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Abstract 

 

Background: Clinical outcomes vary considerably among patients with acute single 

subcortical infarction (SSI). We aimed to construct a model incorporating radiomic 

features and clinical factors to predict functional outcomes in patients with acute SSI. 

Methods: We enrolled patients who experienced acute SSI within 14 days of stroke 

onset and randomly divided them into training (n=118) and test (n=30) cohorts. 

Unfavorable functional outcome was defined as a modified Rankin Scale score >1 at 

3 months. We extracted and selected radiomics features from baseline diffusion-

weighted imaging and perfusion-weighted imaging to develop a radiomics model. 

Multivariate logistic regression was performed to construct a clinical model using 

clinical factors and imaging features. Finally, a combined model was built using both 

clinical and radiomics features. Receiver operating characteristic curves were used to 

evaluate the discriminatory ability of these models. 

Results: The radiomics model, encompassing 13 radiomics features, exhibited good 

predictive performance for unfavorable functional outcomes with area under the curve 

(AUC) values of 0.774 and 0.824 in the training and test cohorts, respectively. The 

combined model, which included clinical factors (early neurological deterioration, 

hypertension, baseline National Institutes of Health Stroke Scale score, infarct 

volume, and summary cerebral small vessel disease score) and radiomics features, 

improved performance in the training (AUC = 0.915) and test (AUC = 0.846) cohorts. 

Conclusions: The clinical-radiomics model provided improved accuracy for the 

prognostic prediction of SSI, which may help clinicians in the decision-making 

process and improve long-term outcomes in patients with SSI. 

 

Keywords: Subcortical infarction; Prognosis; Diffusion-weighted imaging; 

Perfusion-weighted imaging; Radiomics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.08.24310116doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.08.24310116
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

 

Single subcortical infarction (SSI) within the territory of a perforating artery accounts 

for approximately a quarter of all ischemic strokes.1 Most single subcortical 

infarctions are due to an intrinsic small vessel pathology with a small proportion due 

to embolism or parent large artery or branch artery atheroma.2 SSI usually has a small 

infarction volume and is considered to have a favorable outcome in comparison with 

other stroke subtypes.3 However, the prognosis of SSI considerably depends on risk 

factors and demographic characteristics,3 as well as the different etiological 

mechanisms of SSI, and the presence of early neurological deterioration (END).4,5 As 

a result, the prediction of clinical outcomes at an early stage would be beneficial for 

patients with SSI, as clinicians could select individualized therapeutic strategies for 

these patients.  

With rapid advances in machine learning, radiomics has emerged as a computer-

aided process. By transforming neuroimaging data into numerous quantitative 

features (e.g., shape, intensity or texture), radiomic data are expected to help 

neurologists diagnose stroke, predict early outcome, and evaluate long-term 

prognoses.6 Perfusion-weighted imaging (PWI) allows for very sensitive detection of 

perfusion deficits in SSI patients within the first hours after the onset of symptoms 

despite their small volume.7,8 Some studies have attempted to apply clinical and 

radiomic data to predict functional outcomes after acute ischemic stroke, and their 

results suggested that diffusion-weighted imaging (DWI) radiomics could be applied 

as a prognostic indicator,9,10 but little is known about whether the radiomic features 

attracted from both DWI and PWI could indicate the poor prognosis in SSI patients. 

Therefore, we aimed to investigate whether the radiomic model could predict the 

functional outcomes at 3 months in patients with SSI and to develop a prediction 

model incorporating both clinical factors and radiomics features extracted from DWI 

and PWI images. 

 

Methods 

 

Clinical Data 

We reviewed data from the prospectively collected acute SSI database of the 

Department of Neurology at West China Hospital between November 2018 and 

January 2023. The inclusion criteria were as follows: (1) a first-ever stroke with 

compatible SSI in the unilateral LSA territory (basal ganglia, internal capsule, and 

corona radiata) confirmed by DWI; and (2) DWI and PWI examination within 14 

days of onset. The exclusion criteria were as follows: (1) patients who had ≥ 50% 

stenosis of the ipsilateral middle cerebral artery or internal carotid artery on computed 

tomography angiography (CTA) or magnetic resonance angiography (MRA); (2) 

patients with non-atherosclerotic vasculopathies, such as moyamoya disease, 

dissection, or vasculitis; (3) patients with high-risk factors for cardioembolism (e.g., 

atrial fibrillation, patent foramen ovale, valvular heart disease, or infective 

endocarditis) identified by transthoracic echocardiography and 24-h 
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electrocardiographic or Holter monitoring; and (4) patients with poor image quality. 

