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Abstract  

Introduction: People with university degrees have a lower incidence of Alzheimer’s Disease 

(AD). However, the relationship between education and AD could be due to selection, collider, 

and ascertainment biases, such as lower familiarity with cognitive testing or the fact that those 

with degrees are more likely to participate in research. Here, we use two-sample Mendelian 

randomization (MR) to investigate the causal relationships between education, participation, and 

AD.   

 

Method: We used genome-wide association study (GWAS) summary statistics for educational 

attainment, three different measures of participation, AD (clinically diagnosed AD), and 

AD/ADRD (clinical diagnosis and family history of AD and related dementias). Independent 

genome-wide significant single nucleotide polymorphisms (SNPs) were extracted from the 

exposure summary statistics and harmonized with the outcome SNPs. Fixed-effects inverse 

variance weighted meta-analysis was the primary MR method; Cochran’s Q statistic and MR 

Egger intercept were used to test for heterogeneity and pleiotropy, and Radial-MR was used to 

identify outliers. Sensitivity analyses included MR Egger, Weighted Median, and Weighted 

mode. Bidirectional analyses were used to test if AD pathology affects participation and 

multivariable MR (MVMR) assessed independent exposure-outcome effects. 

 

Results: Educational attainment reduced the risk of AD (ORIVW 95% CI= 0.70 [0.63, 0.79], p = 

8e-10), and the results were robust based on sensitivity analyses. However, education increased 

the risk of AD/ADRD, though the results were not robust to sensitivity analyses (ORIVW 95% 

CI= 1.09 [1.02, 1.15], p = 0.006). Participation in MHQ reduced the odds of AD (ORIVW 95% 
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CI= 0.325 [0.128, 0.326], p = 0.01). When adjusting for participation in MVMR, education 

remained associated with a reduced risk of AD (ORIVW 95% CI= 0.76 [0.62, 0.92], p = 0.006). 

 

Conclusion: Univariate MR analyses indicated that education and participation reduced the risk 

of AD. However, MR also suggested that education increased the risk of AD/ADRD, 

highlighting the inconsistencies between clinical and proxy diagnoses of AD, as proxy-AD may 

be affected by selection, collider, or ascertainment bias. MVMR indicated that participation is 

unlikely to explain the effect of education on AD identified in MR, and the protective effect of 

educational attainment may be due to other biological mechanisms, such as cognitive reserve.  

 

 

Keywords: education; participation bias; Alzheimer’s disease; Mendelian Randomization; causal 

inference

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.09.24310096doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.09.24310096


 4

Introduction 

Epidemiological studies have found that people with higher educational attainment have 

a lower incidence of Alzheimer’s Disease (AD). These associations may be due to cognitive 

reserve, whereby education reduces the impact of neuropathologic lesions in the brain (1,2). 

Increased educational opportunities and improved cardiovascular health have also been linked to 

the observed secular decline in the incidence of dementia (3,4). However, the observed protective 

effect of education on AD may be influenced by participation bias, as individuals with more 

education are more likely to participate in research studies (5). In a study examining participation 

in clinical research and education, individuals with higher levels of education, such as college 

students, exhibited a greater likelihood of participation in clinical trials (6–8). In comparing the 

National Alzheimer's Coordinating Center sample (NACC) Alzheimer’s Disease Research 

Centers to the nationally representative Health and Retirement Study (HRS), NACC participants 

had higher levels of education compared to HRS participants, further supporting a positive 

relationship with education and participation in clinical studies (9).  

Selection bias, collider bias, and participation bias can all influence the observed 

relationship between education and AD. Selection bias occurs when the participants in a study 

are not representative of the general population (10). In collider bias, researchers select their data 

based on a variable that is influenced by both the exposure and outcome they are studying. 

Participation bias represents a form of collider and selection bias because any observed 

association between education and AD may reflect the combined influence of education and 

participation bias and could lead to distorted causal interpretations (Supplementary Figure 1) 

(10). For example, selective participation could create a spurious association between higher 

education and lower prevalence of AD within the study sample. This bias occurs not because 
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education directly influences AD risk, but because of the non-random selection process based on 

both education level and AD status.  

