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ABSTRACT 

Background: Transthoracic echocardiography (TTE) is the primary modality for diagnosing 

aortic valve stenosis (AVS), yet it requires skilled operators and can be resource-intensive.  

Objectives: To develop and validate an artificial intelligence (AI)-based system for 

evaluating AVS that is effective in both resource-limited and advanced settings. 

Methods: We created a dual-pathway AI system for AVS evaluation using a nationwide 

echocardiographic dataset (developmental dataset, n=8,427): 1) a deep learning (DL)-based 

AVS continuum assessment algorithm using limited 2D TTE videos, and 2) automating 

conventional AVS evaluation. We performed internal (internal test dataset [ITDS], n=841) 

and external validation (distinct hospital dataset [DHDS], n=1,696; temporally distinct 

dataset [TDDS], n=772) for diagnostic value across various stages of AVS and prognostic 

value for composite endpoints (cardiovascular death, heart failure, and aortic valve 

replacement) 

Results: The DL index for the AVS continuum (DLi-AVSc, range 0-100) increases with 

worsening AVS severity and demonstrated excellent discrimination for any AVS (AUC 0.87-

0.99), significant AVS (0.93-0.97), and severe AVS (0.97). A 10-point increase in DLi-AVSc 

was associated with an 85% increased risk for composite endpoints in ITDS and a 53% and 

59% increase in DHDS and TDDS, respectively. Automatic measurement of conventional 

AVS parameters demonstrated excellent correlation with manual measurement, resulting in 

high accuracy for AVS staging (98.2% for ITDS, 81.0% for DHDS, and 96.8% for TDDS) 

and comparable prognostic value to manually-derived parameters.  
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Conclusions: The AI-based system provides accurate and prognostically valuable AVS 

assessment, suitable for various clinical settings. Further validation studies are planned to 

confirm its effectiveness across diverse environments. 

Keywords: Aortic valve stenosis, artificial intelligence, echocardiography, diagnostic 

accuracy, prognostic value. 
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1. INTRODUCTION 

Medical advancements have significantly increased life expectancy, with about 10% of the 

global population over 60, projected to double by 2050.1 This aging demographic notably 

increased the incidence of degenerative diseases like aortic valve stenosis (AVS). Studies 

revealed that 12.4% of individuals aged 75 and older have some degree of AVS, with severe 

cases at 3.4%.2 Untreated AVS can cause irreversible myocardial damage, characterized by left 

ventricular hypertrophy, fibrosis, and functional impairment, leading to increased morbidity, 

mortality, and socioeconomic burden.3 Therefore, timely detection and management of AVS 

are essential to mitigate its severe consequences. 

 Transthoracic echocardiography (TTE) is the primary imaging modality for assessing 

AVS. Accurate identification and staging of AVS via TTE require advanced expertise in 

scanning and interpretation, often unavailable in a general community healthcare setting. Even 

in tertiary care centers, the process is time-consuming and labor-intensive, involving multiple 

measurements, calculations, and precise interpretation. These complexities highlight the need 

for innovative solutions that simplify AVS assessment. Such solutions would be particularly 

beneficial in settings with limited resources by using fewer TTE videos and in more advanced 

settings by automating the measurement and interpretation processes. 

 To meet these clinical needs and advance beyond existing research,4-6 we developed a 

comprehensive artificial intelligence (AI)-based system to evaluate AVS, suitable for both 

resource-limited and advanced settings. This system uses deep learning (DL) to diagnose and 

assess AVS from limited 2-dimensional (2D) TTE videos. Importantly, it does not merely 

classify the AVS severity but is designed to reflect the disease's progressive continuum. 

