improvement after biomarker incorporation, relative to a baseline model composed only of the covariates. 
For analyses pertaining to time-to-transformation, competing risk analysis was performed using the 
cmprsk R package. 
 
RESULTS 
Variation among MF stem and progenitor cells enable the development of highly prognostic 
models for prediction of survival in myelofibrosis 
 
Our experimental approach for prognostic model generation is summarized in Figure 1. Briefly, to 
identify the model configuration (i.e. starting gene set and LASSO penalty value) that consistently 
produced the best models for prediction of survival outcomes in MF, we applied LASSO regression 
together with repeated nested cross-validation on the 250-patient training set. Performance of prognostic 
models depends heavily on the features selected for model training. Thus, we trained models using 
different sets of features ranging from the whole transcriptome to smaller sets of biologically motivated 
genes. These biologically motivated genesets spanned broad categories including, leukemia stem cell 
(LSC) genes from AML patients (Ng et al. 2016), variable genes across our MF cohort, and variable 
genes from CD34+ MF stem and progenitor cells (Psaila et al. 2020). For each starting set of features, our 
cross-validation approach trained 500 prognostic models on random subsets of the data and produces a 
distribution of p-values depicting multivariable prognostic significance adjusted for clinically relevant 
features (i.e. DIPSS score, ECOG status, PB blast % and age) for each model configuration. This allowed 
us to identify the starting features which most robustly produced the best performing prognostic models 
within our data. Critically, the most accurate prognostic models were consistently produced from highly 
variable genes derived from scRNA-seq profiles of 82,255 Lin-CD34+ MF stem and progenitor cells 
across 15 patients (Psaila et al. 2020). This represents a significant improvement over model training from 
the entire transcriptome or LSC genesets defined from AML samples. Thus, features of intra- and inter-
patient heterogeneity specific to MF stem and progenitor cells proved to be most relevant for predicting 
survival.  
 
Since the scRNAseq data generated from MF CD34+ stem cells most robustly give rise to the best 
prognostic models in MF we used all 250 patients in our train set to derive the final model using this 
starting geneset. This approach generated a final model calculated as the weighted sum of gene expression 
across 24 genes (termed, MPN24). MPN24 scores were then calculated for all samples in the train and 
test sets.  
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MPN24 is a stem cell derived gene expression signature that predicts overall survival in 
myelofibrosis  
 
To evaluate the prognostic potential of MPN24 to predict OS, we first dichotomized patients with MPN24 
scores above or below the training cohort median as MPN24 high or low, respectively. Within the training 
set, we observed stark differences in survival outcomes between MPN24-High (5-year survival rate = 
21% [95% CI: 13%-32%]) and MPN24-Low (5-year survival rate = 85% [95% confidence interval (CI): 
77-94%]) patients, resulting in a hazard ratio (HR) of 10.9 (95% CI: 6.3-18.6; p < 2e-16) (Figure 2a). 
Importantly, we validated these results in patients within the test set (n=108) that were excluded from 
model training. In the test set, significant differences in OS persisted between MPN24-High (5-year 
survival rate = 21% [95% CI 9%- 52%]) and MPN24-Low (5-year survival rate = 71% [95% CI 57-88%]) 
patients, resulting in a HR of 5.3 (95% CI: 2.6-10.5; p=2.08e-6) (Figure 2b). Furthermore, MPN24-based 
patient stratification within the test set (n = 108) retained independent prognostic value in multivariate 
analysis incorporating age, sex, DIPSS category, ECOG status, fibrosis grade, constitutional symptoms, 
and PB blast percentage (Figure 2c). 
 
MPN24 captures prognostic features independent of commonly used risk stratification 
models such as DIPSS and MIPSS70 
 
