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Abstract 20 

Japanese encephalitis virus (JEV) causes approximately 100,000 clinical cases and 25,000 deaths 21 

annually worldwide, mainly in South-East Asia and the Western Pacific and mostly in children. 22 

JEV is transmitted from competent hosts to humans through the bite of mosquitoes, and the 23 

abiotic environment, such as seasonal rainfall, influences transmission. Transmission models 24 

have an important role in understanding disease dynamics and developing prevention and control 25 

strategies to limit the impact of infectious diseases. Our goal was to investigate how transmission 26 

models capture JEV infection dynamics and their role in predicting and controlling infection. 27 

This was achieved by identifying published JEV transmission models, describing their features, 28 

and identifying their limitations, to guide future modelling. A PRISMA-ScR guided scoping 29 

review of peer-reviewed JEV transmission models was conducted. Databases searched included 30 

PubMed, ProQuest, Scopus, Web of Science and Google Scholar. Of 881 full text papers 31 

available in English, 29 were eligible for data extraction. Publication year ranged from 1975 to 32 

2023. The median number of host populations represented in each model was 3 (range: 1–8; 33 

usually humans, mosquitoes and pigs). Most (72% [n=21]) models were deterministic, using 34 

ordinary differential equations to describe transmission. Ten models were applied (representing a 35 

real JEV transmission setting) and validated with field data, while the remaining 19 models were 36 

theoretical. In the applied models, data from only a small proportion of countries in South-East 37 

Asia and the Western Pacific were used. Limitations included gaps in knowledge of local JEV 38 

epidemiology, vector attributes and the impact of prevention and control strategies, along with a 39 

lack of model validation with field data. The lack and limitations of models highlight that further 40 

research to understand JEV epidemiology is needed and that there is opportunity to develop and 41 
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implement applied models to improve control strategies for at-risk populations of animals and 42 

humans. 43 

  44 
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1. Introduction 45 

Japanese encephalitis (JE) is the leading form of human acute viral encephalitis in Asia and the 46 

Pacific, and it is estimated that more than 1.5 billion people live in areas suitable for endemic JE 47 

(Erlanger et al. 2009; Moore 2021). JE is caused by Japanese encephalitis virus (JEV), a zoonotic 48 

mosquito-borne orthoflavivirus. In reported human cases, estimated case fatality approaches 30% 49 

and of those who survive, an estimated 46% suffer permanent neurological sequelae (Cheng et 50 

al. 2022). Studies of the global burden of JE estimated 100,308 cases (95% CI: 61,720–157,522) 51 

and 25,125 deaths (95% CI: 14,550–46,031) in 2015 with most cases occurring in children aged 52 

0–14 years (incidence: 5.4 per 100,000) (Quan et al. 2020; Campbell et al. 2011). However, it is 53 

likely that reported case numbers are inaccurate due to inadequate data collection and diagnosis, 54 

or attributed incorrectly due to cross-reactivity of serological tests with other flaviviruses (Maeki 55 

et al. 2019). 56 

It is generally accepted that JEV is transmitted from a wild reservoir host (such as ardeid birds, 57 

i.e., herons and bitterns) or an amplifying host (such as wild or domestic pigs) to humans through 58 

the bite of mainly Culex spp. mosquitoes (Van Den Hurk, Ritchie, and Mackenzie 2009; De 59 

Wispelaere, Desprès, and Choumet 2017; Faizah et al. 2020). An experimental study showed that 60 

vector-free transmission between pigs can occur via oronasal infection, however this is yet to be 61 

reported under field conditions (Ricklin et al. 2016). The epidemiology of JEV might differ 62 

between regions based on variation in the infection ecology, particularly the diversity, abundance 63 

and composition of animal (non-human mammals and birds) and vector communities, and the 64 

circulating JEV genotype. Chicks and ducklings develop viremia (Page et al. 2014) and JEV 65 

outbreaks have been strongly associated with chicken density (Walsh et al. 2022), but further 66 
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investigations are required to determine if poultry are competent hosts. Cattle, horses and dogs, 67 

like humans, have insufficient viremia to infect susceptible mosquitoes and are noncompetent 68 

hosts for JEV (Boyer et al. 2021; Yang et al. 2008). Mosquito host feeding preferences and 69 

changes in the ratio of competent hosts to noncompetent hosts – for example, in communities 70 

with livestock – can impact JEV transmission (Marini et al. 2017). Two epidemiological patterns 71 

of JEV have been described: endemic activity in tropical regions and epidemic activity in 72 

temperate and subtropical regions (Van Den Hurk, Ritchie, and Mackenzie 2009). 73 

Disease transmission models are data driven mathematical approaches to understand the 74 

parameters responsible for the dynamics of pathogen transmission and to assess the strategic 75 

responses to disease risk (Becker et al. 2021). They can incorporate environmental, host and 76 

vector data to determine factors that influence the size and duration of outbreaks for vector-borne 77 

diseases such as dengue (Ogunlade et al. 2023) and malaria (Mandal, Sarkar, and Sinha 2011). 78 

These models have been valuable in the planning and evaluation of interventions, determining 79 

optimal prevention and control strategies, and predicting the expected course of disease events 80 