Simultaneously, the system automatically measures a broad spectrum of structural and 
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hemodynamic parameters, facilitating the conventional calculation of the aortic valve area 

(AVA) and providing a quantitative assessment of AVS. This paper describes the development 

process of our AI-based system and evaluates its diagnostic and prognostic potential in 

assessing AVS.   
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2. METHODS 

2.1. Study Population and Data Sources 

The AI-based frameworks utilized in this study were developed and validated using the Open 

AI Dataset Project (AI-Hub) dataset, an initiative supported by the South Korean government's 

Ministry of Science and ICT.7 This dataset consists of 30,000 echocardiographic examinations 

retrospectively collected from five tertiary hospitals between 2012 and 2021, covering a wide 

range of cardiovascular diseases.(Supplemental Methods 1) The AI-based frameworks 

introduced here were all developed using data extracted from the AI-Hub dataset.8-10 To 

develop the DL-based AVS continuum assessment algorithm, a key focus of this study, we 

assembled the Development Dataset (DDS) by deliberately excluding Severance Hospital data 

among five hospitals. Instead, data from Severance Hospital were used exclusively for external 

validation (Distinct Hospital Dataset, DHDS). Further external validation was conducted 

using data collected from Seoul National University Bundang Hospital in 2022 (Temporally 

Distinct Dataset, TDDS). Detailed methodologies for data utilization in developing and 

validating the AI-based system are in Supplemental Methods 1. As a result, the DDS 

comprised TTE images from 8,427 patients, while the DHDS included 1,696 patients, and the 

TDDS included 772 patients. The study followed the Declaration of Helsinki (as revised in 

2013). The institutional review board of each hospital approved this study and waived the 

requirement for informed consent because of the retrospective and observational nature of the 

study design. All clinical and echocardiographic data were fully anonymized before data 

analysis.  

 

2.2. Echocardiogram Acquisition and Interpretation 
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All echocardiographic studies were conducted by trained echocardiographers or cardiologists 

and interpreted by board-certified cardiologists specialized in echocardiography. These reports 

adhered to the recent guidelines11,12 and were part of routine clinical care. The parameter values 

in these reports were used as ground truth labels without additional measurements. In the DDS, 

AVS presence and severity were determined using these values following the standard clinical 

criteria (Table 1).11 In the DHDS and TDDS, the prior clinician's decision regarding AVS 

severity in the clinical report was used to reflect actual clinical practice. 

 

2.3. AI-Based System  

We have developed a fully automated AI-based framework that addresses AVS evaluation 

through the dual pathway, leveraging innovative and conventional methodologies. (Central 

Illustration) The operational sequence of this system begins by automatically selecting the 

necessary views, including the parasternal long-axis (PLAX), parasternal short-axis (PSAX) at 

the aortic valve (AV) level, AV continuous wave (CW) and pulsed wave (PW) Doppler, and 

left ventricular outflow tract (LVOT) PW Doppler. In the DL-based AVS continuum assessment 

pathway, the algorithm evaluates AVS using only the PLAX and PSAX videos. Concurrently, 

the DL segmentation network generates masks for each view in the automated conventional 

AVS assessment pathway. These masks facilitate the measurement of LVOT diameter from the 

PLAX view and analyze spectral Doppler images to ascertain key indicators such as AV peak 

velocity (Vmax), AV velocity time integral (VTI), AV mean pressure gradient (mPG), and LVOT 

VTI. Then, the system calculates AVA, enabling quantitative evaluation of AVS. This dual 

approach (DL-based AVS continuum assessment and automated conventional AVS assessment) 

has the potential to support both resource-limited and advanced settings.  
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2.3.1. View Classification 

To assess AVS, we improved our preexisting view classification algorithm.8 The algorithm 

could already identify the PLAX view, PSAX at the AV level, AV CW Doppler from apical 

views, AV PW Doppler, and LVOT PW Doppler. We augmented it to recognize the PLAX-AV 

zoomed views and the AV CW Doppler obtained from the right parasternal view. Detailed 

information about this development is in Supplemental Method 2. 

