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Abstract 26 

Background: COVID-19 led to a disruption in nearly all aspects of society, yet these impacts 27 

were not the same across populations. During the pandemic, it became apparent that ancestry 28 

was associated with COVID-19 severity and morbidity, such that individuals of African descent 29 

tended to have worse outcomes than other populations. One factor that may influence COVID-30 

19 outcomes is the circulating proteomic response to infection. This study examines how 31 

different ancestries had differential circulating protein levels in response to severe COVID-19 32 

infection. 33 

Methods: 4,979 circulating proteins from 1,272 samples were measured using the SomaScan 34 

platform. We used a linear mixed model to assess the ancestry-specific association between the 35 

level of each protein and severe COVID-19 illness, accounting for sex, age, and days since 36 

symptom onset. We then compared each ancestry-specific effect size of severe COVID-19 37 

illness on protein level to one another in a pairwise manner to generate Z-scores. These Z-38 

scores were then converted into p-values and corrected for multiple comparisons using a 39 

Benjamini-Hochberg false discovery rate of 5%.  40 

Results: Comparing ancestries, we found that 62% of the tested proteins are associated with 41 

severe COVID-19 in European-ancestry individuals, compared to controls. We found that 45% 42 

and 22% of the tested proteins were different between COVID-19 infected and control 43 

individuals in people of African and East Asian ancestry, respectively. There was a strong 44 

correlation in effect size between ancestries. We found that individuals of European and African 45 

ancestry had the most similar response with a Pearson correlation of 0.868, 95% CI [0.861, 46 

0.875] while European and East Asian ancestries had a Pearson correlation of 0.645, 95% CI 47 

[0.628, 0.661] and, East Asian and African ancestries had a Pearson correlation of 0.709, 95% 48 

CI [0.695, 0.722]. However, we found 39 unique proteins that responded differently (FDR < 0.05) 49 

between the three ancestries.  50 
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Conclusions: Examining 4,979 protein levels in 1,272 samples, we identified that the majority of 51 

measured proteins had similar responses to infection across individuals of European, African 52 

and East Asian ancestry. However, there were 39 proteins that may have a differential response 53 

to infection, when stratified by ancestry. These proteins could be investigated to assess whether 54 

they explain the differences in observed severity of COVID-19 between ancestral populations.  55 

 56 
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Background 60 

The coronavirus disease 2019 (COVID-19) pandemic has impacted the entire world, reshaping 61 

our day-to-day lives forever. To date, there have been a total of 774 million reported cases of 62 

COVID-19 with reported 7 million deaths from COVID-19 globally.1 In response to this pandemic, 63 

there have been attempts by the global scientific community to collect, categorize, and elucidate 64 

any information that could help with the prevention and treatment of this disease. Within these 65 

datasets, several risk factors have been identified, including, age, male sex, and past smoking 66 

status. However, one potential risk factor of COVID-19 infection that has not been as well 67 

characterized is ancestry. 68 

Genetic ancestry is associated with different disease prevalence and COVID-19 is no exception. 69 

2–5 Early on in the pandemic, it was noticed that people of different ancestries were impacted by 70 

COVID-19 differently.6–8 In 2020, Millet et al. investigated COVID-19 cases and death by across 71 

the United States of America, stratified by county. They found that COVID-19 disproportionately 72 

impacted African American communities after adjusting for age, poverty, and other 73 

comorbidities.6 Price-Haywood et al. investigated non-Hispanic African American patients and 74 

compared them to non-Hispanic European-ancestry patients in Louisiana. They found that even 75 

though the African American population accounted for 31% of the total cohort, this minority 76 

composed of 71% of the deaths. In response, there have been many studies that attempted to 77 

look at the underlying genetic differences to see if the difference in COVID-19 response was a 78 

genetic or socio-economic outcome.9–15 Shelton et al. found that ancestry was a hospitalization 79 

risk factor, however, they reported that the two genetic associations they found were responsible 80 

for this risk difference.12  81 

One method to examine the biological response to COVID-19 infection is by investigating the 82 

circulating proteins levels of individuals who are acutely ill and comparing these levels to those 83 

in controls. This comparison can identify proteins, whose levels tend to be perturbed by COVID-84 
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19 infection. High-throughput oligonucleotide-aptamer protein measurement technology allows 85 

for the measurement of thousands of circulating proteins simultaneously from a single sample. 86 