The observed effects of education in Mendelian randomization studies could be due to 

either the causal effects of education or participation bias. This is important because if the effects 

are due to collider bias, then educational attainment is unlikely to be an effective modifiable risk 

factor for Alzheimer’s disease, and recent secular changes in educational attainment are unlikely 

to affect rates of disease in the population.   

Mendelian Randomization uses instrumental variables —genetic variants associated with 

the exposure of interest— to investigate the causal effect of an exposure on an outcome (11). 

Due to the random inheritance of alleles at conception and meiosis, conditional on parental 

genotype, genetic variants associated with exposure cannot be confounded (12). Furthermore, 

reverse causation is impossible, as the environment cannot affect germline genetic variation post-

conception. Multivariable MR (MVMR) extends this approach by using genetic variants 

associated with multiple exposures as instruments to estimate the "direct" and indirect effects of 

each exposure on the outcome (12). MVMR analyses have shown a bidirectional effect between 

education and cognitive ability; when examining the total effects of education on AD, it was 

found that cognitive abilities mediates the impact of education on AD (13). Additionally, cortical 

surface area, volume, and intrinsic curvature were found to be associated with educational 

attainment (14).  

To date, the effect of participation on the protective effect of educational attainment on 

AD needs to be further investigated. The effect of education and AD can influence participation 

(and subsequentially selection) therefore MR can be employed to overcome certain biases as the 

impacts of selection bias are likely to be less than other biases such as pleiotropy (15). This study 
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used genetic correlations and bidirectional and multivariable two-sample Mendelian 

randomization (MR) to investigate the causal relationships between education, participation, and 

AD and determine if education's effect on AD is due to participation bias. 

 

 

Methods 

 

Data Sources 

Genome-wide association study (GWAS) summary statistics were obtained for each 

exposure and outcome dataset (Table 1 and Supplementary Table S1). The GWAS for education 

measured educational attainment as the number of years of schooling (n= 3,037,499, nloci = 

3,952) (16). For participation, we used one primary measure of participation involving 

participation in an optional mental health questionnaire (MHQ) of the UK Biobank (n= 451,036, 

nloci = 32) as it was the most statistically powered (17). Two other GWASs’ of participation were 

used to validate our results across different measures and included a weighted GWAS based on a 

probability model that has individual participation probabilities as the outcome (neffective = 

102,215, nloci = 28) (18). This model adjusted for nonresponse by giving greater weight to 

overrepresented and underrepresented individuals, thus creating a more representative pseudo-

population that mimics the Health Survey England, which was used as the reference sample. The 

next measure of participation used estimated factor scores for the general “I don’t know” 

behavior across UK Biobank survey questions (n= 360,628, nloci = 35) (19). Two GWASs’ were 

used for AD: the first involved clinically diagnosed AD cases (n= 94,437, nloci = 25 LOAD risk 

loci), which we refer to as “AD” (20). The second leveraged clinical case-control series, in 
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addition to self-reported family history of dementia, to conduct a GWAS-by-proxy (GWAX) (n = 

788,989, nloci = 72) of AD and related dementias which we refer to as “AD/ADRD” (21). All 

cohorts included age and sex as covariates, and all individuals were of European ancestry. All 

GWAS’s were standardized using `MungeSumstats` version 1.10.1 (22).   

 

Genetic correlations 

We estimated genetic correlations between each trait using Linkage Disequilibrium Score 

Regression (LDSC) implemented by GenomicSEM v0.0.5 (23). Genetic correlations quantify the 

degree of shared genetic influence between two traits, representing the proportion of variance in 

these traits that can be attributed to common genetic influences (24). LDSC quantifies 

heritability by assessing the correlation between genetic variants across the genome and the trait 

of interest, using a European reference panel from 1000 Genomes to estimate linkage 

disequilibrium (LD) (24). 

 

Mendelian Randomization 

Selection of genetic instruments and data harmonization. We first performed 

clumping (r2
�=�0.001, 10Mb clumping window, EUR reference) to identify and retain 

independent genome-wide significant (p < 5e-8) SNPs using the OpenGWAS API.  