Since DIPSS and MIPSS70 are two of the most commonly utilized risk stratification models in clinical 
management of MF, we evaluated the ability of MPN24 to stratify patients within these predefined risk 
categories. Importantly, this analysis was performed in the test set patients (n=108) that were excluded 
from MPN24 training to avoid potential biases resulting from model overfitting in the training cohort. 
When intersecting DIPSS with MPN24 there are MPN24 high and low scoring test set patients across all 
DIPSS categories. In survival analysis MPN24 retains prognostic value in multivariable analysis and 
separates high and lower risk patients within pre-defined DIPSS categories including those classified as 
DIPSS Low/Int-1 (HR = 3.82; p = 0.035) and DIPSS Int-2/High (HR = 3.95; p = 0.00059) (Figure 3a). 
Similarly, when intersecting MIPSS70 categories with MPN24 there are MPN24 high and low scoring 
patients in each previously defined class for test set patients. In the test set, we limited our analysis to 79 
of the108 patients where we had access to mutational data required for MIPSS70 classification. Since our 
cohort was skewed toward MIPSS70-Intermediate and High-risk groups with only 7 patients classified as 
MIPSS70-Low, we combined MIPSS70-Low and MIPSS70-Intermediate patients in our analysis. In 
survival analysis MPN24 retains prognostic value in multivariable analysis and separates high and lower 
risk patients in pre-defined MIPSS70 categories, including those classified as MIPSS70-
Low/Intermediate (HR = 3.57; p = 0.044) and MIPSS70-High (HR = 6.94; p = 0.0013) (Figure 3b). For 
the 79 patients with full clinical and mutational data we performed univariate analysis demonstrating the 
c-index increases significantly when MPN24 is added to traditional models, including DIPSS, MIPSS70 
and Genomic-PRS. Therefore, MPN24 is independently prognostic and captures information unique and 
complementary to models informed by clinical and/or mutational data. 
 
A new 3-tiered risk stratification approach that integrates MPN24 with DIPSS  

Within the DIPSS classification, most patients are positioned within the Intermediate categories (DIPSS-
Intermediate-1 and Intermediate-2) where clinical decision making is most unclear. Given that MPN24 
captures prognostic information independent of DIPSS, we asked whether DIPSS could be integrated 
with MPN24 to reduce the size of the intermediate risk category and confidently re-assign more patients 
into high-risk and low-risk categories. To this end, we compared the distribution of MPN24 and DIPSS 
categories within the test set patients (n=108) and generated a new 3-tiered risk stratification approach 
(i.e. DIPSSxMPN24-Integrated Model). First, patients classified as DIPSS-Low or DIPSS-Intermediate-1 
and MPN24-Low were newly classified as “Integrated-Low” (n=38). Second, patients classified as 
DIPSS-Intermediate-2 or DIPSS-High and MPN24-High were newly classified as “Integrated-High” 
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(n=31). The remaining patients (n = 39) had transcriptional features that were discordant with their 
clinical features, resulting in conflicting risk classifications by DIPSS and MPN24. These patients were 
consolidated into an “Integrated-Intermediate” category (n=39) (Figure 4a). This new integrated 
classification effectively upscaled or downscaled patient risk, including 59% of the patients (n=46/78) 
belonging to DIPSS-Intermediate categories (i.e. DIPSS-Intermediate-1 and DIPSS-Intermediate-2) that 
were reclassified as Integrated-High (n=21/78; 27%) or Integrated-Low (n=25/78; 32%). This results in a 
model where patients are more evenly distributed across risk categories with the size of the Intermediate 
category being reduced from 78 (72%) patients by DIPSS to 39 (36%) patients in the Integrated model 
(Figure 4b). Using this integrated model, patients classified as Integrated-Low, Integrated-Intermediate 
or Integrated-High, experienced 5-year survival rates of 88.2% [95% CI 77.9% - 99.9%], 39.3% [95% CI 
19.9% - 77.7%], and 10.8% [95% CI 2.1% - 55.8%], respectively (likelihood ratio test p = 1e-8) (Figure 
4c). 
 
A 13-gene MPN24 sub-signature that predicts risk of blastic transformation in MF patients 

Given that blastic transformation is a negative contributor to OS we hypothesized that genes in the 
MPN24 score might also capture features specific to blastic transformation in MF. Therefore, we used the 
24 genes from MPN24 and regressed on time-to-transformation (censoring all other events) within 5 years 
of sample collection to derive a new 13-gene subscore (termed, MPN13) predictive of blastic 
transformation by using all of the data in the training set (n=250). This 5-year cutoff was chosen to select 
for individuals who transform to BP relatively soon after sample collection but within a window of 
opportunity for intervention with, for example, HCT (Barbui et al. 2011; Vannucchi et al. 2015). Through 
nested cross-validation, we found that models predicting time-to-transformation trained from the original 
24 genes within MPN24 led to consistently better performance in predicting time-to-transformation than 
models trained on other sets of features including the whole transcriptome.  
 