In this study, samples were analyzed using the SomaScan assay (SomaLogic), an aptamer-87 

based proteomics assay which utilizes chemically modified nucleotides, called SOMAmers 88 

(Slow Off-rate Modified Aptamers). The increased throughput of this technology allows for the 89 

measurement of many such proteins simultaneously. In spite of the benefits of proteomic 90 

analysis, there are only a few studies that looked at the proteomic differences between 91 

ancestries, and these ones focused primarily on the European ancestry.14,16 Previously, we 92 

found that an isoform of OAS1 in people of European ancestry displayed a protective effect for 93 

COVID-19.14  94 

Given the difference in rates of COVID-19 between different ancestries, it is important to assess 95 

whether these differences are biological in nature. However, there has been very little research 96 

as to how the proteome is impacted by COVID-19 stratified by ancestry. This study, using the 97 

Biobanque Québécoise de la COVID-19 (BQC19), assesses how each continental ancestry 98 

responds to COVID-19, as reflected by changes in circulating protein levels. The results of this 99 

study shed light on the host response to infection via changes to the proteome, and describes 100 

which responses differ by ancestry.  101 

Methods 102 

Overview of the study design 103 

We used the SomaScan V4 assay to measure 4,979 circulating proteins in case and control 104 

samples from the BQC19, a biobank in Québec, Canada.17 We used linear mixed models 105 

(LMMs) to assess differences in protein levels between severe COVID-19 patients and controls 106 

who are hospitalized patients that either did not have COVID or presented with mild COVID 107 
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symptoms, stratified by ancestry. The differences in the association between protein levels and 108 

COVID-19 severity was then compared between ancestries. 109 

Population 110 

All samples were taken from the BQC19, this biobank recruited patients admitted to any of ten 111 

test sites in Quebec, Canada. We used genotype data provided by the BQC-19 to define the 112 

genetic ancestry of our populations and used phenotypic data provided by the BQC-19 to 113 

account for confounding factors, such as age, sex, and time since symptom onset.  114 

COVID-19 Case/Control Definitions 115 

We used severe COVID-19 to define case status. Cases were defined as hospitalized 116 

individuals with COVID-19 as the primary reason for hospital admission, an RT-PCR confirmed 117 

COVID-19 status, and either died or required respiratory support beyond low-throughput nasal 118 

cannula. Controls were all individuals in the BQC-19 who did not meet this case definition. 119 

These controls were also admitted to the same hospitals within the participating hospital 120 

network in Quebec, Canada.17 This classification strategy has been previously used in the 121 

literature by the COVID-19 Host Genetics Initiative.9,10,14,15 122 

Ancestry Determination 123 

Genetic ancestry was determined by a UMAP (v 0.2.8.0) projection of the BQC19 onto a 124 

reference set (Supp. Fig 1). This reference ancestral set was constructed by unrelated samples 125 

from the 1000 Genomes Project and the Human Genome Diversity Project. This reference set 126 

contained 117,221 SNPs that were available in the BQC19, had a minor allele frequency 127 

of >0.1%, and were LD-pruned (r2 < 0.8). The BQC-19 population was then projected on this 128 

reference and ancestry was assigned by a UMAP cluster assigned by hdbscan (v 0.8.27). This 129 

method was previously used by the COVID-19 HGI.10,18  130 
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Protein measurements 131 

We used the SomaScan (v4) platform to measure 5,284 circulating proteins from each sample. 132 

Of these 5,284 proteins, 305 non-human proteins were then removed from analysis using the 133 

same classification used previously in the literature.19 To adequately reflect the effects of 134 

COVID-19 infection, we limited our experiment to those biological samples procured within 30 135 

days after symptom onset, with our linear mixed models accounting for the changes in protein 136 

levels over time. Blood plasma samples were collected in acid-citrate-dextrose tubes and frozen 137 

at -80 °C. Protein levels were measured using relative fluorescence units, and further 138 

normalized and calibrated by SomaLogic to remove any systematic bias. For the following 139 

statistical analysis, each protein sample across all patients was then normalized to have a mean 140 

of 0 and standard deviation of 1. This normalization was done prior to any ancestry stratification. 141 