 

2.3.2.  DL-based AVS Continuum Assessment Algorithm  

Our objective was to develop a network that classifies AVS severity in a way that reflects its 

continuum nature rather than just discrete categories. We used 3-dimensional (3D) 

convolutional neural networks (CNNs; r2plus1d18) as a backbone to separate spatial and 

temporal filters.13 (Supplemental Methods 3) This network processes input videos from 

PLAX and PSAX at the AV level to output a score predicting the AVS severity, entitled the DL 

index for the AVS continuum (DLi-AVSc). To achieve accurate classification reflecting the 

AVS continuum, we implemented two strategies: 1) continuous mapping with ordered labels 

and 2) multi-task learning with auxiliary tasks that predict numeric parameters indicative of 

the AVS continuum, such as AV Vmax, mPG, and AVA. Conventional multi-class classification 

with cross-entropy loss was unsuitable for reflecting the AVS continuum as it fails to capture 

the disease's progressive nature due to equidistance between one-hot encoded severity levels. 

Instead, the continuous approach assigns each severity level a value between 0 and 1 (e.g., 

Normal: 0, Sclerosis: 0.25, Mild: 0.5, Moderate: 0.75, Severe: 1) and trains the model by 

minimizing negative Bernoulli likelihood 𝐿𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 . While this method reflects AVS 

progression, it primarily converts discrete labels into continuous values. To truly capture the 

continuum and enable nuanced transitions within and between severity levels, we incorporated 
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three auxiliary tasks predicting TTE parameters based solely on 2D TTE videos. These tasks, 

predicting Vmax, mPG, and AVA, provide rich information content, allowing the network to 

learn anatomical features and the motion of the AV. The loss function for each auxiliary task is 

the mean squared error (MSE) between the predicted and actual TTE parameter values: 

𝐿𝑀𝑆𝐸
𝑉𝑚𝑎𝑥 , 𝐿𝑀𝑆𝐸

𝑚𝑃𝐺, 𝐿𝑀𝑆𝐸
𝐴𝑉𝐴  . Training the network to predict continuous TTE parameters allows it to 

capture both discrete transitions and subtle variations within each severity category. For 

instance, it can distinguish between cases classified as "moderate" closer to mild AVS and those 

nearing severe AVS. The combined loss function integrates the negative Bernoulli likelihood 

and the MSE losses for the auxiliary tasks 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐿𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 + λ(𝐿𝑀𝑆𝐸
𝑉𝑚𝑎𝑥 + 𝐿𝑀𝑆𝐸

𝑚𝑃𝐺 + 𝐿𝑀𝑆𝐸
𝐴𝑉𝐴 ), 

where λ  is a weighting parameter balancing the contributions of the classification and 

regression tasks. Detailed network configurations and implementation details are in 

Supplementary Methods 3.  

 

2.3.3 Automated Conventional AVS Assessment Algorithm  

Our AI-based system also automates the conventional method to calculate AVA and assess AVS 

severity. Automating conventional AVA assessment in our system involves three key steps: 1) 

segmentation of anatomical structures and spectral Doppler envelopes, 2) uncertainty 

quantification to assess the confidence of the predicted segmentation masks, 3) post-processing 

algorithms to extract clinical measurements from segmentation masks. 

We had previously developed and validated algorithms for analyzing spectral Doppler 

by segmenting the Doppler envelope to capture velocity profiles with essential topological 

features.9,10 This approach automatically measures AV Vmax, AV VTI, and LVOT VTI by 

segmenting Doppler envelopes in every analyzable cycle in all provided images. In this study, 
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to quantify AVA, we further developed a DL network based on the SegFormer transformer 

architecture to measure the LVOT diameter in the PLAX view.14 This advanced model can 

segment all anatomical structures visible in the PLAX view, including the left ventricle (LV), 

LV septum and posterior wall, left atrium, right ventricle, aorta, and even the mitral valve and 

AV. Detailed information is provided in Supplemental Methods 4 and Videos S1. 

Deep segmentation networks are highly effective due to their ability to learn complex 

patterns and features from large datasets. However, quantifying uncertainty in their predictions 

is crucial because segmentation errors can impact subsequent post-processing for automatic 

measurement. To address this, we used predictive entropy from the segmentation network's 

probability map, which combines two sources of uncertainty: lack of knowledge in DL 

(epistemic uncertainty) and poor data quality (aleatoric uncertainty).15 By evaluating the 

predictive entropy, cases requiring manual review due to poor image quality or model 

uncertainty can be identified. Detailed methodologies are provided in Supplemental Method 

5 and Videos S2. 