To generate a binary approach to classification using MPN13, we classified patients above and below the 
80th percentile from the training set data as high and low risk, respectively. We chose a higher cut-off for 
setting the binary classification for MPN13 in contrast to MPN24 (i.e. where the training set median 
threshold was used) since only a small number of individuals transformed to BP within 5 years of sample 
collection in our cohort (n=33/250; 13% in the training set). Despite the small number of events, binary 
classification using MPN13 was significantly associated with risk of transformation (p=1.1e-16) in the 
training set by competing risk analysis. More importantly, using the 80th percentile cut-off defined in the 
training set data, MPN13 was also validated in the test set (p=0.0047) with low and high-risk patients 
experiencing 3-year cumulative incidences of transformation of 5.2% [95% CI 0.2%-10.2%] and 28.6% 
[95% CI 3.1%-54.0%] respectively, after adjusting for death as a competing risk. Notably, only 10 of 108 
(9%) cases in the test set transformed to BP within 5-years and yet MPN13 still achieved significance in 
this cohort that had not previously seen the signature for training purposes. 
 
DISCUSSION 
The need for accurate risk stratification for MF patients is paramount given the wide range of clinical 
outcomes experienced by these patients. To address this, current models for risk stratification use clinical 
features (i.e. DIPSS) (Passamonti et al. 2010) and more recently incorporate genomic mutations (i.e. 
MIPSS70) and/or cytogenetics (Guglielmelli et al. 2018; Grinfeld et al. 2018) to predict patient risk and 
tailor current treatment options. However, challenges in using these models remain. For example, 
acquiring mutation data can be cost-prohibitive and methods and informatic pipelines for acquiring and 
calling high molecular risk mutations are not yet standardized. Acquiring cytogenetic information from 
bone marrow samples is also challenging due to fibrotic marrows that are customary in MF patients. 
Finally, while DIPSS is the most widely used risk stratification approach due to its low technical barrier, 
the vast majority of patients are classified as Intermediate risk (i.e. DIPSS-Intermediate-1 and DIPSS-
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Intermediate-2) where clinical decision making remains most unclear and where further resolution is 
warranted. Further, since none of these models consider the fundamental transcriptomic properties of the 
MF stem cells that drive disease outcomes, there remains an opportunity to complement and augment risk 
stratification approaches in MF. To address this, we used transcriptomic features from retrospective 
analysis of a published dataset of CD34+ MF stem cells (Psaila et al. 2020) to derive a short list of 1000 
MF stem cell related genes on which to train prognostic models predictive of OS in MF patients from 
RNAseq data generated in PB-MNCs. This culminated in a final 24-gene expression signature (termed, 
MPN24) predictive of OS and a 13-gene subsignature (termed, MPN13) predictive of blastic 
transformation in MF. Importantly, MPN24 held prognostic value in multivariable analysis with DIPSS, 
MIPSS70 and Genomic-PRS indicating it captures information unique from clinical or mutational 
features of disease. This results in the ability to generate synergistic models, exemplified by our 3-tier risk 
stratification model that integrates DIPSS with MPN24.  

Some limitations in our study remain. First, while we validated MPN24 and MPN13 in test set patients 
that were left out of signature training, additional cohorts will be needed to test the robustness of the 
signatures. Second, lack of consistent cytogenetic data prevented analysis of DIPSS-plus and MIPSS70-
plus models and limited the scope of features included in the Genomic-PRS analysis. Future cohorts with 
comprehensive cytogenetics may be needed to test the added value MPN24 might offer to models 
informed by cytogenetics data. Further, while we present our new 3-tier risk stratification approach that 
integrates DIPSS and MPN24 it is likely that prospective clinical trials will be required to determine how 
this additional information should inform routine clinical practice, especially as novel therapies for MF 
continue to emerge. 
 