The sample correction and proteomic normalization has been previously described in more 142 

detail by Butler-Laporte et al.20  143 

Statistical Analysis 144 

To leverage the BQC19’s longitudinal samples, we used a linear mixed model (LMM) to group 145 

samples from the same patient using their BQC identifier. R packages, lme4 (1.1.35.1) and 146 

lmerTest (3.1.3) were used with R version 4.1.2 to generate these LMMs. This model further 147 

accounts for the patient’s age, sex and when the sample was taken relative to when the patient 148 

first had symptoms. These patients were further stratified by ancestry to examine how COVID-149 

19 impacts protein levels by ancestry. The formula and sample code can be found in 150 

Supplementary file 1 and the GitHub (https://github.com/richardslab/BQC_Ancestry_Proteomics) 151 

respectively. A full table of all 4,979 proteins, their ancestry specific effect sizes, and their 152 

standard errors can be found in Additional File 1. 153 
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Each ancestry had all 4,979 proteins modelled in our linear mixed model. For each protein, 154 

severe COVID-19 illness had a reported effect size (beta) and p-value. This beta reports the 155 

difference between our case and control populations in each ancestry separately. These p-156 

values were then corrected for multiple comparisons across all three models, resulting in a total 157 

of 14,937 tests with a false discovery rate of 5%. 158 

To assess how COVID-19 impacts protein levels differently between ancestries we used both 159 

the beta and standard error from our LMM in each ancestry and derived a Z-score. A full formula 160 

can be found in Supplementary File 1.  161 

These Z-scores were then converted into p-values based on a Chi-squared distribution. These 162 

p-values were then adjusted for multiple comparisons by applying a Benjamini-Hochberg 163 

correction, setting a false discovery rate of 5%. This test was chosen instead of using a 164 

heterogeneity test due to bias that can be introduced when using a small number of studies.21 165 

We note that this threshold may be too liberal, given the relatively small sample sizes of non-166 

European ancestry. Therefore, the results should be considered hypothesis generating. 167 

Results 168 

Sample Characteristics 169 

Table 1 shows the total number of samples used in our study were separated by genetic 170 

ancestry. The samples were split into the six major ancestry groups as used by the HGI and the 171 

“other” category. These groups were: “European”, “African”, “East Asian”, “South Asian”, 172 

“Admixed American”, “Middle Eastern”, and “Other”. For the remainder of this study, we focused 173 

only on our three largest ancestral groups: European, African, and East Asian. For patient 174 

characteristics, see Supplementary Table 1. 175 

Table 1: Sample characteristics in the BQC19. 176 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.09.24310087doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.09.24310087
http://creativecommons.org/licenses/by-nc-nd/4.0/


   9

Numbers are presented as count (percentage) or (IQR). IQR is the interquartile range, which is 177 
the spread of the middle half of the distribution of the population.    178 

Different ancestries had different responses to COVID-19 infection 179 

We first investigated how different ancestries protein levels responded to severe COVID-19 by 180 

stratifying the population using the following ancestries: European, East Asian, and African. In 181 

individuals of European ancestry 3,066/4,979 (62%) proteins had different (FDR < 0.05) proteins 182 

levels when comparing case and control populations (Figure 1A). Amongst individuals of African 183 

ancestry, 2,252/4,979 (45%) (Figure 1B) of the tested proteins had a difference in proteins levels 184 

between cases and control while 1,098/4,979 (22%) of the tested proteins in Asian ancestry 185 

individuals were classified as significantly different between our case and control populations.  186 

(Figure 1C). We note that the larger samples (European ancestry participants) had more 187 

different proteins than the smaller samples (African and Asian ancestry participants), which in 188 

part, reflects statistical power to detect such differences. 189 

  European  African  East 
Asian  

Middle 
Eastern  

Admixed 
American  

South 
Asian  

Admixed/  
Other  

Overall n (% of 
entire sample)  

797 (63%)  196 (15%)  79 (6%)  76 (6%)  51 (4%)  28 (2%)  45 (4%)  

Median Age 
(IQR)  

70 (58 – 82)  53 (43 – 
65)  

56 (48 – 
70)  

72 (54 – 
80)  

54 (40 – 65)  52 (38 – 
62)  

52 (32 – 
64)  

# of Females 
(%)  

362 (45 %)  98 (50 %)  41 
(52 %)  

28 
(37%)  

22 (43%)  10 (36%)  22 (49%)  

Severe COVID 
(%)  

223 (28%)  72 (37%)  27 (34%) 31 
(41%)  

19 (37%)  7 (25%)  5 (11%)  