In the post-processing stage, the segmented masks were utilized to extract clinical 

measurements. From the predicted segmentation mask, we identified points where the mitral 

valve intersects with the aorta and where the septum intersects with the aorta to determine 

annulus points. Considering the differing opinions on the appropriate location for measuring 

the LVOT diameter,16 our algorithm was designed to measure the LVOT diameter at three 

different locations: at the annulus, 2.5mm, and 5mm away from the annulus towards the LV 

cavity. In this study, the measurements taken at the annulus were used for analysis as they 

showed the highest agreement with the ground truth. For technical details and performance 

information, please refer to Supplemental Method 6 and Video S1. 

 For spectral Doppler images, AV Vmax and VTI were derived from the segmented 
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Doppler envelope of AV CW Doppler. This analysis included AV CW Doppler obtained from 

both the apical and right parasternal views, selecting the largest envelope across all cycles in 

all images to obtain AV Vmax and VTI. The LVOT PW Doppler analysis also spanned all cycles, 

using the average value of LVOT VTI to avoid overestimating LVOT flow.12 These 

measurements were then used to calculate mPG and AVA, which were used to assess the 

presence and severity of AVS.11  

 

2.4 Ascertainment of Clinical Information and Outcome Definition  

The clinical data were acquired by a dedicated review of the electronic health records at the 

study institutions. The clinical outcome was defined as a composite endpoint of cardiovascular 

death, hospitalization for heart failure, and AV replacement via surgical or transcatheter 

approaches. 

 

2.5 Validation of AI-Based AVS Evaluation System and Statistical Analysis  

Our AI-based framework was validated using an internal test dataset (ITDS) and two external 

datasets (DHDS and TDDS). The view classification algorithm, the shared initial step, was 

evaluated against human expert labels. Precision, recall, and F1 scores were calculated for each 

view, with overall accuracy determined by the ratio of correctly classified images to the total 

number of images.  

Subsequently, we evaluated the two AI-based pathways. The performance of the DL-

based AVS continuum assessment algorithm was evaluated by examining the distribution of 

the DLi-AVSc across various stages using violin plots. We also assessed the correlation of DLi-

AVSc with conventional parameters (AV Vmax, mPG, and AVA). To verify that DLi-AVSc 
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accurately reflects the continuum of AVS progression, we used Uniform Manifold 

Approximation and Projection (UMAP) to visualize this relationship,17 projecting the data into 

a 2D space, using 15 nearest neighbors, a minimum distance of 0.1, and the Euclidean distance. 

To highlight the areas with the greatest influence on the model's prediction, we generated 

saliency maps using the Gradient-weighted Class Activation Mapping (Grad-CAM).18 We 

present representative samples for each severity level in both PLAX and PSAX views. 

The conventional AVS assessment algorithm was validated by comparing AI-derived 

parameters with manual measurements. Since these parameters are not typically measured in 

normal or AV sclerosis groups, the comparison was limited to the AVS group. Moreover, as 

manual measurements were not always available for all AVS cases, details on ground truth 

measurements availability and the success rate of automatic measurements are provided in 

Supplemental Methods 7. The correlation between automated and manual measurements was 

assessed using the Pearson Correlation Coefficient (PCC). The AVS severity determined from 

the automatic measurements was also compared to the ground truth label made by the 

clinician's prior decision.  

We also evaluated the discrimination ability of the DLi-AVSc and other AI-derived 

conventional parameters for various stages of AVS, including mild or greater AVS (any AVS), 

moderate or greater AVS (significant AVS), and severe AVS. This evaluation was conducted 

through receiver operating characteristic (ROC) curve analysis, from which we calculated the 

area under the curve (AUC). 