This study was approved by the Biomedical Research Ethics Committee of West 

China Hospital (No. 2020 [324]). Signed informed consent was obtained from all 

participants or their legally authorized representatives. Patients were randomly 

dichotomized into the training (n = 118) and test (n = 30) cohorts at a ratio of 8:2.  

Baseline data, including age, sex, smoking status, drinking status, hypertension, 

diabetes mellitus, hyperlipidemia, infarct volume, and onset to magnetic resonance 

imaging (MRI) time were recorded. The National Institutes of Health Stroke Scale 

(NIHSS) was used to assess the severity of neurological deficits. END was defined as 

an increase of ≥2 points in the total NIHSS score or ≥1 point in the motor NIHSS 

score in comparison with the best neurological status (including symptom 

fluctuations) in the period of 7 days after stroke onset.11 Functional outcomes were 

evaluated by the modified Rankin Scale (mRS) score at 3 months and classified as an 

excellent outcome (mRS score ≤1) or an unfavorable outcome (mRS score >1). 

 

MRI Acquisition 

MRI was performed on a 3.0 Tesla Siemens Trio MRI scanner (Siemens Medical 

Systems, Erlangen, Germany) with a 32-channel head coil. The MRI protocol 

included T1-weighted, T2-weighted, fluid-attenuated inversion recovery imaging, 

DWI, susceptibility-weighted imaging, 3D time-of-flight MRA, and dynamic 

susceptibility contrast-PWI. PWI scans were obtained using a gradient-echo echo-

planar imaging sequence, and perfusion images were acquired (repetition time=500 

ms, echo time=32 ms, flip=90, field-of-view=220 × 220 mm, 19 slices with a slice 

thickness of 5 mm, matrix size=128 × 128, scan time=83 s) after intravenous injection 

(injection speed, 4 ml/s) of 0.2 mmol/kg of a gadolinium-based contrast agent 

(Magnevist; Schering, Berlin, Germany). The imaging parameters of the other 

sequences were reported in our previous studies.12 

 

Assessment of Cerebral Small Vessel Disease MRI Markers 

The four MRI markers of cerebral small vessel disease (CSVD) were defined 

according to the standards for reporting vascular changes on neuroimaging 2 

(STRIVE-2) criteria.2 The total burden of CSVD was expressed by a CSVD 

compound score, which ranges from 0 to 4. The methods used to assess CSVD 

imaging markers and count summary CSVD scores have been described in full 

previously.13 

 

Imaging Analysis  

PWI images were processed using Siemens Syngo.via VB40 (Siemens Healthineers, 

Erlangen, Germany) and the MR Neurology package with the arterial input function. 

The perfusion maps of cerebral blood flow (CBF), cerebral blood volume (CBV), 

mean transit time (MTT) and time to peak (TTP) and the DWI images were all 

resampled to a uniform resolution (1 mm × 1 mm × 1 mm). Then, the CBF, CBV, 

MTT, and TTP maps were co-registered with the DWI images, respectively. 
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Lesion Segmentation and Radiomics Feature Extraction 

The process of the radiomics analysis included lesion segmentation, feature 

extraction, feature selection, and model building (Figure 1). Infarction lesions were 

manually delineated along a high signal on DWI slice by slice with ITK SNAP 

(http://www.itksnap.org) by two experienced investigators (T.Y. and Y.J.C.) blinded 

to the clinical data. The interclass correlation coefficient was 0.89 for lesion 

segmentation on DWI. The region of interest (ROI) (the hyperintense area of SSI) on 

DWI was registered to the corresponding perfusion maps (CBF/CBV/MTT/TTP) in 

SSI region. 