For instrumental variables missing from the outcome GWAS dataset, LD proxies were 

identified using LDlinkR version 5 (reference = EUR; r2  > 0.8) (25). The exposure and outcome 

datasets were harmonized to ensure that their SNP effects corresponded to the same effect allele 

with palindromic variants inferred using their allele frequencies (26,27). The APOE region 

(19:44912079-19:45912079, build 37) was removed due to its known pleiotropic effects (28).  
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Statistical analysis. MR is a statistical technique that leverages genetic variants as 

instrumental variables to estimate causal relationships between an exposure and an outcome. MR 

relies on the principle that genetic variants are randomly assigned at conception and thus free 

from confounding, making them ideal instruments for causal inference. MR holds three key 

assumptions: the genetic variants associate with the exposure; there are no controlled 

confounders of the genetic variant-outcome association; all the effects of the genetic variant on 

the outcome are mediated via the exposure of interest (12). 

We performed univariate MR to estimate the causal effect of education on each 

participation measure and AD. We also estimated the effect of genetic liability to AD on 

education and each participation measure. Fixed effects Inverse-variance weighted (IVW) was 

the primary analysis method as it is the most precise. Fixed effects IVW weighs variant-exposure 

and variant-outcome associations by the inverse of their variances to provide a single causal 

estimate, assuming that all instruments are valid and there is no horizontal pleiotropy (29).  

Diagnostics. To test the validity of the instrumental variable assumptions, we used F-

statistics to assess the strength of the genetic instruments, Cochran’s Q test for heterogeneity, and 

the MR Egger regression intercept for horizontal pleiotropy (12). Higher F-statistics (F statistic 

>10) indicate stronger instruments and are less likely to lead to weak instrument bias (12). Radial 

MR version 1.0 was used to detect outliers that were omitted from the MR analysis (30). 

Sensitivity Analyses. For each MR analysis, sensitivity analyses were performed to test 

the robustness of the causal association between the exposure and outcome in either 

heterogeneity or horizontal pleiotropy. These include MR Egger, Weighted Median (WME), and  

Weighted Mode Based Estimator (WMBE), with each method having different assumptions (31–

33). The assumption of no horizontal pleiotropy is relaxed in MR Egger; WME combines 
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multiple genetic instruments to estimate causal effects and provides valid results even when at 

least 50% of the instruments are valid; WMBE is unbiased when the modal estimate across the 

SNPs is from a valid (i.e. non-pleiotropic) SNP (12). We interpreted our results as robust 

evidence of a causal effect when the IVW analysis was significant (p<0.05) after outlier removal 

and where there was no evidence of heterogeneity (p>0.05) or pleiotropy (p>0.05). In the 

presence of heterogeneity or pleiotropy, robust causal associations were those where at least one 

of the sensitivity analyses was also significant (p<0.05) and had the same direction of effect. 

Multivariable Mendelian Randomization. Multivariable Mendelian randomization is 

an extension of univariate MR that includes instrumental variables associated with multiple 

exposures to be included in the analysis. Therefore, multivariable MR allows us to evaluate the 

direct causal effect of an exposure on an outcome, while univariate MR only estimates the total 

causal effect (12). The two exposure/outcome datasets were harmonized using TwoSampleMR 

version 0.5.11. We performed multivariable MR and evaluated the results using diagnostics and 

sensitivity analyses to determine if the effect of education on AD was being mediated by 

participation bias using the MVMR package version 0.3 and MendelianRandomization package 

version 0.9.0 (34)(35). A robust causal effect in the MVMR analysis is similarly defined as the 

univariate analysis. 

All statistical analyses were carried out using R version 4.3.0. The code used to conduct 

the analyses is available at: https://github.com/AndrewsLabUCSF/Aadrita-AD-participation-

education.  

 

Results 
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Genetic correlations 

We found medium-strong positive genetic correlations between the three participation 

measures (Figure 1). Education exhibited the strongest positive correlation with weighted 

participation, followed by participation and nonresponse participation. Education was also 

negatively correlated with AD. However, it was not correlated with AD/ADRD. In contrast, 

participation and both AD and AD/ADRD were weakly negatively correlated (Figure 1).  