Median Days 
since Symptom 
Onset (IQR)  

9 (4 – 14)  9 (5 – 15)  9 (6 – 
13)  

7 (2 – 
13)  

12 (6 – 17)  8 (4 – 
13)  

8 (4 – 13)   
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Figure 1: Volcano plots of the three tested ancestries of the BQC19: European – n = 797 (A), 190 

African – n = 196 (B), and East Asian – n = 79 (C).  191 

The x-axis represents the effect size of the COVID variable in our linear mixed model. Our linear 192 

mixed model included age, sex, and days since symptom onset as co-variables, and used 193 

patient ID as a random factor to account for intra-patient correlation. All volcano plots are scaled 194 

to the same axis, each dot represents one tested protein. The colours representing True and 195 

False, indicate if the protein is significantly different between our case and control definition after 196 

multiple-comparison correction using the Benjamini-Hochberg method. The red dashed line 197 

represents our cutoff p = 0.021 to provide an FDR of 5%. 198 
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When comparing our European ancestries and our African ancestries, we saw that most 199 

proteins share the same trend upon severe COVID-19 infection. In Figure 2A, we compared all 200 

4,979 of our tested protein’s European effect sizes to their African effect sizes. We found that 201 

they had a Pearson correlation of 0.868, 95% CI [0.861, 0.875]. We saw a similar, if weaker 202 

trend when comparing our European and East Asian ancestries with a respective Pearson 203 

correlation of 0.645, 95% CI [0.628, 0.661] (Figure 2B). Finally, we found that the trend 204 

continued between our East Asian and African ancestries in Figure 2C, with a Pearson 205 

correlation of 0.709, 95% CI [0.695, 0.722]. 206 

Figure 2: Pairwise Beta-Beta plots which displays all 4979 proteins and their associated COVID 207 

beta.  208 
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This effect size reflects the impact that COVID status has on the mean protein level in the tested 209 

ancestry. Each dot represents a single tested protein with its x-position and y-position 210 

representing the effect size per ancestry. In Figure 2A, the X position is the effect size 211 

associated with the European cohort and the Y position is the effect size in our African 212 

population. In Figure 2B, we are comparing the European and East Asian cohorts (x and y 213 

respectively), and in Figure 2C, we compare the East Asian (x-axis) and African effect sizes (y-214 

axis). The red dashed lines indicate where an effect size of 0 would be and the black dashed 215 

line is the identity line, where a protein would have identical effect sizes in both ancestries. 216 

These plots do not show any information on the standard error from these effect sizes. By 217 

colouring the plots based on their Z-score, we observed that the farther away from the dashed 218 

line – the identity line, the higher the Z-score. The proteins with Z-scores of 3.8 and higher are 219 

of interest for future investigation for precise targets. We noted that very few proteins show a 220 

marked deviation from the line of identity. Yellow is for proteins with the same response between 221 

ancestries while dark purple shows proteins that have significantly different responses to COVID 222 

between ancestries.  223 

Differences in how severe COVID-19 influences protein levels 224 

We then calculated the ancestry-specific effect size of how COVID-19 status affected protein 225 

levels; we compared each ancestry in a pairwise fashion. Statistical significance of between-226 

ancestry differences were determined using a Z-test (Methods). These p-values were then 227 

corrected for the 14,937 comparisons using an FDR – Benjamini-Hochberg – threshold of 5%. 228 

After applying this multiple testing correction, we found that 39 unique proteins had different 229 

betas across the three ancestries. 29 proteins had different COVID-19 responses between our 230 

European and African cohorts, 7 proteins had different COVID-19 responses between our 231 

European and East Asian cohorts, and 4 proteins had a different COVID-19 response between 232 

our East Asian and African cohorts (Supplemental Table 1).  233 
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As shown in Figure 3, many of the proteins discovered displayed effect sizes in the same 234 

direction but different magnitudes. Of note, in Figure 3A, 16 of the 29 proteins had effect sizes 235 

that were both negative and 6 proteins had effect sizes that were both positive – with the 236 

European counterpart consistently having the milder effect size, and the remaining seven 237 

proteins had effect sizes with opposing magnitudes. Of the seven proteins shown in Figure 3B, 238 

two proteins had COVID-19 responses in the same direction with different negative magnitudes, 239 

and the other five proteins had opposing effect sizes dependant on ancestry. Finally, in Figure 240 