(Garnett et al. 2011). However, both model development and assessment can vary widely and, 81 

therefore, so can model accuracy and reliability. This can be due to epistemic uncertainty 82 

(imprecise knowledge of parameters), aleatoric uncertainty (due to randomness) (Penn et al. 83 

2023), or to existing beliefs that influence model assumptions and interpretation of results 84 

(Garnett et al. 2011), all of which can hinder the appropriate generation and use of model 85 

outputs, especially for decision making. 86 

In this scoping review, we aimed to examine how disease transmission models capture the 87 

dynamics of JEV infection and their use in prediction, prevention, and control of JEV spread. To 88 

achieve this, we collated and described peer-reviewed information in which models of JEV 89 
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transmission in populations were developed or implemented. Models of JEV transmission were 90 

defined as those that made explicit hypotheses about the biological mechanisms that drive JEV 91 

infection dynamics in host and/or vector populations. We aimed to provide a baseline of current 92 

knowledge and knowledge gaps regarding JEV model development and parameterisation, host 93 

and vector population structures, and virus transmission between hosts. The findings of this 94 

review provide a foundation for the development of improved models of JEV transmission to 95 

support JE prevention and control. 96 

2. Method 97 

2.1 Protocol 98 

This scoping review was conducted according to the Preferred Reporting Items for Systematic 99 

reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines (Tricco et 100 

al. 2018). The objective was to collate and describe peer-reviewed information in which models 101 

of JEV transmission in populations were developed or used. 102 

The review protocol comprised three levels: Level 1; screening on title and abstract; Level 2, 103 

screening on full record; Level 3 data extraction. The web-based review platform Sysrev 104 

(Bozada et al. 2021) was used for Levels 1 and 2 and a spreadsheet in Google Sheets (Google 105 

2024) was used for Level 3. 106 

We use the term ‘record’ to describe any bibliography citation captured in the searches. We use 107 

the term ‘model’ to describe a disease transmission model that was either developed or 108 

implemented to describe or quantify the transmission of JEV in populations. 109 
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A total of 11 reviewers participated in the scoping review. Reviewers were selected based on 110 

their knowledge of JEV or disease transmission modelling and/or their experience in performing 111 

scoping reviews. 112 

2.2 Eligibility 113 

Records were eligible for inclusion if they were peer-reviewed literature, including peer-114 

reviewed conference proceedings, for which the full text was available, published in English, in 115 

any year, and from any country, and contained primary research of interest in which a model of 116 

JEV transmission was developed or implemented. Models could range from representation of 117 

transmission in one host population to models that explicitly represented the spatio-temporal 118 

variability and heterogeneous contact structures in multiple populations. 119 

Theses, dissertations, and pre-prints were excluded. Records which described JEV statistical 120 

models (for example, inferential models that aimed to identify and predict spatio-temporal 121 

occurrence based on risk factors or time-series models) were excluded. 122 

2.3 Information sources and search strategy 123 

The literature search was conducted in January 2023, using the following combination of search 124 

terms: 125 

i. “Japanese encephalitis” OR JEV, 126 

ii. AND: model, 127 

iii. AND: spread OR transmission, 128 

iv. time frame: all, 129 

v. language: “English”. 130 
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Four electronic databases were searched: PubMed, ProQuest, Scopus, and Web of Science (All 131 

databases) to provide a comprehensive search across various disciplines. A literature search, 132 

using the same criteria, was conducted via the Google Scholar search engine, in which the first 133 

100 results were screened. All records were exported into the citation manager software Endnote, 134 

and duplicates were removed. Records were then uploaded to Sysrev for Level 1 screening. 135 

2.4 Selection of relevant records – Level 1 and 2 136 

During Level 1 (screening on title and abstract), two reviewers assessed each record. To 137 

maximise the sensitivity of identification of relevant records, records progressed to Level 2 if 138 

either reviewer assessed that the record might be eligible. 139 

An agreement test was conducted prior to screening at Level 2 (screening on the full record), in 140 

which five reviewers screened the same randomly selected 20 records. Conflicting opinion about 141 

inclusion or exclusion of records were discussed to achieve agreement between reviewers and to 142 

refine and improve the clarity of the questions at each level (Table S1). 143 

During Level 2, two reviewers initially assessed each record. Records were only included for 144 

charting in Level 3 if there was agreement that the record met the eligibility criteria between at 145 

least 2 reviewers. Conflicts of opinion were resolved via discussion and if required, consultation 146 

with a third reviewer. 147 

2.5 Data items and charting process – Level 3 148 

An agreement test was conducted prior to screening at Level 3, in which reviewers screened the 149 

same randomly selected five records. Conflicting opinion about inclusion or exclusion of records 150 
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were discussed to achieve consensus between reviewers and to refine and improve the clarity of 151 

data extraction at Level 3 (Table S1). 152 

During Level 3, two reviewers initially extracted data from each record. Conflicting opinions 153 

about extracted data were discussed between each record’s pair of reviewers and, if needed, a 154 

third reviewer to determine an agreement prior to synthesis of the extracted data. 155 