 

Higher Educational attainment is associated with a reduced risk of AD, but an increased risk 

of AD/ADRD 

The Mendelian randomization estimates suggested that an additional year of education 

reduced the odds of AD across all sensitivity analyses (ORIVW 95% CI= 0.7 [0.63, 0.79], p = 8e-

10; Table 2, Figure 2 and Supplementary Fig 2A) but our results were not robust to heterogeneity 

and pleiotropy. In contrast, the Mendelian randomization estimates suggested that an additional 

year of education increased the odds of AD/ADRD (ORIVW 95% CI= 1.09 [1.02, 1.15], p = 

0.006; Table 3, Figure 3 and Supplementary Figure 3A). However, there was evidence of 

heterogeneity, and the sensitivity analyses were consistent with the null. 

 

Participation is associated with a reduced risk of AD   

Participation in MHQ reduced the odds of AD (ORIVW 95% CI= 0.325 [0.128, 0.326], p = 

0.01; Table 2, Figure 2 and Supplementary Figure 2B) and was supported by similar results in 

the weighted participation measure (ORIVW 95% CI= 0.0586 [0.0067, 0.510], p = 0.01; Table 2, 

Figure 2 and Supplementary Figure 2C). MHQ decreased the odds of AD/ADRD (ORIVW 95% 

CI= 0.49 [0.31, 0.79], p = 0.003; Table 3, Figure 3 and Supplementary Figure 3B).  
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Bidirectional analysis showed an effect of AD on participation but no effect of AD on 

education 

Genetic liability for AD reduced the odds of participation in the MHQ (ORIVW 95% CI= 

0.994 [0.98, 0.99], p = 4.7e-05), and our results were robust to heterogeneity and pleiotropy 

(Table 2 and Supplementary Figure 4B). Similarly, genetic liability to AD/ADRD reduced the 

odds of participation (ORIVW 95% CI= 0.993 [0.99, 0.996], p = 6.24e-05; Table 3 and 

Supplementary Figure 5B) and the results were robust. On the other hand, genetic liability to 

AD/ADRD increased the odds of weighted participation (ORIVW 95% CI= 1.005 [1.001, 1.008], 

p = 0.005; Table 3 and Supplementary Figure 5C). There was little evidence that genetic liability 

for AD or AD/ADRD affected educational attainment. 

 

The protective effect of education on AD is not mediated by participation  

When adjusting for participation in the MHQ in MVMR analysis, an additional year of 

education continued to reduce the odds of AD (ORIVW 95% CI= 0.76 [0.62, 0.92], p = 0.006; 

Figure 4 and Supplementary Table S2). Instrument strength was low for education and 

participation (conditional F statistic for education= 3.41 and participation= 2.41; Figure 4 and 

Supplementary Table S2), suggestive of weak instruments. When adjusting for education in the 

MVMR, IVW estimates were non-significant for participation (ORIVW= 0.58, 95% CI= [0.22, 

1.51], p = 0.27; Figure 4 and Supplementary Table S2) and this was supported by the weighted 

participation measure (ORIVW= 1.63, 95% CI= [0.39, 6.69], p = 4.9e-01; Figure 5 and 

Supplementary Table S2). Instrument strength was low for education and weighted participation 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.09.24310096doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.09.24310096


 12

(F statistic for education= 10.86 and weighted participation= 1.42), which is suggestive of weak 

instruments. 

When adjusting for participation in the MHQ in MVMR, an additional year of education 

increased the odds of AD/ADRD (ORIVW 95% CI= 1.16 [1.03, 1.32], p = 0.02; Figure 4 and 

Supplementary Table S3). However, this was not robust, and our analysis suffered from weak 

instruments (conditional F statistic for education= 3.73 and participation= 2.48). This finding 

was supported when adjusting for nonresponse participation; years of education increased odds 

of AD/ADRD (ORIVW 95% CI= 1.16 [1.06, 1.28], p = 0.002; Figure 4 and Supplementary Table 

S3) with robust findings, though instrument strength remained weak (conditional F statistic for 

education= 7.42 and nonresponse participation= 2.79). When adjusting for weighted 

participation, our results were non-significant (Supplementary Table S3). 