While we anticipate MPN24 and MPN13 to powerfully impact MF patient care, future work will be 
needed to ensure clinical implementation with wide scale uptake. This might include, for example, 
measuring MPN24 and MPN13 with low-cost alternatives to RNA sequencing, such as real-time PCR or 
NanoString-based approaches. Platforms with high scalability, low-cost and rapid turnaround time will be 
critical to informing patient care in real time at diagnosis but also potentially, at additional time points 
across the patient journey. For example, longitudinal monitoring may be used to track disease severity 
during MF or as early as antecedent PV and ET phases. Further, since MPN24 is derived from features 
defining heterogeneity among MF stem cells, we hypothesize that the genes captured in this signature 
may also function as a powerful biomarker for upfront patient selection in clinical trials or informing 
appropriate timing of HCT. Additional studies will be required to validate these potential applications and 
build towards more precision medicine approaches in MF that are informed by the molecular nature of the 
MF stem cells that drive disease. 
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Figure 1. Machine learning approach for derivation and validation of a 24-gene expression score predictive of survival in MF. 
CONSORT diagram summarizing study design. Our PMCC-MF cohort (n=358) was split into a 250-patient training set and a 
108-patient test set. Within the 250-patient training set, our machine learning approach utilized LASSO regression together 
with repeated nested cross validation to identify the most optimal model parameters (i.e. gene set and LASSO penalty value) 
on which to train our final model from. For example, models were trained from the full transcriptomic dataset generated in 
our study (i.e. “MF PBMC RNA-seq: Full Transcriptome”) as well as more condensed biologically motivated gene sets including 
AML LSC-related genes (i.e. “AML: LSC17 genes” and “AML: LSC Enriched Genes”; Ng et al., 2016), variable genes from our 
RNAseq cohort (i.e. “MF PBMC RNA-seq: Highly Variable Genes” and MF CD34+ genes derived from our retrospective analysis 
of published scRNAseq of MF CD34+ cells (i.e. “MF CD34+ scRNA-seq: Disease vs Healthy” and “MF CD34+ scRNA-seq: Highly 
Variable Genes”; Psaila et al., 2020). In benchmarking analysis for model evaluation, the MF CD34+ gene set capturing the 
most highly variable genes among MF stem cells (i.e. “MF CD34+ scRNA-seq: Highly Variable Genes”) consistently produced 
significantly better models than those derived from other gene sets, including the entire transcriptome. Therefore, this gene
set and an optimal lambda penalty value were used with LASSO on the full training set (n=250) to train the final prognostic 
signature. Our final model, termed MPN24, consists of 24 genes whose weighted sum of expression gives rise to a prognostic 
signature for OS in MF. MPN24 scores were then calculated from the RNAseq data in all train and test set patients. The within 
cohort median split from the training set was used to classify all patients as either MPN24-High or MPN24-Low if their scores 
were above or below this threshold, respectively. These designations were used for all subsequent survival analysis including
integration analyses with currently used risk stratification approaches such as DIPSS, MIPSS70 and PRS. *P value from Nested 
Likelihood Ratio Test to evaluate model improvement compared against a baseline model of DIPSS, ECOG, PB blast % and age.
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median, respectively. a. Kaplan-Meier plot displaying MPN24 score performance in the training set (n=250) that was used to 
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incorporating various clinical features. *Outcomes for all analyses are censored at the time of HCT.
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Figure 3. Comparing MPN24 performance in relation to classically-defined risk stratification models in test set patients 
(n=108). a. MPN24 in predefined DIPSS categories. Top panel: Kaplan-Meir plots displaying the prognostic utility of MPN24 to 
refine prognostication in DIPSS-Low/Intermediate-1 (left) and DIPSS Intermediate-2/High (right) categories. Bottom panel: 
Forest plot displaying multivariate analysis of MPN24-Low and MPN24-High against DIPSS categories. b. MPN24 in predefined 
MIPSS70 categories. Top panel: Kaplan-Meir plots displaying the prognostic utility of MPN24 to refine prognostication in 
MIPSS70-Low/Intermediate (left) and MIPSS70 High (right) categories. Bottom panel: Forest plot displaying multivariate 
analysis of MPN24-Low and MPN24-High against MIPSS70 categories. *Outcomes for all analyses are censored at the time of 
HCT.
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Figure 4. A new 3-tier risk stratification approach for MF that integrates DIPSS with MPN24. a. Matrix of test set patients 
classified by DIPSS and MPN24. Three new integrated risk categories are formed (Integrated-Low, Integrated-Intermediate and 
Integrated-High) based on the intersection between the DIPSS and MPN24 risk categories. b. Sankey diagram illustrating the 
number and percentage of individuals in each DIPSS category (left) that are redistributed via MPN24-High (orange) and 
MPN24-Low (blue) into the 3-tier integrated risk classifications (right). c. Kaplan Meier plots displaying the prognostic 
significance of the Integrated model (Low, Intermediate, High) for predicting patient survival. *Outcomes are censored at the
time of HCT.
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