Data items that were extracted included the year of publication, the type of modelling method 156 

and objective of the model (for example, to estimate the likely impact of available interventions), 157 

and if the model was applied (reflected a real JEV transmission setting), or theoretical. If the 158 

model had been applied using field data, the location of the data origin was also included. 159 

Regions were defined using the World Health Organization regions. All information 160 

incorporated into each model was also recorded and comprised vector and host species, weather 161 

variables, control and prevention strategies, validation strategies, and sensitivity analyses. 162 

Data that were extracted about vector and host species included the number and species of 163 

populations used in the model, the compartments used to describe the structure of each 164 

population (for example, susceptible-infected-recovered [SIR]), and the parameters used to 165 

describe change between compartments of a population and infection transmission within the 166 

model. 167 

Weather data extracted included spatial, seasonal and temporal variations of rainfall, 168 

temperature, and humidity, and the impact of weather variability on JEV transmission. 169 

Control and prevention strategy data included the type of strategy used and its impact on JEV 170 

transmission, and how the strategy was incorporated in the model (for example, a parameter used 171 

to decrease total vector abundance in the event of vector control). 172 
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2.6 Identification of additional and missing records 173 

The titles of references in the bibliography of two records that were retained for data analysis in 174 

Level 3 were checked to identify any records missed by the search strategy. If records were 175 

potentially relevant to the study, they were included in the review process using the same 176 

methods as records identified in the initial search. 177 

A weekly literature search alert was created using the same four electronic databases with the 178 

same combination of search terms to monitor new studies being published after the initial 179 

literature search was conducted. If newly published records identified by the search alert were 180 

potentially relevant to the study, they were included in the review process using the same 181 

methods as records identified in the initial search. The search alert ceased in April 2024. 182 

3. Results 183 

3.1 Screening 184 

Our search identified 881 records. Following removal of 309 duplicates, 572 records remained 185 

for screening (Figure 1). During Level 1 screening, 458 records were excluded, leaving 114 186 

records for screening of full text (Level 2). Records were most commonly excluded because they 187 

were not relevant to JEV transmission modelling or were not primary literature. Overall, 29 188 

records were included for data charting and synthesis in Level 3 (Table S1). 189 
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 190 

Figure 1: Diagram of the flow of records through the levels of a scoping review of Japanese 191 

encephalitis virus transmission models. 192 
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3.2 Data charting 193 

All 29 records included in Level 3 described single models. Six records were published in peer-194 

reviewed conference proceedings and the remainder were published in 22 peer-reviewed journals 195 

(Figure S1). Records were published from 1975 to 2023 (inclusive) (Figure S2). 196 

Of the 29 models, 34% (n=10) were applied to real JEV transmission settings using data such as 197 

JE incidence and pig abundance and distribution. The most frequently represented region for 198 

these models was the Western Pacific (n=6) with models based in Cambodia, China, Philippines 199 

and Taiwan. Other locations included Bangladesh, French Overseas Département of Réunion, 200 

India, Japan, Thailand and United States of America (Figure S3). 201 

3.3 Aims of models 202 

Fifteen of the models aimed to draw general conclusions about JEV transmission dynamics, such 203 

as determining equilibrium points or reproductive numbers, and in some cases, conducting 204 

stability or sensitivity analyses related to these measures (Baniya and Keval 2021a, 2021c, 205 

2020b; De et al. 2016; Diallo et al. 2018; Dwivedi, Keval, and Baniya 2022; Ghassabzade and 206 

Bagherpoorfard 2021; Ghosh and Tapaswi 1999; Goswami 2022; Kalita and Devi 2020a, 2020b; 207 

Mukhopadhyay and Tapaswi 1994; Panja, Mondal, and Chattopadhyay 2016; Tapaswi, Ghosh, 208 

and Mukhopadhyay 1995; Wada 1975). Eight models investigated the impact of various factors 209 

influencing host and vector species on the risk of JE in humans (Baniya and Keval 2020a, 2021b; 210 

Ladreyt, Chevalier, and Durand 2022; Ladreyt et al. 2023; Naresh and Pandey 2009; Ndaïrou, 211 

Area, and Torres 2020; Sota and Mogi 1989; Zahid and Kribs 2021). Four models aimed to 212 

describe, understand and predict JE incidence (Riad et al. 2017b, 2017a, 2019; Zhao et al. 2018). 213 
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Lastly, two models aimed to describe the effects of interventions on human, animal-reservoir, or 214 

vector populations (Khan et al. 2014; Kharismawati and Fatmawati 2019). 215 

3.4 Model structures 216 

Twenty-two models were deterministic. Of these, 21 were implemented using continuous time, 217 

ordinary differential equations (Baniya and Keval 2021a, 2021c, 2020b, 2020a, 2021b; De et al. 218 

2016; Diallo et al. 2018; Dwivedi, Keval, and Baniya 2022; Ghosh and Tapaswi 1999; Goswami 219 

2022; Khan et al. 2014; Kharismawati and Fatmawati 2019; Ladreyt, Chevalier, and Durand 220 

2022; Ladreyt et al. 2023; Mukhopadhyay and Tapaswi 1994; Naresh and Pandey 2009; 221 