 

The SNPS used as IVs and their harmonized effects are shown in Supplementary Tables 

S4 to S19. The results from Radial MR analysis are displayed in Supplementary Figures 6-9. 

 

Discussion 

This study used genetic correlations, univariable MR, and multivariable MR to evaluate 

the causal relationships between education, participation, and AD risk. Higher education was 

associated with a reduced risk of AD but an increased risk of AD/ADRD with evidence of 

heterogeneity, indicating that these effects could have alternative explanation (e.g. horizontal 

pleiotropy). Participation was also associated with a reduced risk of AD and AD/ADRD. When 

combining education and participation into a multivariable framework, we found that the 

relationship between education and AD was unlikely to be due to participation. 
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Education exhibited the strongest positive correlation with weighted participation, 

followed by participation and nonresponse participation. There were also significant negative 

correlations between educational attainment and AD, supporting consistent findings on 

education's protective effect on AD (13,14). Higher levels of education seem to play a crucial 

role in maintaining cognitive function across an extended lifespan (36). Educational attainment 

significantly contributes to cognitive reserve, an individual’s ability to perform tasks and solve 

problems, even in the presence of amyloid pathology (37). Specifically, studies have shown that 

individuals with higher educational attainment exhibited better cognitive abilities among carriers 

of PSEN1 and E280A (mutations that predispose individuals to early-onset AD) (38). Education 

is thought to contribute to cognitive reserve by increasing synaptic density in the neocortical 

association cortex (39). 

Across both AD and AD/ARRD datasets, participation in the MHQ was associated with a 

reduced risk of AD. This finding was supported by a significant negative genetic correlation 

between participation and AD. Participation bias in studies could lead to a non-representative 

population, which can produce results that are not generalizable to other populations (17–19). 

Factors influencing participation in clinical research include lower socioeconomic status (lower 

wages, lower quality neighborhoods, higher unemployment, and household overcrowding) and 

lower educational achievement, which are risk factors for AD and are closely linked to the risk of 

cognitive impairment (40,41). Furthermore, weighted participation and participation exhibited 

strong genetic correlations, suggesting that similar genetic factors drive participation, whether in 

a mental health questionnaire or other aspects of health, lifestyle, and education (18).  

The bidirectional analysis in both the AD and AD/ADRD datasets provided evidence 

supporting an apparent causal effect of genetic liability to AD on participation. This suggests that 
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AD pathogenesis may influence participation in cohort studies in mid-life, which aligns with the 

development of AD pathology at least 15 years before diagnosis (1). Genetic liability to 

AD/ADRD was associated with a small decrease in participation but a small increase in weighted 

participation. This discrepancy in the weighted participation measure analysis can be attributed 

to the use of proxy measures for both AD and participation, which may lead to inaccuracies. 

Nevertheless, the effect of AD on participation can largely be explained through education; lower 

educational levels are linked to a decreased likelihood of participation among individuals with 

AD (42). 

To distinguish the individual impacts of participation and education on AD, we conducted 

MVMR. Our MVMR analysis, adjusting for participation, revealed that the effect of education 

on AD remained substantial, suggesting that the effect of years of education on AD found using 

Mendelian randomization studies is unlikely to be due to participation bias but is likely mediated 

by other mechanisms. Given the mounting evidence supporting the effect of education on risk of 

AD, it becomes crucial to implement robust public policies encouraging sustained education, and 

to discover the molecular, familial, and societal mechanisms that mediate these effects. Research 

indicates that a population-wide preventive approach for AD could involve focusing on the 

duration of mandatory schooling and promoting cognitive engagement in the elderly as active 

aging (based on social and intellectual advanced activities of daily living) may be associated with 

cognitive performance  (14,43,44). 

Discrepancies in results emerged between the AD and AD/ADRD datasets. Notably, the 

univariate MR analysis indicated that education had a protective effect on AD but a risk-

increasing effect for AD/ADRD. This effect is likely due to survival bias and reporting bias (45). 