Radiomics features were extracted based on the Pyradiomics Python package. In 

total, 535 features were extracted for each ROI. The radiomics features included 

seven categories: 90 first-order features; 70 shape features; 70 gray level dependence 

matrix (GLDM) features; 120 gray level co-occurrence matrix (GLCM) features; 80 

gray level run length matrix (GLRLM) features; 80 gray level size zone matrix 

(GLSZM) features; and 25 neighboring gray tone difference matrix (NGTDM) 

features. 

 

Feature Selection and Radiomics Model Building 

In the step of feature selection, we conducted a t test or Mann-Whitney U test and 

feature screening for all radiomic features. Only radiomic features with P < 0.05 were 

retained. Then, we used Spearman's correlation coefficient to calculate the correlation 

between features to eliminate redundant features. Next, the least absolute shrinkage 

and selection operator (LASSO) regression model was applied to select outcome-

relevant features, and a ten-fold cross validation was used to select optimal features. 

The radiomics score was obtained by a linear combination of retained features 

weighted by the LASSO algorithm. After LASSO feature screening, we input the 

final features into the logistic regression model for radiomics model building. 

 

Clinical and Combined Prediction Models 

The features (early neurological deterioration, hypertension, baseline NIHSS score, 

infarct volume, and summary small vessel disease score) used for building the clinical 

model were selected by univariate logistic regression analysis (P values<0.05). The 

multivariate logistic regression analysis was implemented to construct a clinical 

prediction model. Finally, the combined model was established by combining clinical 

features and radiomic features. 

 

Statistical analysis 

Quantitative variables were presented as mean ± standard deviation (SD) or as median 

with interquartile range. The Shapiro-Wilk test was used to check for a normal 

distribution. Quantitative variables were assessed using Student’s t test or the Mann-

Whitney U test, while categorical variables were analyzed using the chi-squared test 

or Fisher’s exact test. Receiver operating characteristic (ROC) curves were drawn to 

evaluate the discrimination ability of the above models. The calibration curve and 

Hosmer–Lemeshow test were applied to evaluate the calibration efficiency of the 
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three models. Decision curve analysis (DCA) was used to determine the clinical 

utility of these models on the basis of calculating the net benefits at each threshold 

probability. Statistical analyses were conducted using the R software package (version 

4.3.1). Statistical significance was determined by a two-sided p value < 0.05. 

 

Results 

 

Patient characteristics 

A total of 148 patients were included. The mean age was 55.93±10.19 years, and 117 

(79.1%) patients were male. The baseline demographic, clinical, and radiological data 

are presented in Table 1. We analyzed the differences in baseline data between the 

excellent (mRS ≤ 1) and unfavorable (mRS > 1) functional outcome groups. Patients 

with unfavorable outcomes were more likely to have hypertension, END, a higher 

NIHSS score, a larger infarct volume, and a higher summary CSVD score. In the 

multivariate logistic regression analysis, these five variables also showed statistically 

significant differences between the two groups (hypertension: OR 2.766, 95%CI 

[1.057, 7.754], P 0.043; END: OR 3.319, 95%CI [1.256, 9.136], P 0.017; NIHSS 

score: OR 1.623, 95%CI [1.364, 1.983], P <0.001; infarct volume: OR 1.403, 95%CI 

[1.096, 1.833], P 0.009; summary CSVD score: OR   1.491, 95%CI [1.042, 2.195], P 

0.034) (Table 1). 

 

Performance of the Three Prediction Models 

After the LASSO algorithm was applied, 13 features, including one feature on CBV, 

three features on CBF, four features on DWI, and five features on TTP, were finally 

selected and used to construct the radiomics model. The distribution of the 13 features 

is presented in Figure 2. The radiomics model had AUC values of 0.774 [95% 

confidence interval (CI) 0.691-0.857] in the training cohort and 0.824 (95% CI 

0.673-0.974) in the test cohort (Table 2). The DCA for the radiomics model is shown 

in Figure 3A. The decision curve demonstrated that using the radiomic model to 

predict outcomes in patients with SSI leads to greater benefit. In addition, the 

calibration curves suggested that the favorable predictive performance was 

satisfactorily consistent with the ideal curve in the training cohort (Figure 3B). 
According to the results of the multivariate logistic regression, a clinical model was 

constructed, which exhibited an AUC value of 0.897 (95% CI 0.843-0.952) in the 

training cohort and 0.787 (95% CI 0.617-0.958) in the test cohort. The combined 

model showed greater predictive performance than the radiomics model and clinical 

model in both cohorts (Figure 4).  