Ndaïrou, Area, and Torres 2020; Panja, Mondal, and Chattopadhyay 2016; Sota and Mogi 1989; 222 

Tapaswi, Ghosh, and Mukhopadhyay 1995; Zahid and Kribs 2021) and one was implemented 223 

using discrete time, difference equations (Wada 1975). Four models were stochastic. Of these, 224 

two were implemented using continuous time, ordinary differential equations (Riad et al. 2017a; 225 

Zhao et al. 2018) and two were implemented using discrete time, difference equations (Riad et 226 

al. 2017b, 2019). The remaining three models were statistically converted models: two models 227 

were converted from deterministic to stochastic using geometric Brownian motion (Kalita and 228 

Devi 2020a, 2020b) and one converted a deterministic model implemented with ordinary 229 

differential equations to a deterministic fractional-order model (Ghassabzade and 230 

Bagherpoorfard 2021). 231 

Two models simulated co-infection of the human population (JEV with either Leptospira spp. or 232 

dengue virus) (Dwivedi, Keval, and Baniya 2022; Zahid and Kribs 2021). 233 

One model followed a single population of feral pigs across three spatial locations, representing 234 

each individual animal within a connected network (Riad et al. 2017a). 235 
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Models most commonly represented three populations — humans, vectors and an animal-236 

reservoir (i.e., non-human mammal or bird) — but the number of populations in a model ranged 237 

from 1 to 8. A human population was represented in 24 models, a vector population in 21 models 238 

and at least one animal-reservoir population in 26 models. 239 

3.4.1 Human population 240 

Compartments used in models to reflect different human infection categories and the transition 241 

of the human population over time were Maternal (M), Vaccinated (V), Susceptible (S), Exposed 242 

(E), Infected (I), and Recovered (R) (Table S2 for description of compartments). Models 243 

described the natural history of JEV in humans using nine different model structures and the 244 

most common was SIRS (n=7) (Table1). 245 

Table 1: Number and types of model structures for human populations [Maternal (M), 246 

Vaccinated (V), Susceptible (S), Exposed (E), Infected (I), and Recovered (R)]. 247 

Model structure Citation 

SIRS (n=7) 
(Baniya and Keval 2021a; Ghosh and Tapaswi 1999; Goswami 2022; Kharismawati and 

Fatmawati 2019; Mukhopadhyay and Tapaswi 1994; Panja, Mondal, and Chattopadhyay 

2016; Tapaswi, Ghosh, and Mukhopadhyay 1995) 

SIS (n=4) 
(Ghassabzade and Bagherpoorfard 2021; Kalita and Devi 2020a; Naresh and Pandey 

2009; Ndaïrou, Area, and Torres 2020) 

VSIS (n=4) (Baniya and Keval 2021c, 2020a, 2021b; Kalita and Devi 2020b) 

SEIR (n=3) (Ladreyt et al. 2023; Riad et al. 2017b, 2019) 

VSIRS (n=2) (Baniya and Keval 2020b; De et al. 2016) 

I (n=1) (Zhao et al. 2018) 

MSEIR (n=1) (Ladreyt, Chevalier, and Durand 2022) 

SIR (n=1) (Zahid and Kribs 2021) 

VSIR (n=1) (Dwivedi, Keval, and Baniya 2022) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.08.24310107doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.08.24310107
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.4.2 Vector population 248 

Compartments used in models to reflect different vector infection categories and the transition of 249 

the vector population over time were Aquatic (A), Susceptible (S), Exposed (E), and Infected (I) 250 

(Table S2 for description of compartments). Mosquitoes were described as the main vector; 251 

however, details such as mosquito species and preferred habitat (e.g., water source and 252 

vegetation type) were not included in any models. Models described the natural history of JEV in 253 

vectors using four different model structures and the most common was SI (n=14) (Table 2). 254 

Table 2: Number and types of model structures for vector populations [Aquatic (A), Susceptible 255 

(S) Exposed (E), and Infected (I)]. 256 

Model structure Citation 

SI (n=14) 

(Baniya and Keval 2021a, 2021c, 2020b, 2020a, 2021b; De et al. 2016; Dwivedi, Keval, 

and Baniya 2022; Goswami 2022; Kharismawati and Fatmawati 2019; Naresh and 

Pandey 2009; Panja, Mondal, and Chattopadhyay 2016; Sota and Mogi 1989; Tapaswi, 

Ghosh, and Mukhopadhyay 1995; Zahid and Kribs 2021) 

SEI (n=3) (Diallo et al. 2018; Ladreyt, Chevalier, and Durand 2022; Ladreyt et al. 2023) 

ASI (n=2) (Ghassabzade and Bagherpoorfard 2021; Ndaïrou, Area, and Torres 2020) 

I (n=2) (Kalita and Devi 2020a, 2020b) 

3.4.3 Animal-Reservoir population 257 

Most often, only one animal-reservoir population was described in models; however, the number 258 

of populations ranged up to six. Animals were also sometimes grouped as a “reservoir” 259 

representing a “pool of infection.” The most common group listed in models was pigs (n=19) 260 

followed by “reservoir” (n=7), cattle (n=2), chickens (n=2), dogs (n=2), ducks (n=2), “birds” 261 