 Lastly, we assessed the prognostic capability of AI-derived parameters for composite 

endpoints. Specifically, we conducted a spline curve analysis for our novel index, the DLi-

AVSc, to visualize its predictive power. Additionally, we applied Cox regression analysis to 

validate the prognostic relevance of the DLi-AVSc and other AI-derived AVS parameters, with 
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adjustment for clinical risk factors (age, sex, body mass index, hypertension, and diabetes).   
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3. RESULTS 

3.1 Baseline Characteristics 

The distribution of AVS severity across three datasets is shown in Table 1: ITDS (n=841), 

DHDS (n=1,696), and TDDS (n=772). ITDS and TDDS exhibited a higher prevalence of mild 

AVS (28% and 41%, respectively), with fewer moderate and severe cases. Conversely, DHDS 

displayed a more balanced severity distribution (12% mild, 15% moderate, and 12% severe, 

respectively). Baseline clinical characteristics are available in Supplemental Result 1.  

 

3.2 View Classification  

Our view classification algorithm accurately identified the required images for assessing AVS 

across all datasets. The overall accuracy rates were 99.6% for ITDS, 99.5% for DHDS, and 

99.4% for TDDS. Detailed metrics are in Supplemental Result 2. 

 

3.3 Performance of DL-Based AVS Continuum Assessment Algorithm 

The distribution of the DLi-AVSc, produced by the DL-based AVS continuum assessment 

algorithm, exhibited a consistent trend of increasing scores with the severity of AVS across all 

datasets. (Figure 1A) Interestingly, at the AV sclerosis stage, the DLi-AVSc already 

significantly increased compared to the normal stage, indicating the algorithm's ability to detect 

early changes. When discordant cases excluded from the training dataset were included in the 

ITDS, mild to moderate and low-flow, low-pressure gradient moderate AVS were distributed 

between mild and moderate AVS, while moderate to severe and low-flow, low-pressure 

gradient severe AVS were distributed between moderate and severe AVS. (Supplemental 
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Results 3) The DLi-AVSc demonstrated an increasing trend as conventional parameters 

assessing AVS severity, such as AV Vmax, mPG, and AVA, worsened. (Supplemental Results 

4). 

Furthermore, when we utilized UMAP to verify that the DLi-AVSc accurately 

represents the AVS continuum, the DLi-AVSc, derived from the approach incorporating both 

ordered labels and multi-task learning, displayed a distinct continuous gradient from normal 

through AV sclerosis to advancing AVS stages, consistently evident in ITDS and both external 

datasets. (Figure 1B) In contrast, a conventional multi-class classification approach using 5-

class cross-entropy loss resulted in the stage-based grouping but lacked the continuous 

progression seen in our approach. The continuous mapping with ordered labels approach, but 

without additional multi-task learning to predict key TTE parameters, appeared somewhat 

linear but did not accurately reflect the severity progression. (Supplemental Results 5) 

For each severity level, we present representative samples with Grad-CAM saliency 

maps overlaid on both PLAX and PSAX views, specifically localizing the AV. (Supplemental 

Results 6 and Video S3) These results demonstrate that our model accurately identifies the 

relevant regions for evaluating AVS across all severity levels and views without supervision. 

 

3.4 Performance of Automated Conventional Assessment Algorithm 

Our algorithm's automatic measurements demonstrated high correlations with the ground truth 

values for AV Vmax (PCC 0.974-0.991) and mPG (PCC 0.966-0.991). (Figure 2A) The 

correlation for AVA (PCC 0.789-0.887) was also good but relatively lower than Vmax and mPG, 

as AVA is calculated from multiple measurements. Missing measurements resulted in fewer 

comparison cases (Supplemental Methods 7), and accumulated differences affected the 
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overall accuracy. The overall accuracy of AVS severity classification among any AVS based on 

these automated measurements was 98.2% for ITDS, 81.0% for DHDS, and 96.8% for TDDS. 

(Figure 2B)  

 

3.5 Comparison of Diagnostic Performance of Two Different AI-Based Approach  

The discrimination performance of DLi-AVSc for various stages of AVS was generally 

excellent: AUC 0.87-0.99 for any AVS, 0.93-0.97 for significant AVS, and 0.97 for severe AVS 

(Figure 3) When compared to automatically measured conventional parameters, in ITDS, the 

discrimination performance of DLi-AVSc was lower than that of automatically measured Vmax 

and mPG but comparable to AVA. In DHDS, the performance of DLi-AVSc surpassed AVA in 

diagnosing all stages of AVS, while in TDDS, it was comparable to AVA for diagnosing 

significant and severe AVS.  