The AD/ADRD cases in the Bellenguez dataset are largely comprised of individuals who 
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reported parental dementia, and individuals reporting parental AD diagnoses may have parents 

with less genetic risk for other diseases, such as cardiovascular disease and cancer, allowing 

them to live longer. More educated parents will be older when they have kids and will have more 

time to develop AD, which is supported by positive genetic correlations between age at first birth 

and educational attainment (46). Additionally, only individuals aware of their parent's health 

typically report parental AD diagnoses (45). While efforts can be made to mitigate AD biases in 

GWAX, such as controlling for parental age and vital status, the ultimate solution lies in 

enhancing the quality of GWAX analysis. These discrepancies highlight the importance of using 

GWAS datasets containing clinical or neuropathological defined cases over family history-based 

proxy phenotypes for MR studies (47). 

Strengths of our study include using complementary measures of participation, which 

allowed us to see the effectiveness of different methods; a bidirectional MR approach to confirm 

the direction of causality; comparison of clinical versus proxy datasets; and multiple sensitivity 

analyses to confirm the robustness of the results. Nevertheless, our study findings come with 

several limitations. Firstly, while F-statistics for the univariable analyses exceed the standard 

threshold of 10, the conditional F statistics in our MVMR analyses were below 10. This indicates 

that causal estimates in the MVMR analyses may be affected weak instrument bias, which can be 

attributed to the educational dataset possessing more statistical power than the participation 

datasets. There has been a lack of highly powered participation datasets and future work can 

focus on implementing methods to address weak instrument bias (48). Secondly, the datasets 

exclusively include individuals of European ancestry, limiting the generalizability of our results 

to the broader population. Thirdly, biases might arise when there is a proportion of sample 

overlap between datasets (49). 
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In conclusion, we found that the Mendelian randomization estimates of the effect of years 

of education on AD are unlikely to be due to participation bias. Education increased the odds of 

AD/ADRD in our GWAX dataset, likely attributed to survival bias and reporting bias, 

highlighting the importance of utilizing clinical case-control AD GWAS in MR analyses. These 

findings contribute to the accumulating evidence supporting the protective role of education 

against AD. We urgently need to discover the mechanisms that explain these effects and develop 

effective interventions to reduce the incidence of AD in the population.  
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Tables 
 

Table 1. Summary of GWASs used in study 
Study Trait Cohort/ 

consortium 
N Number 

of loci 
Ancestry 

Kunkle et al, 
2019 
 

Late-onset 
Alzheimer’s 
disease 

IGAP 
 
 
 

94,437 
 

25 European  
 
 

Bellenguez et 
al, 2022 
 

Proxy AD EADB 
consortium and 
the UK 
Biobank 
 

487,511 72 European 

Okbay et al, 
2022 

Education UK Biobank 3,037,499 3,952 European 

Tyrrell et al, 
2021 

Participation in 
MHQ 

UK Biobank 294,787 32 European 

Schoeler et al, 
2021 

Weighted 
participation 

UK Biobank, 
HSE, UK 
Census 

94,643 – 
102,215 

28 European 

Mignogna et 
al,  2023 

Nonresponse 
participation 

UK Biobank, 
Add Health 

360,628 35 European 

IGAP, International Genomics of Alzheimer’s Project; HSE, Health Survey England; Add 
Health, National Longitudinal Study of Adolescent to Adult Health 
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Table 2.     Summary of univariate MR results with AD  

 
 
 
 
 

 
 
 
 

SN
P 

F 
stat
s  

 IVW  MR-Egger  WME  WMBE  Cochran’s 
Q test 

MR-
Egger 

intercep
t 

Exposure Outcome    Beta 
(se) 

P 
value 

 Beta 
(se) 

P value  Beta (se) P value  Beta 
(se) 

P value  Q p value P value 

Education AD 464 55.
1 

 -0.34 
(0.06) 
 

8e-10  -0.89 
(0.23) 

1.2e-
04 

 -0.45 
(0.08) 

9.6e-
08 

 -0.88 
(0.31) 

0.005  2e-04 0.01 

Participation AD 36 34.
9 

 -1.12 
(0.47) 
 

0.01  -1.04 
(2.47) 

0.67  -1.98 
(0.62) 

0.001  -3.11 
(1.57) 

0.05  0.10 0.97 

Weighted 
participation 

AD 18 31.
3 

 -2.83 
(1.1) 
 

0.01  2.11 
(3.22) 