(n=1) and “sows” (n=1). 262 
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Compartments used in models to reflect different animal-reservoir infection categories and the 263 

transition of the animal-reservoir populations over time were Maternal (M), Vaccinated (V), 264 

Susceptible (S), Exposed (E), Convalescent (C) and Recovered (R) (Table S2 for description of 265 

compartments). Models described the natural history of JEV in animal-reservoir populations 266 

using 13 different model structures and the most common was I (n=5) followed by SIRS (n=4) 267 

(Table 3). 268 

Table 3: Number and types of model structures for animal-reservoir populations [Maternal (M), 269 

Vaccinated (V), Susceptible (S), Exposed (E), Convalescent (C) and Recovered (R)]. 270 

Model structure Animal types Citation 

I (n=5) Birds, pigs and reservoir 
(Ghassabzade and Bagherpoorfard 2021; Goswami 2022; 

Kalita and Devi 2020a; Naresh and Pandey 2009; Ndaïrou, 

Area, and Torres 2020) 

SIRS (n=4) Reservoir 
(Ghosh and Tapaswi 1999; Mukhopadhyay and Tapaswi 

1994; Panja, Mondal, and Chattopadhyay 2016; Tapaswi, 

Ghosh, and Mukhopadhyay 1995) 

SI (n=3) Pigs 
(Baniya and Keval 2021a; Dwivedi, Keval, and Baniya 2022; 

Kharismawati and Fatmawati 2019) 

SIR (n=3) Pigs (Sota and Mogi 1989; Wada 1975; Zahid and Kribs 2021) 

SIS (n=3) Pigs (Baniya and Keval 2021c, 2020b, 2021b) 

MSEIR (n=1) 
Cattle, chickens, dogs, 

ducks, pigs and sows 
(Ladreyt, Chevalier, and Durand 2022) 

MSIR (n=1) Pigs (Diallo et al. 2018) 

MVSEIR (n=1) Pigs (Khan et al. 2014) 

SEI (n=1) Pigs (Riad et al. 2017a) 

SEICR (n=1) Pigs (Zhao et al. 2018) 

SEIR (n=1) 
Cattle, chickens, dogs, 

ducks and pigs 
(Ladreyt et al. 2023) 

VSI (n=1) Pigs (De et al. 2016) 

VSIS (n=1) Pigs (Baniya and Keval 2020a) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.08.24310107doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.08.24310107
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.5 State duration parameters and basic reproduction number 271 

Descriptions of parameters and parameter values were clearly described in 21 models and the 272 

source of the data used to inform parameter values was clearly identified in 5 models. Units used 273 

for parameter values were not consistently identified. A total of 123 (human [n=23]; vector 274 

[n=45]; animal-reservoir [n=55]) unique parameters were identified over the 29 models. Of these 275 

parameters, 28% (n=34) were accompanied with sufficient information to extract units and 276 

values (human: 39% [n=9]; vector: 24% [n=11]; animal-reservoir: 25% [n=14]) (Figure 2; 277 

Tables S3, S4 and S5). 278 
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Figure 2: Parameter ranges (dotted lines) estimated from parameter values detailed in models 280 

when source of data was clearly identified. The size of the point indicates the number of models 281 

with a shared parameter value. 282 

Basic reproduction number values were clearly described in 6 of the applied models. The basic 283 

reproduction number could be further broken down into three transmission types, vector-borne 284 

transmission, pig-to-pig transmission (vector free transmission), and combined vector-borne and 285 

pig-to-pig transmission (Figure 3; Table S6). The basic reproduction number range for pig-to-pig 286 

transmission was <1. When transmission type included vector-borne transmission, the basic 287 

reproduction number was >1 and up to 12, but more commonly between 1–3. One model 288 

investigated the impact of cattle on JEV transmission and estimated a basic reproduction number 289 

of 1.008 in the presence of cattle and 12.97 in the absence of cattle (Zahid and Kribs 2021). 290 

 291 

Figure 3: Basic reproduction number ranges estimated from 6 models using three transmission 292 

types. The total number of models using each transmission type is separately indicated. [VB = 293 

vector-borne transmission; P-P = pig-to-pig transmission] 294 
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3.6 Weather, location, and other factors 295 

Eleven models included one or more parameters influenced by changes in weather or location, 296 

which in turn influenced their outputs. However, the information pertaining to weather and 297 

location often lacked specificity, with parameters either ambiguously defined or inadequately 298 

detailed. For instance, terms like “environmental discharges” were used in the models to describe 299 

environmental factors that contributed to the growth of reservoir and vector populations. Such 300 

discharges included a range of sources, such as household waste, open sewage draining, 301 

discarded tyres, and poorly ventilated houses. 302 

The vector population size was influenced in all 11 models that considered environmental 303 

factors. Five models included a “vector carrying capacity”, which represents the maximum 304 

vector population size sustainable in a given environment (Baniya and Keval 2021c; Goswami 305 

2022; Naresh and Pandey 2009; Ndaïrou, Area, and Torres 2020; Tapaswi, Ghosh, and 306 