3C, all four proteins had opposing effect sizes between our East Asian and African populations. 241 
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Figure 3: Forest plots of all proteins that were significantly different between two of the three 242 

ancestries tested.  243 

Figure 3 shows Forest plots of the proteins that had a significant difference between ancestries 244 

(FDR < 0.05). Fig. 3A contains the 29 proteins that had significant differences in their effect 245 

sizes between our European and African ancestries and are displayed in order from lowest to 246 

highest African effect sizes. Of the 29 proteins, all were considered significantly different 247 

between case and control in the African ancestry while only 21 of them were considered to be 248 

significantly different from our control population in our European ancestry. Fig. 3B, contains the 249 

7 proteins that passed our multiple correction threshold in our East Asian/European comparison 250 

is shown in order of their European effect sizes. Of the seven proteins, all seven had significant 251 

response to COVID-19 infection in our East Asian ancestry, while only three of the proteins 252 

showed a significant difference between our European case and control populations. Fig. 3C 253 

compares the East Asian and African effect sizes, in the order of lowest to highest African effect 254 

sizes. Two of the proteins were significantly different between our cases and controls in our 255 

African ancestry and three of our proteins had significant COVID-19 responses in our East 256 

Asian ancestry. In all plots the colour scheme is maintained: European (yellow), East Asian 257 

(Red), and African (blue). As in Figure 1, these changes are the effect sizes from the COVID 258 

variable of the linear mixed model. Error bars are the standard error of each effect size.   259 

We noted that in all cases, when comparing differences in protein levels between two ancestries, 260 

the smaller of the two ancestries in sample size had the larger effect size. This may reflect the 261 

instability of estimating effect sizes in our smaller sample sizes, rather than true biological 262 

differences between the two groups. 263 

Validation of OAS1 results 264 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.09.24310087doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.09.24310087
http://creativecommons.org/licenses/by-nc-nd/4.0/


  15

As previously mentioned, OAS1 was identified by Zhou et al.14 to be a circulating protein that 265 

caused less severe COVID-19. Their conclusions hypothesized that COVID-19 infection would 266 

cause OAS1 levels to increase in European individuals. When we tested OAS1 protein levels, 267 

we found that they were increased in our severe COVID-19 patients in both European and 268 

African ancestries (unadjusted p-value of 1.0 × 10-4 and 2.7 × 10-5 respectively) (Figure 4). 269 

However, since the test in East Asian ancestry individuals was not well-powered due to the 270 

small sample size, there was no detectable difference in OAS1 levels between severe COVID-271 

19 patients and controls (p-value of 0.49). 272 

273 

Figure 4: Forest plot of OAS1 when comparing case and control status across all three tested 274 

ancestries.  275 

The effect size of each model is represented by the dot with the horizontal lines indicating the 276 

standard error associated with the effect size. 277 

Discussion 278 

 15
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We leveraged the BQC19 to measure 4,979 circulating proteins across 1,272 samples from 909 279 

patients. We then stratified these measurements by genetic ancestry and found 39 unique 280 

proteins had may have responded differently to severe COVID-19 infection. However, we note 281 

that these results should be viewed as hypothesis generating, and require replication, given the 282 

small sample sizes of non-European ancestries. Of these 39 proteins, we found that 29 showed 283 

a difference in their COVID-19 response between our European and African cohorts, 7 showed 284 

a difference between our European and East Asian cohorts, and 4 of had a difference between 285 

our East Asian and African cohorts – with one protein, STAU2 being found in two of our 286 

comparisons. Given the small sample sizes assessed in this study, and the large amount of data 287 

points being analyzed, replication of this work is essential to ensure the veracity of this data. 288 

Our European – African ancestry comparison provided us with the most results most likely due 289 

to the stronger power of both models in comparison to our East Asian model. One of the 290 

proteins that displayed a significant difference between our European and African ancestries is 291 