 

3.6 Prognostic Value of AI-Based AVS Assessment 

Analysis of spline curves across the ITDS, DHDS, and TDDS showed that an increase in DLi-

AVSc correlated with a rising risk of adverse clinical outcomes. (Figure 4) The multivariable 

Cox regression analysis affirmed the strong and independent prognostic value of DLi-AVSc. A 

10-point increase in DLi-AVSc from limited TTE videos was associated with an 85% increase 

in adverse outcome risk in ITDS and a 53 and 59% increase in DHDS and TDDS, respectively. 

(Figure 5) Moreover, the AI-derived parameters, such as Vmax, mPG, and AVA, demonstrated 

prognostic values comparable to those of manually-derived parameters. (Figure 5)  
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DISCUSSIONS 

We have developed and validated a comprehensive AI-based system to evaluate AVS, suitable 

for both resource-limited and advanced settings. It addresses AVS through the dual pathway: 

1) It can evaluate the presence and severity of AVS using only the PLAX and PSAX videos 

initially acquired during TTE, and 2) if additional images are obtained in advanced settings, it 

can automatically analyze these to diagnose and assess AVS using conventional methods. 

Internal and external validation demonstrated excellent diagnostic accuracy and strong 

prognostic capabilities. 

 While our AI-based system is not the first to evaluate AVS, it stands apart from 

previous studies by enabling both automation of conventional measurements and evaluation 

using limited 2D TTE videos. Prior research has typically focused on one of these aspects. For 

instance, Krishna et al. developed an AI model to automate quantitative AVS evaluation.6 

However, their model did not include the crucial initial visual analysis of the AV from 2D TTE 

videos, which is essential for initiating conventional quantitative AVS analysis. Several studies 

used CNNs to extract AVS-related features from 2D TTE videos through end-to-end learning 

without requiring Doppler information.5,7,19,20 Although these studies achieved decent 

performance in classifying AVS severity, they lack conventional evaluation of AVS, 

compromising trustworthiness, explainability, and interpretation. Our system is the first to 

integrate both approaches, making it suitable for both resource-limited and advanced settings 

and even as a hybrid solution. Since PLAX and PSAX views are typically acquired at the initial 

stage of TTE, our system can use these views to derive the DLi-AVS, indicating high 

probability of significant AVS and prompting the acquisition of additional views for 

conventional AVS evaluation. This approach can guide less experienced operators, reducing 

image acquisition and interpretation errors. For example, if AV CW Doppler is not properly 
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acquired, it could lead to AVS underestimation or misinterpretation of low-flow, low-pressure 

gradient AVS. In that case, a high DLi-AVSc can suggest the likelihood of significant AVS, 

thereby guiding further necessary evaluations. 

 Another strength of our study is that, unlike previous research, it reflects the 

continuous nature of AVS progression. For instance, Wessler et al. trained CNNs to classify 

AVS severity into three categories (no, early, and significant AVS) using limited 2D images.7 

Similarly, Ahmadi et al. proposed a transformer-based spatiotemporal architecture to classify 

AVS into four categories (normal, mild, moderate, and severe AVS) by capturing anatomical 

features and AV motion.19 Vaseli et al. focused on model explainability in AVS severity 

classification, incorporating uncertainty estimation and classifying AVS severity into three 

classes (no, early, and significant AVS).20 However, these classifiers discretize AVS severity, 

losing the continuum information of AVS. Recently, Holste et al. proposed a binary classifier 

based on the 3D-ResNet18 architecture to detect severe AVS, observing that model 

probabilities generated increase with AVS severity.5 However, this model focused only on a 

binary classification task (e.g., non-severe vs. severe), not capturing the full range of AVS 

severity levels in the training stage. In contrast, our framework employs continuous mapping 