Mukhopadhyay 1995). Weather variations influenced parameters in five models, leading to 307 

changes in vector population size (Ladreyt, Chevalier, and Durand 2022; Panja, Mondal, and 308 

Chattopadhyay 2016; Riad et al. 2017a; Riad et al. 2019; Zhao et al. 2018). Human-induced 309 

“environmental discharges” influenced parameters in three models, resulting in changes to the 310 

vector population size (Ghassabzade and Bagherpoorfard 2021; Naresh and Pandey 2009; 311 

Ndaïrou, Area, and Torres 2020) whilst the parameters of one model allowed for the vector 312 

population size to vary by geographic location (Riad et al. 2017a). 313 

Three models were influenced by human-induced “environmental discharges”, similar to those 314 

impacting the vector population, which consequently led to changes in the animal-reservoir 315 

population size (Ghassabzade and Bagherpoorfard 2021; Naresh and Pandey 2009; Ndaïrou, 316 
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Area, and Torres 2020). Furthermore, the parameters of one model varied based on the species 317 

and abundance of animals (birds), influenced by geographic location and time of year (Riad et al. 318 

2017a). One model quantified animal (pig) population size by the daily consumption of pigs 319 

(Zhao et al. 2018). The authors also linked the decrease in pig abundance to a decrease in pig 320 

rearing licenses. 321 

3.7 Prevention and control strategies 322 

Twenty of the 29 models included parameters on prevention and control strategies with 18 323 

models listing the influence of these parameters on model output. Seven models chose to apply 324 

prevention and control strategies through direct adjustment of the parameter that the strategy was 325 

anticipated to influence. Examples included reducing mosquito population size (insecticides), 326 

reducing bite and transmission rates (mosquito nets), reducing the size of the susceptible 327 

population (vaccinating the animal-reservoir or human populations), or reducing the growth of 328 

vector and animal-reservoir populations (by decreasing human induced “environmental 329 

discharges”) (Dwivedi, Keval, and Baniya 2022; Ghosh and Tapaswi 1999; Mukhopadhyay and 330 

Tapaswi 1994; Naresh and Pandey 2009; Riad et al. 2017a; Riad et al. 2019; Wada 1975). 331 

In contrast, some authors explicitly modeled prevention and control strategies and included a 332 

specific parameter in the model to represent the strategy. Eleven models included parameters on 333 

the vaccination rate of susceptible humans or treatment rate of JEV infected humans (Baniya and 334 

Keval 2021c, 2020b, 2020a, 2021b; De et al. 2016; Dwivedi, Keval, and Baniya 2022; Goswami 335 

2022; Kalita and Devi 2020b; Kharismawati and Fatmawati 2019; Mukhopadhyay and Tapaswi 336 

1994; Panja, Mondal, and Chattopadhyay 2016), nine models included parameters on the 337 

vaccination rate of susceptible reservoir-animal populations or treatment of JEV infected 338 
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reservoir-animal populations (Baniya and Keval 2020b, 2020a; De et al. 2016; Goswami 2022; 339 

Khan et al. 2014; Kharismawati and Fatmawati 2019; Panja, Mondal, and Chattopadhyay 2016; 340 

Wada 1975; Zhao et al. 2018), and four models included an insecticide control parameter which 341 

influenced the total mosquito population (De et al. 2016; Goswami 2022; Kharismawati and 342 

Fatmawati 2019; Panja, Mondal, and Chattopadhyay 2016). Six models evaluated the 343 

effectiveness and cost-effectiveness of various prevention and control strategies to recommend 344 

best approaches (Baniya and Keval 2020a; De et al. 2016; Goswami 2022; Kharismawati and 345 

Fatmawati 2019; Ladreyt, Chevalier, and Durand 2022; Panja, Mondal, and Chattopadhyay 346 

2016). Lastly, two models assessed the impact of changing the proportions of competent and 347 

non-competent hosts within a community (Ladreyt, Chevalier, and Durand 2022; Zahid and 348 

Kribs 2021) and one explored the use of dogs as sentinel surveillance for JEV circulation 349 

(Ladreyt, Chevalier, and Durand 2022). 350 

3.8 Identified limitations 351 

Limitations were identified in 11 models. Authors of six records noted that their models did not 352 

include real-life variation that might influence outputs, such as the seasonality, heterogeneity and 353 

spatial distributions of populations, and inclusion of various JEV transmission scenarios (Diallo 354 

et al. 2018; Sota and Mogi 1989; Wada 1975; Zahid and Kribs 2021, 2021; Zhao et al. 2018). 355 

The authors of four records noted that the numbers in the field data used to validate their model 356 

might have been under-reported (for example, pig population data) or over-reported (for 357 

example, the use of JEV case data) (Khan et al. 2014; Ladreyt, Chevalier, and Durand 2022; 358 

Riad et al. 2017b, 2017a). Additionally, the authors of four models noted that there was limited 359 

information on contact structures between populations and there was limited host and vector 360 

attribute information, such as mosquito host feeding preferences, biting rates, and competency as 361 
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a JEV vector. Authors also noted that parameters were made to fit the geographic scale of the 362 

model and that parameters were based on collected field data when an endemic state existed. 363 