 

Discussion 

This study demonstrated that the novel prediction model incorporating clinical and 

radiomic features had improved performance in predicting functional outcomes in 

patients with SSI. To our knowledge, the present study is the first radiomics-based 

study to investigate the functional outcomes of acute SSI individuals. As a result, 
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clinicians could obtain more details and predict the prognosis of SSI patients earlier 

by using the clinical-radiomics model. 

The functional outcomes of patients with SSI varied, and those with excellent 

outcomes at 3 months accounted for 57.4% of our study. Predictors of prognosis 

might be potential therapeutic targets of SSI. During the past few years, radiomics has 

shown promise for a variety of applications in stroke, especially in the prediction of 

long-term outcomes. Wang et al.10 combined risk factors (age, NIHSS score at 24 

hours post-admission, hemorrhage) and DWI-based radiomics scores to develop a 

clinical-radiomics model for the prediction of 3-month outcomes in patients with 

acute ischemic stroke. Their study showed that the AUC values were 0.80 in the 

training cohort and 0.73 in the validation cohort. A recent study conducted by Zhou et 

al.9 also established a clinical-radiomics model to predict clinical outcomes at 6 

months after symptom onset in acute ischemic stroke patients, with AUCs of 0.868 

and 0.890 in the training and validation cohorts, respectively. However, they only 

extracted radiomics features from DWI and apparent diffusion coefficient (ADC) 

images, which might limit the predictive performance of the model. Another study14 

revealed that the use of radiomics score (from ADC and CBF maps) and clinical 

features could predict favorable clinical outcomes in acute ischemic stroke patients at 

7 days and 3 months. The results indicated that the radiomics model had played a 

satisfactory role of complement of the clinical model. Our study included more 

clinical information such as infarct volume, CSVD markers, and END, and we also 

extracted more radiomics features from the perfusion maps of CBV, CBF, MTT, and 

TTP. In the present study, the combined model showed strong predictive value with 

AUCs of 0.897 and 0.787 in the training and test cohorts, separately. 

Radiomics is a promising noninvasive and quantitative tool for prognosis 

prediction that involves extracting features from computed tomography (CT) or MRI 

images.15,16 Among the 13 selected features in this study, two radiomics features were 

first-order features and eleven radiomics features were texture features. First-order 

features indicate the characteristics of imaging exhibited by voxels alone, while 

texture features indicate other aspects of the image, such as the relationships to the 

adjacent voxel, linear scales, and voxel blocks.17 The 

original_gldm_DependenceVariance feature had the highest weight coefficient among 

these 13 features, which represented the heterogeneity or variability of images. Higher 

values are associated with greater heterogeneity of infarcts. These radiomics features 

could show changes in the cerebral microstructure, which cannot be quantitatively 

identified by the naked eye. 

However, it is not comprehensive to predict clinical outcomes by using only the 

radiomics features of infarction lesions. We found that hypertension, END, NIHSS 

score, infarct volume, and summary CSVD score were independent indicators of 

clinical outcome at three months in patients with SSI. Our results were consistent with 

those of previous studies investigating the prognosis of SSI patients.18–21 As shown in 

Figure 2, a novel clinical-radiomics model was constructed combining these 

independent risk factors and radiomics features, which had improved AUC values to 

0.915 in the training cohort and 0.846 in the test cohort. In comparison with prior 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.08.24310116doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.08.24310116
http://creativecommons.org/licenses/by-nc-nd/4.0/


studies, we applied a radiomics approach to quantify the image data after 

segmentation of the SSI lesions, achieving greater individualized prediction of 

functional outcomes at 3 months. 

There were some limitations in the current study. First, the sample size was 

relatively small, and all patients came from one center. Second, the established 

clinical-radiomics model lacked external validation, and multicenter studies are 

required to validate the results of our study. Third, since the study was conducted in 

China, the generalizability of the findings to other populations may be limited. In 

addition, lesions were manually segmented instead of fully automated, but the 

reproducibility was excellent. 