with ordered labels, providing a more nuanced representation of AVS severity. Importantly, we 

use multi-task learning with auxiliary tasks to predict continuous AVS TTE parameters. This 

approach not only transitions from discrete labels to continuous values but also captures the 

underlying continuum of the disease more effectively. In UMAP visualizations, our model 

demonstrates a clear continuous gradient from normal to severe AVS, unlike other classification 

models. Additionally, the appropriate distribution of DLi-AVSc in discordant cases further 

supports the performance of our framework. It should be noted that our dataset was collected 

entirely from tertiary hospitals. Therefore, it is significant that our model can diagnose and 

predict AVS outcomes at a level comparable to parameters derived in advanced settings. 
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  The implications of our AI-based system extend beyond precise AVS diagnosis. Our 

DLi-AVSc exhibits significant prognostic capability, comparable to traditional AVS parameters, 

even when utilizing only PLAX and PSAX views. Moreover, the DLi-AVSc increases notably 

from normal levels at AV sclerosis and mild AVS stages before significant AVS progression. 

To our knowledge, this is the first algorithm to achieve such performance. DLi-AVSc is poised 

to effectively monitor AVS progression from preclinical stages as a score-based tool. We 

anticipate the clinical utility of our system becoming prominent, especially as new 

pharmacological treatments are investigated for AVS prevention.21,22 If such treatments become 

available, our algorithm's sensitivity in detecting early AVS stages will be highly advantageous. 

 

Limitations 

The present study has some limitations. Although we developed and thoroughly validated our 

AI-based system using data from multiple centers, including internal and external validation, 

all the data were obtained from tertiary centers in South Korea. This means that skilled 

operators acquired TTE, and it remains to be seen if the DLi-AVSc will perform well on TTE 

videos acquired in truly resource-limited and novice settings. Further evaluation is needed to 

confirm its performance in various clinical environments and among different populations. We 

plan to conduct additional validation in primary clinics and a multi-national study to address 

these concerns. Additionally, while we designed the DLi-AVSc to reflect the AVS continuum, 

it needs to be verified whether the DLi-AVSc increases progressively with the natural 

progression of AVS. This issue will be addressed in future studies.  

 

Conclusions 
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We developed and validated a comprehensive AI-based system for evaluating AVS. This 

system operates through a dual pathway: it assesses the presence and severity of AVS using 

limited TTE videos and simultaneously automates conventional quantitative AVS evaluation. 

Internal and external validations demonstrated excellent diagnostic accuracy and strong 

prognostic capabilities. While additional validation in various clinical settings is needed, our 

system is expected to be suitable for both resource-limited and advanced settings. 
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CLINICAL PERSPECTIVES 

Competency in Medical Knowledge 

Echocardiography is a primary imaging tool for evaluating aortic valve stenosis (AVS), 

necessitating advanced expertise. This study demonstrates the feasibility and high accuracy of 

an AI-enhanced system in diagnosing and assessing the severity of AVS. The AI system 

provides a severity index derived from limited echocardiographic images and automatically 

measures conventional AVS parameters, showing a higher agreement with expert assessments 

and potential value in predicting outcomes. 

 

Translational Outlook 

The current AI system can accurately identify AVS and assist in the precise clinical evaluation 

of AVS. The clinical benefit of this AI system in managing AVS patients, particularly regarding 

long-term improvements in clinical outcomes, needs to be validated in further prospective 

clinical trials. 
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Table 1. Study population 

  Developmental Dataset (DDS) 
Distinct 

Hospital 

Dataset 

(DHDS) 

Temporally  

Distinct 

Dataset 

(TDDS) 

Classification Definition Training Validation 

Internal 

Test 

Dataset 

(ITDS) 

Normal  Vmax <2m/s without AV calcification 2,627 (39%) 353 (41%) 310 (37%) 1,037 (61%) 55 (7%) 

AV sclerosis Vmax <2m/s with AV calcification 1,396 (21%) 148 (18%) 203 (24%) 0 (0%) 274 (35%) 