0.52  -3.24 
(1.5) 

0.03  -4.64 
(2.53) 

0.08  0.94 0.12 

Nonresponse 
participation 
 

AD 29 39.
9 

 -0.45 
(0.34) 
 

0.18 
 
 

 -1.28 
(1.7) 

0.46 
 
 

 -0.59 
(0.4) 

0.1  -1.44 
(0.85) 

0.1  0.033 0.02 

Reverse 
causality 

                  

AD Education 27 105
.2 

 0.004 
(0.003) 

0.22  0.007 
(0.005) 

0.22  0.01 
(0.003) 

0.002  0.009 
(0.002) 

0.003  1.71e-06 0.57 

AD Participation 28 107
.3 
 

 -0.005 
(0.001) 
 

4.7e-
05 
 

 -0.005 
(0.002) 
 

0.014 
 

 -0.002 
(0.002) 
 

0.19 
 

 -0.002 
(0.002) 
 

0.32 
 

 0.056 
 

0.71 
 

AD Weighted 
participation 

25 117
.19 

 7.5e-05 
(0.001) 
 

0.95 
 

 -3.9e-04 
(0.001) 
 

0.84 
 

 -6.14 
(0.001) 
 

0.97 
 

 1.83 
(0.001) 
 

0.99 
 

 0.28 
 

0.73 
 

AD Nonrespons
e 
participation 

24 117
.19 

 -0.004 
(0.002) 

0.059  -0.003  
(0.003) 

0.27  -0.005 
(0.003) 

0.11  -0.003 
(0.003) 

0.26  0.1 0.98 
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Table 3.     Summary of univariate MR results with AD/ADRD 
 

 SNP F 
sta
ts  

 IVW  MR-Egger  WME  WMBE  Cochran’s 
Q test 

MR-
Egger 

intercep
t 

Exposure Outcome    Beta 
(se) 

P 
value 

 Beta 
(se) 

P value  Beta (se) P value  Beta 
(se) 

P value  Q p value P value 

Education AD/ADRD 462 54
.6 

 0.08 
(0.03) 

0.006  -0.09 
(0.15) 

0.54  0.0 
(0.05) 

1  -0.12 
(0.17) 

0.47  2.39e-15 0.22 

Participation AD/ADRD 37 34
.9 

 -0.69 
(0.23) 

0.003  0.44 
(1.22) 

0.71  -0.81 
(0.34) 

0.01  -1.07 
(0.73) 

0.15  0.46 0.34 

Weighted 
participation 

AD/ADRD 19 31
.4 

 0.22 
(0.54) 

0.68  1.65 
(1.7) 

0.34  0.3 
(0.77) 

0.69  0.33 
(1.26) 

0.79  0.75 0.38 

Nonresponse 
participation 

AD/ADRD 30 
 

39
.6 

 0.02 
(0.15) 

0.87  -0.17 
(1.21) 

0.88  -0.25 
(0.24) 

0.3  -0.35 
(0.47) 

0.4  4e-07 
 

0.87 
 

Reverse 
causality 

                  

AD/ADRD Education 56 85
.8 

 0.004 
(0.005) 

0.44  0.001 
(0.009) 

0.84  0.007 
(0.004) 

0.11  0.007 
(0.004) 

0.11  4.4e-18 0.77 

AD/ADRD Participation 55 85
.3 

 -0.006 
(0.001) 

6.2e-
05 
 

 -0.01 
(0.003) 

0.006 
 

 -0.006  
(0.003) 
 

0.04 
 

 -0.009 
(0.004) 
 

0.05 
 

 0.0003 
 

0.19 
 

AD/ADRD Weighted 
participation 

44 82
.7 

 0.005  
(0.001) 

0.005 
 

 0.006 
(0.003) 

0.06 
 

 0.005 
(0.002) 

0.04 
 

 0.007 
(0.003) 

0.04 
 

 0.69 
 

0.66 
 

AD/ADRD Nonrespons
e 
participation 

49 78
.8 

 -0.002 
(0.003) 

0.41  -0.009 
(0.006) 
 

0.14  -0.006 
(0.004) 

0.16  -0.01 
(0.005) 

0.06  0.06 
 

0.19 
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Supplementary Table 1: Description of GWAS datasets used in this study. 
 