Therefore, model parameters might not be appropriate when models are scaled up to cover a 364 

larger geographic region or when annual variations in JEV transmission occur (Diallo et al. 365 

2018; Ladreyt, Chevalier, and Durand 2022; Sota and Mogi 1989). The epidemiology was also 366 

uncertain, such as the unknown impact that host species other than those commonly modeled can 367 

have in contributing to or limiting the spread of JEV or JEV introduction into susceptible 368 

populations (Diallo et al. 2018; Khan et al. 2014; Sota and Mogi 1989). 369 

3.9 Sensitivity analyses 370 

Sensitivity analysis was clearly described in nine models. The method used varied between 371 

models (normalized forward sensitivity index [n=6], next generation method [n=2] and Morris 372 

method [n=1]). Not all parameters were included in sensitivity analyses and they were selected 373 

based on the objectives and research question. The median number of parameters assessed was 8 374 

(range: 1-51). 375 

All nine models’ sensitivity analyses assessed the influence of input parameters on the basic 376 

reproduction number (Baniya and Keval 2020b, 2021b; Diallo et al. 2018; Dwivedi, Keval, and 377 

Baniya 2022; Goswami 2022; Kalita and Devi 2020a, 2020b; Ladreyt, Chevalier, and Durand 378 

2022; Ladreyt et al. 2023). Most models assessed the impact of vector parameters on the basic 379 

reproduction number, finding that the vector biting rate, contact rate, death rate, population size, 380 

and probability of infection from a competent host were the most influential. Sensitivity analyses 381 

of two of these models quantified the influence of parameters and found that those related to the 382 

force of infection for vectors and hosts – specifically the vector biting rate, vector death rate, and 383 
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the number of vectors – contributed the most to the total variance in basic reproduction number 384 

(Diallo et al. 2018; Ladreyt, Chevalier, and Durand 2022). 385 

One model assessed the influence of input parameters on the maximum number of infectious 386 

pigs (Diallo et al. 2018). It found that the the number of vectors, the recovery rate of infected 387 

pigs, the rate of loss of maternal immunity of piglets, and their interactions, contributed the most 388 

to the total variance in the maximum number of infectious pigs. 389 

4. Discussion 390 

Models varied widely in their structure, including combinations of vector, animal-reservoir and 391 

human populations, with differing compartmental structures selected to describe aspects of the 392 

natural history of JEV infection in those populations. While this variation sometimes aligned 393 

with specific modeling goals, such as Zahid and Kribs (2021), in which the focus was on 394 

understanding the impact of cattle on joint occurrence of JE and leptospirosis, it also likely 395 

reflects great uncertainty about JEV epidemiology. 396 

In their review on the ecology of JEV, Mulvey et al. (2021) noted the detection of JEV in various 397 

domestic animals and wildlife beyond ardeid wading birds and pigs. While pigs are recognised 398 

as amplifying hosts, overlooking other potential competent hosts may lead to underestimating the 399 

true extent of JEV transmission (Le Flohic et al. 2013; Levesque et al. 2024). Notably, JEV 400 

transmission in animal hosts has been observed to continue despite the phasing out of pig 401 

farming in Singapore over 30 years ago (Yap et al. 2019). Additionally, JEV has been associated 402 

with chicken density (Walsh et al. 2022). These observations suggest that other competent hosts, 403 

such as chickens, can sustain JEV circulation in regions with low pig densities, highlighting the 404 
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potential importance of considering a broader range of hosts in understanding and controlling 405 

JEV transmission, especially in pig-free communities – this was reflected in few models in the 406 

current review, and non specifically investigated JEV circulation in species other than ardeid 407 

birds and pigs except Ladreyt et al. (2023) and Ladreyt, Chevalier, and Durand (2022). 408 

Few of the modelling structures in the reviewed records allowed for simultaneous consideration 409 

of various factors influencing JEV spread, such as intrinsic incubation periods (for example in 410 

pigs) and extrinsic incubation periods (in vectors), while also enabling the assessment of 411 

different intervention strategies, like vaccination of pigs (Table 3). Despite the use of various 412 

compartmental structures and parameters, there was an absence of mosquito species-specific 413 

details in the vector populations in the models in the current review. Mosquito behaviour and 414 

ecological and host preferences vary between species known to transmit JEV (Zardini et al. 415 

2024). Together with host competence, this variation explains the potential importance of the 416 

composition of animal populations in JEV transmission models. 417 

Field data can inform model structure and parameter values, but the current review showed that 418 

such data were used in only 34% of the models. Integrating field data can enhance the accuracy 419 

of important parameter estimates which can improve model predictions (Grassly and Fraser 420 