 

Conclusions 

In conclusion, our findings suggested that the combined model outperformed 

individual clinical or radiomics model in predicting the 3-month functional outcomes 

of SSI patients, which provided new insights into the prognostic prediction of SSI. 

With advanced imaging and artificial intelligence technology, radiomics methodology 

might aid clinicians in the decision-making process and improve the long-term 

outcomes in patients with SSI. 
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Table 1. Univariate and multivariate logistic regression analysis of risk factors 

      

mRS ≤ 1 (n=85) 

 

 mRS > 1 (n=63) 

 

P        Multivariate OR          P 

         (95%CI) 

Age (years) 54.99±10.08 57.19±10.28 0.195                      

Male sex 67 (78.8%) 50 (79.4%) 1.000                       

Smoking 46 (54.1%) 36 (57.1%) 0.842        

Drinking 29 (34.1%) 28 (44.4%) 0.269        

Hypertension 43 (50.6%) 45 (71.4%) 0.017          2.766                0.043  

             (1.057, 7.754)   

Diabetes mellitus    26 (30.6%) 20 (31.7%) 1.000          

Hyperlipidemia 21 (24.7%) 19 (30.2%) 0.581         

END 12 (14.1%) 28 (44.4%) <0.001         3.319               0.017 

                  (1.256, 9.136) 

Onset to MRI time 

(days) 

5 (4-7) 5 (4-8) 0.983 

NIHSS score 2 (2-3) 6 (3.5-8) <0.001         1.623              <0.001 

                  (1.364, 1.983) 

Infarct volume 

 

≥1 Lacunes 

1.00 (0.53, 

1.68) 

 

39 (45.9%) 

1.73 (1.01, 2.86) 

 

34 (54.0%) 

<0.001         1.403                0.009 

              (1.096, 1.833) 

0.420     

≥1 CMBs 27 (31.8%) 30 (47.6%) 0.074  
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Moderate to severe 

EPVSs 

41 (48.2%) 42 (66.7%) 0.039 

WMH 25 (29.4%) 23 (36.5%) 0.463 

Summary CSVD score 

 

1 (0-3) 

 

2 (1-3) 

 

0.045             1.491               0.034 

               (1.042, 2.195) 

mRS, modified Rankin Scale; END, early neurological deterioration; MRI, magnetic 

resonance imaging; NIHSS, National Institutes of Health Stroke Scale; CMB, cerebral 

microbleeds; EPVS, enlarged perivascular spaces; WMH, white matter 

hyperintensity; CSVD, cerebral small vessel disease; OR, odds ratio; CI confidence 

interval. 

 

 

Table 2. Predictive performance of three models in the training and testing cohorts. 

 

Model 

     Training 

 

AUC 

(95% CI) 

cohort   

           

Sensitivity       

(n=118) 

 

Specificity 

Test 

 

AUC  

(95% CI) 

cohort            (n=30) 

 

Sensitivity    Specificity 

Clinical 

model 

 0.897  

(0.843-

0.952) 

0.760    0.882 0.787 

(0.617-

0.958) 

   0.615            0.824 

Radiomics 

model 

     0.774 

(0.691-

0.857) 

    0.840    0.559 0.824 

(0.673-

0.974) 

   0.692             0.824 

Combined 

model 

     0.915 

(0.867-

0.963) 

    0.860    0.779 0.846 

(0.693-

0.999) 

   0.615             0.941 

AUC, area under the curve; CI, confidence interval. 
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Figure 1. The procedure of radiomic analysis. 
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Figure 2. Feature name and distribution. 

 

 

Figure 3. Decision curve and calibration curve analysis of the radiomics model. (A) 

Decision curve of the radiomic model. (B) Calibration curve for the radiomic model.  
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Figure 4. ROC curves of the radiomics model, clinical model, and clinical-radiomics 

model in the training (A) and testing (B) cohorts. ROC, receiver operating 

characteristic. 

 

 

 

A

Clinical model: AUC=0.897

Radiomics model: AUC=0.774

Combined model: AUC=0.915

B

Clinical model: AUC=0.787

Radiomics model: AUC=0.824

Combined model: AUC=0.846
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