Supplementary Table 2: Summary of MVMR results with AD 
 
Supplementary Table 3: Summary of MVMR results with AD/ADRD 
 
Supplementary Table 4: Harmonized data for AD onto participation bidirectional analysis 
 
Supplementary Table 5: Harmonized data for AD onto nonresponse participation 
bidirectional analysis 
 
Supplementary Table 6: Harmonized data for AD onto education bidirectional analysis 
 
Supplementary Table 7: Harmonized data for AD onto weighted participation bidirectional 
analysis 
 
Supplementary Table 8: Harmonized data for AD/ADRD onto participation bidirectional 
analysis 
 
Supplementary Table 9: Harmonized data for AD/ADRD onto nonresponse participation 
bidirectional analysis 
 
Supplementary Table 10: Harmonized data for AD/ADRD onto weighted participation 
bidirectional analysis 
 
Supplementary Table 11: Harmonized data for AD/ADRD onto education bidirectional 
analysis 
 
Supplementary Table 12: Harmonized data for participation onto AD univariate MR 
analysis 
 
Supplementary Table 13: Harmonized data for nonresponse participation onto AD 
univariate MR analysis 
 
Supplementary Table 14: Harmonized data for weighted participation onto AD univariate 
MR analysis 
 
Supplementary Table 15: Harmonized data for education onto AD univariate MR analysis 
 
Supplementary Table 16: Harmonized data for participation onto AD/ADRD univariate 
MR 
 
Supplementary Table 17: Harmonized data for nonresponse participation onto AD/ADRD 
 
Supplementary Table 18: Harmonized data for weighted participation onto AD/ADRD 
univariate MR analysis 
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Supplementary Table 19: Harmonized data for education onto AD/ADRD univariate MR 
analysis 
 
Supplementary Fig 1. Directed acyclic graph (DAG) illustrating collider bias between our 
traits of interest.   
 
Supplementary Fig 2. Univariate MR Scatter Plots for AD 
 
Supplementary Fig 3. Univariate MR Scatter Plots for AD/ADRD 
 
Supplemental Fig 4. Bidirectional analyses for AD onto education and participation 
measures 
 
Supplemental Fig 5. Bidirectional analyses for AD/ADRD onto education and participation 
measures 
 
Supplementary Fig 6. Radial MVMR for AD 
 
Supplementary Fig 7. Radial MVMR for AD/ADRD 
 
Supplementary Fig 8. Radial MR plots for AD 
 
Supplementary Fig 9. Radial MR plots for AD/ADRD 
 
Supplementary Methods  
 
STROBE-MR Checklist 
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Figures 
 

 
Fig 1: Genetic correlations of education, participation, weighted participation, nonresponse 
participation and AD and AD/ADRD.  
 
 

 
Genetic correlations between three different participation measures, education, AD and 
AD/ADRD. Blue indicates a negative correlation while red indicates a positive correlation. P 
values are represented by the size of the colored squares where larger squares represent a smaller 
P value. Genetic correlations were calculated using GWAS summary statistics from previous 
studies and LD score regression. Nonresponse participation is reverse coded. 

Genetic correlations 
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Fig 2: Univariate odds ratio of the association between participation measures, education 
and AD 
 

 
 
 
Forest plots showing the univariate MR odds ratio for the four different traits (participation, 
weighted participation, nonresponse participation and education) and AD. Red represents 
significant results and arrows represent CI intervals that continue past the x axis.  
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Fig 3: Univariate odds ratio of the association between participation measures, education 
and AD/ADRD 
 

 
Forest plots showing the univariate MR odds ratio for the four different traits (participation, 
weighted participation, nonresponse participation and education) and AD/ADRD. Red represents 
significant results and arrows represent CI intervals that continue past the x axis. 
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Fig 4: MVMR odds ratio of the association between participation measures and education 
for AD and AD/ADRD 
 

 
Forest plot examining MVMR associations between education, three distinct participation 
measures and clinical AD versus AD/ADRD. Each row represents a different participation 
measure and arrows represent CI intervals that continue past the x axis.
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