2008). Although this integration might overcome some epistemic uncertainty in model structure, 421 

epistemic uncertainty still existed with parameterisation because clarity regarding data sources 422 

and consistency in specifying units and time frames were limited. The identified discrepancies in 423 

parameter reporting led to challenges in model interpretation and comparison, highlighting the 424 

need for standardised reporting practices (Milwid et al. 2016; Garnett et al. 2011). Efforts to 425 

enhance transparency and consistency in parameterisation will be crucial for advancing the 426 

reliability and utility of JEV transmission models. 427 
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Six of the models based on field data described vector-borne basic reproduction numbers with 428 

wide variability which reflected differences in model structure and geographic origin of data, as 429 

well as factors like population density, seasonality, and vector mortality, that influence contact 430 

rates (Lord et al. 1996). Wide variability in basic reproduction numbers has also been observed 431 

in models of other diseases; for example, measles transmission, was represented with >20 432 

different basic reproduction numbers, ranging from 5.4 to 18 (Guerra et al. 2017) and caution is 433 

warranted in interpreting these values beyond their region of calculation (Delamater et al. 2019). 434 

Although the reviewed models might not accurately reflect JEV transmission dynamics overall 435 

due to substantial differences in host and vector population structures across regions, calculating 436 

basic reproduction numbers in these models can help inform risk mitigation strategies. Changes 437 

in the basic reproduction number before and after interventions can indicate their effectiveness, 438 

even if the absolute predictions are not entirely accurate. For example, a significant reduction in 439 

basic reproduction number following an intervention suggests that the intervention is likely 440 

useful. 441 

The authors of nine of the reviewed models conducted sensitivity analyses, mainly focusing on 442 

parameters influencing basic reproduction numbers. Notably, vector dynamics-related 443 

parameters like death rate, biting rate, and population size consistently emerged as significant 444 

influencers. Similar impacts have been observed in studies on diseases like African horse 445 

sickness (Lord et al. 1996) and malaria (Smith et al. 2007). Tennant and Recker (2018) 446 

highlighted the importance of obtaining field-relevant and species-dependent vector mortality 447 

rates for accurate modeling. However, most authors of reviewed models omitted sensitivity 448 

analysis, limiting readers’ understanding of parameter influences and potentially compromising 449 

the utility and robustness of model outputs. 450 
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The findings from models implementing prevention and control strategies underscore the 451 

complexities inherent in planning interventions for JEV transmission. While strategies targeting 452 

human populations successfully reduced human JE cases, those aimed at animal-reservoir and 453 

vector populations, such as pig vaccination and mosquito control, interrupted the JEV 454 

transmission cycle more comprehensively. The interconnectivity of model populations 455 

underscores the necessity for integrated prevention and control approaches. However, a gap 456 

remains in employing finer parameters to evaluate specific JEV control strategies and their 457 

effectiveness. This approach has been successfully used in dengue transmission models to assess 458 

their own control strategies (Ogunlade et al. 2023). For instance, instead of solely introducing a 459 

parameter to reduce mosquito abundance and inferring potential strategies like using insecticide 460 

sprays, models could offer a more nuanced understanding to enhance the precision of 461 

intervention strategies. Dengue transmission models have investigated the impact of chemical, 462 

biological, and environmental control methods to reduce mosquito numbers, as well as the long-463 

term advantages and disadvantages of each. However, it is noteworthy that while dengue 464 

transmission is driven by only a few mosquito species (such as Aedes aegypti and Aedes 465 

albopictus) with highly specific habitat associations (Lambrechts, Scott, and Gubler 2010) JEV 466 

may have a greater number of mosquito species as potential vectors associated with a wider 467 

range of habitats (Van den Eynde et al. 2022). 468 

The results of the 11 models that included the influence of environmental, weather, and 469 

geographic factors highlight the complex and multifaceted nature of JEV transmission. 470 

According to the model outputs, vector carrying capacity, weather variations, human-induced 471 

environmental discharges, and geographic location significantly impact vector and animal-472 

reservoir abundance. Geographic and temporal variations have also been incorporated in other 473 
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models to understand variations in mosquito-borne diseases (Caldwell et al. 2021), and human 474 

JE cases have been linked to changes in meteorological factors such as daily rainfall (Liu et al. 475 

2020). Models incorporating environmental drivers of JEV transmission, particularly climate 476 

features, might more accurately predict JE occurrence. 477 

The limitations highlighted by the authors of the reviewed models re-iterated the challenges in 478 

JEV transmission modeling that are identified above. Several models overlooked factors such as 479 

seasonal and spatial impacts, population heterogeneity, and diverse JEV transmission scenarios. 480 

Authors also expressed concerns regarding the accuracy of field data used for model validation, 481 

citing instances of both under and overreporting of data, highlighting the need for reliable and 482 

more accurate data sources. Addressing these limitations is essential for refining model inputs 483 

and advancing future JEV transmission models. 484 

5. Conclusions 485 

Overall, this review provides insight into the literature on JEV transmission modelling, revealing 486 

both progress and challenges in understanding and mitigating the impact of JE occurrence. 487 

Despite the significant global burden of JE, it is notable that only a limited number of models 488 

have been developed to study the viral transmission dynamics, indicating a gap in our 489 

understanding of current prevention and control strategies, as well as preparedness for JEV 490 

emergence in new regions. Increased investment in JEV transmission modelling is essential to 491 

develop robust tools that can inform decision-making in JEV prevention and control to work 492 

towards reducing the global burden of JEV and safeguarding the health of populations at risk. 493 
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