FAM19A5. FAM19A5 is also known as TAFA5 and is in a family of homologous secreted 292 

proteins and acts as an adipokine.24–26 FAM19A5, unlike the rest of its family proteins, is 293 

expressed in both adipose tissue and the central nervous system which explains its presence as 294 

a circulatory protein. FAM19A5 has been shown to supress vascular smooth muscle cell 295 

proliferation and mice models with an overexpression of FAM19A5 have reduced scar tissue 296 

formation.26 Additionally, FAM19A5 has been shown to have an impact on hypothalamic 297 

inflammatory responses, with TNF-α administration increasing levels of hypothalamic FAM19A5 298 

mRNA and when FAM19A5 itself was introduced to a mice model, the mice displayed a 299 

decreased food intake and increased body temperature.27 Considering that FAM19A5 was 300 

decreased in Europeans (effect size = -0.24, p = 2.6 × 10-4) and increased in our African 301 

population (effect size = 0.31, p = 0.015) this could be a factor in the severity of COVID-19 302 

infection. 303 
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Of the four proteins that showed a difference between our East Asian and African ancestries, 304 

IL1R2 stood out as an interleukin receptor. IL1R2 is a decoy receptor which acts as a 305 

competitive binder of IL1B. The elevated levels of IL1R2 in our East Asian cohort upon COVID-306 

19 infection should result in a lower impact of IL1B in the same cohort. Interestingly, IL1B was 307 

also measured directly by the SomaScan Assay, and we saw that it also had a differential 308 

response between East Asian and African populations (with elevated levels in our East Asian 309 

population in comparison to our African population), although this difference was not statistically 310 

significant after multiple testing correction (p-value=0.004). IL1B is a known marker of COVID-311 

19 infection and is a part of the resultant cytokine storm.28,29 Furthermore, high levels of IL1B 312 

were shown to be associated with a reduced viral load of in the intestine of COVID-19 313 

patients.29  314 

There were seven proteins that showed a difference in their response to COVID-19 between our 315 

East Asian and European cohort. Of the seven proteins, STAU2 was the only protein found in 316 

both this comparison and the comparison between our East Asians and African cohorts. STAU2 317 

is a double stranded RNA-binding protein that has been previously shown to interact with viral 318 

proteins such as NSP2 in COVID-19 and the Gag protein in HIV-1.30,31 Furthermore, STAU2 was 319 

shown to enhance the viral infectivity of HIV-1, with STAU2 KO lines reducing the viral infectivity 320 

of HIV-1 by 55%.30 These results coupled with the results found here indicate that there might 321 

be a genetic difference in East Asians that should be further investigated to see if STAU2 also 322 

provides a similar protection to COVID-19 and to see if there is a similar interaction between 323 

HIV-1 infection and STAU2 protein levels in East Asian populations. 324 

This study shows that while we should consider both the proteomic differences between 325 

different ancestries and their response to COVID-19, many of the circulating proteins respond in 326 

the same way regardless of ancestry. This study further shows that there are novel proteins that 327 

have not been explored due to the European ancestry-centric focus of many genomic, 328 

transcriptomic, and proteomic studies of COVID-19. 329 
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This study has important limitations. First, there was a relatively small number of individuals 330 

assessed in non-European ancestries. Since the European ancestry cohort has a much larger 331 

sample size, it is not surprising that the European ancestry individuals-based analyses yielded 332 

more findings due to the highest statistical power. More samples from our East Asian and 333 

African cohorts, as well as other ancestral groups that were omitted from this study due to their 334 

small sample sizes, would result in a stronger analysis. Potential confounders, such as smoking 335 

status and BMI, were not included in our analyses due to the large amount of missing data. It 336 

remains possible that the findings may not reflect direct causal effects of severe COVID-19 337 

illness on circulating protein levels. Furthermore, we did not attempt to understand if any of the 338 

observed proteins had causal effects on COVID-19 outcomes. Another limitation of this study is 339 

that we only focused on how ancestries responded differently to a severe COVID-19 infection 340 

and did not investigate overall proteomic differences between ancestries or how these 341 

differences impact COVID-19 infection and a patient’s response of infection. Additionally, there 342 

likely exist proteomic differences unable to be captured by our measurement assay. Functional 343 

mutations may have affected the binding affinity of SOMAmers resulting in different levels of 344 

protein observed between ancestries if these protein-coding changes had different frequencies 345 

between the ancestries. Finally, we re-emphasize that replication of our results in diverse 346 

populations is necessary to better understanding trends linked with ancestry and proteomic 347 

responses. 348 

Conclusion 349 

In summary, this work assessed how different genetic ancestries responded to severe COVID-350 

19 infection by examining 4,979 circulating proteins. We found that while the majority of proteins 351 

responded in the same manner regardless of ancestry, there were 39 unique proteins that had 352 

suggestive differences in their response to COVID-19, which warrant functional follow-up 353 

studies. 354 
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