Mild AVS AV Vmax 2-2.9m/s or mPG<20mmHg with AVA >1.5cm2 2,000 (29%) 263 (31%) 237 (28%) 209 (12%) 313 (41%) 

Moderate AVS AV Vmax 3-3.9m/s or mPG 20-39mmHg with 1m2< AVA ≤1.5cm2 416 (6%) 50 (6%) 50 (6%) 251 (15%) 75 (10%) 

Severe AVS AV Vmax ≥4m/s or mPG ≥40mmHg with AVA ≤1cm2 304 (5%) 29 (3%) 41 (5%) 199 (12%) 55 (7%) 

  6,743  843  841  1,696  772  

Abbreviations: AV, aortic valve; AVA aortic valve area; AVS, aortic valve stenosis; mPG, mean pressure gradient; Vmax, peak aortic valve velocity. 
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FIGURE LEGENDS 

 

Central Illustration: AI-Enhanced Echocardiographic Assessment of AVS Continuum 

The illustration depicts a dual-pathway AI system for evaluating AVS. The top row illustrates 

the DL-based assessment of the AVS continuum using limited views, providing a unique DL 

index for the AVS continuum, termed DLi-AVSc. The bottom row demonstrates the automated 

AVS assessment, which derives conventional echocardiographic AVS parameters. By 

integrating both pathways, our AI system enables accurate AVS diagnosis and prognostication, 

making it broadly applicable in advanced and resource-limited settings. 

AVS, aortic valve stenosis; DL, deep-learning; DLi-AVSc, DL index for the AVS continuum 
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Figure 1. The Distribution of DLi-AVSc According to AVS Severity and UMAP 

Visualization 

(A) The DLi-AVSc, generated by the DL-based AVS continuum algorithm, showed a consistent 

trend of increasing scores with the progression of AVS severity observed across both internal 

and external datasets. (B) The UMAP plot demonstrates a continuous nonlinear gradient 

transition from the normal state (grey) through AV sclerosis (yellow) to advanced AVS stages 

(red), visually underscoring the DLi-AVSc accurately representing the AVS continuum. 

Abbreviations as in Central Illustration: DHDS, distinct hospital dataset; ITDS, internal test 

dataset; TDDS, temporally distinct dataset; UMAP, uniform manifold approximation and 

projection 
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Figure 2. Concordance in AVS Diagnosis Between DL-based Automated Assessment and 

Conventional Evaluation 

(A) Across all datasets, the auto-measured AVS parameters (AV maximal velocity, mean 

pressure gradient, and valve area) strongly correlated with those obtained from manual 

measurements. (B) Consequently, AVS gradings from both methods exhibited a high 

concordance rate, ranging from 81% to 96.8%. 

Abbreviations as in Figure 1: AV, aortic valve; AVA, aortic valve area; mPG, mean pressure 

gradient; Vmax, maximal velocity. 
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Figure 3. Diagnostic Performances of DLi-AVSc and Other AI-derived Conventional AVS 

Parameters Across Various Stages. 

The discriminative ability of DLi-AVSc and other conventional AVS parameters was 

consistently excellent for diagnosing any AVS, significant AVS (moderate to severe), and 

severe AVS across all datasets: (A) ITDS, (B) DHDS, and (C) TDDS. 

Abbreviations as in Figures 1 and 2: AUC, the area under the curve; DLi-AVSc, DL index for 

the AVS continuum 
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Figure 4. Spline Curves for Composite Outcomes Associated with DLi-AVSc 

The risk of composite outcome gradually increased with higher DLi-AVSc across all datasets: 

(A) ITDS, (B) DHDS, and (C) TDDS. The solid lines represent the hazard ratio, and the blue 

shaded area represents the 95% confidence interval. 

Abbreviations as in Figures 1 and 2. 
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Figure 5. Prognostic value of DL-AVSc and AVS parameters 

The DLi-AVSc showed independent predictive value for composite outcomes. Similarly, other 

AI-derived AVS parameters were significant predictors for composite outcomes as well as 

manually-derived AVS parameters. 

Abbreviations as in Figures 1 and 2: HR, hazard ratio 
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