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Abbreviations 69 

AD: Alzheimer’s Disease 70 

BLGCM: Bivariate Latent Growth Curve Model 71 

CERAD: Consortium to Establish a Registry for AD 72 

CFI: Comparative Fit Index 73 

CI: Confidence Interval 74 

CSF: Cerebrospinal Fluid 75 

CSVD: Cerebral Small Vessel Disease 76 

DELCODE: DZNE Longitudinal Cognitive Impairment and Dementia Study 77 
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DZNE: German Centre for Neurodegenerative Diseases 78 

FDR: False Discovery Rate 79 

HCP: Human Connectome Project 80 

LGCM: Latent Growth Curve Model 81 

MRI: Magnetic Resonance Imaging 82 

MS: Multiple Sclerosis 83 

RMSEA: Root Mean Square Error of Approximation 84 

SE: Standard Error 85 

SEM: Structural Equation Model 86 

SRMR: Standardised Root Mean Residual 87 

TICV: Total Intracranial Volume 88 

WMH: White Matter Hyperintensities 89 

 90 

Abstract  91 

Background 92 

For over three decades, the concomitance of cortical neurodegeneration and white 93 

matter hyperintensities (WMH) has sparked discussions about their coupled 94 

temporal dynamics. Longitudinal studies supporting this hypothesis remain 95 

nonetheless scarce. 96 

Methods 97 

In this study, we applied regional and global bivariate latent growth curve modelling 98 

(BLGCM) to longitudinal data from 436 cognitively unimpaired participants 99 

(DELCODE cohort; median age 69.70 [IQR 65.44, 74.49] years; 52.98% female) to 100 

examine the extent to which WMH and cortical thickness were interrelated over a 101 

four-year period. 102 

Results 103 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.08.24309994doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.08.24309994
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

Our findings were three-fold. First, at baseline, individuals with larger WMH volumes 104 

had lower mean cortical thicknesses over the entire brain. Second, individuals who 105 

experienced a steeper thinning of their cingulate and temporal cortices over time had 106 

larger baseline WMH volumes in the frontal, parietal, and occipital lobes. Third, 107 

individuals with thinner cortices at baseline tended to undergo faster WMH 108 

progression over four years, particularly in the occipital and parietal lobes. 109 

Conclusions 110 

Our study suggests that cortical thinning and WMH progression could be mutually 111 

reinforcing rather than parallel, unrelated processes, which become entangled before 112 

cognitive deficits are detectable. 113 

Trial Registration 114 

German Clinical Trials Register (DRKS00007966, 04/05/2015) 115 

 116 

Keywords: White Matter Hyperintensities; Cortical Thickness; Latent Growth Curve 117 

Model; Longitudinal Modelling; Structural Magnetic Resonance Imaging 118 

 119 

Introduction 120 

Cortical thinning and white matter hyperintensities (WMH) progression are well-121 

known ageing processes that take place throughout middle and late adulthood [1–9]. 122 

Both processes appear to be influenced by genetic and lifestyle factors [2,10–15] as 123 

well as by the onset and progression of neurodegenerative and cerebrovascular 124 

diseases [1,2,9,16–20]. Although overlapping risk factors may offer an initial 125 

explanation for their concomitance [3,6,11,21,22], their persistent association after 126 
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controlling for demographics and traditional cardiovascular risk factors [3,6,10,23–127 

25] has sparked more than three decades of research into coupled temporal 128 

dynamics [3,26]. 129 

Coupled temporal dynamics between WMH and cortical atrophy are currently 130 

discussed from two non-exclusive perspectives: the cerebrovascular and the 131 

neurodegenerative hypotheses [17,26]. The cerebrovascular hypothesis posits that 132 

ischaemic and hypoxic damages—operationalised as WMH [15,27–29]—may initially 133 

result in the depletion of oxygen, nutrients, and trophic support in perilesional regions 134 

[16,28]. Subsequently, these damages may also disrupt the function and metabolic 135 

demands of compromised white matter tracts and associated cortical regions, 136 

leading to cortical atrophy [6,9,17,27,30]. On the other hand, the neurodegenerative 137 

hypothesis proposes that cortical neurodegeneration could contribute to WMH 138 

formation [17,26,29,31–34], especially in conjunction with tau pathologies [26,29,34]. 139 

Excessive tau phosphorylation could promote microtubule destabilisation, thereby 140 

causing axonal transport dysfunction, energy depletion, and calcium imbalance—a 141 

hallmark of Wallerian degeneration [34]. In the light of the posterior dominance of 142 

WMH in Alzheimer’s disease (AD) [26,35–38], both hypotheses would require effects 143 

of cortical neurodegeneration and WMH to be particularly pronounced in parietal and 144 

occipital brain regions. Longitudinal evidence and multivariate modelling 145 

substantiating these hypotheses remain nonetheless scarce, especially in cognitively 146 

unimpaired older adults [1]. 147 

In this study, we leveraged bivariate latent growth curve modelling (BLGCM) to 148 

examine the bidirectional relationship between lobar WMH and regional cortical 149 

thickness over four years in older individuals without objective cognitive impairment. 150 
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Methods 151 

Study participants 152 

We used baseline and annual follow-up data for up to 48 months from participants of 153 

the observational longitudinal multicentre DELCODE (DZNE Longitudinal Cognitive 154 

Impairment and Dementia) Study [39]—a memory-clinic-based observational 155 

multicentre study  from the German Centre for Neurodegenerative Diseases (DZNE) 156 

that uses multimodal assessment of preclinical, prodromal, and clinical stages of AD, 157 

with a particular focus on subjective cognitive decline. In the present work, we 158 

focused on cognitively unimpaired participants who underwent at least three MRI 159 

scanning sessions and whose follow-up MRI sessions took place within four months 160 

prior or after their yearly comprehensive examination. 161 

At baseline, participants underwent a thorough evaluation at their local study site, 162 

which included medical history checks, a psychiatric and neurological examination, 163 

neuropsychological testing, blood and cerebrospinal fluid (CSF) collection, and MRI 164 

in accordance with local standards. All DELCODE sites used the Consortium to 165 

Establish a Registry for AD (CERAD-plus) neuropsychological test battery to assess 166 

cognitive function. To be classified as cognitively unimpaired, participants were 167 

defined by performing within at least required to performed better than -1.5 standard 168 

deviations of the age-, sex-, and education-adjusted normal performance on all 169 

subtests of the test battery [39]. 170 

Additional inclusion criteria were age�≥�60 years, fluent German language skills, 171 

capacity to provide informed consent, and the the availability of a study partner. The 172 

main exclusion criteria for all groups were conditions clearly interfering with 173 
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participation in the study or the study procedures, including significant sensory 174 

impairment. The following medical conditions were considered exclusion criteria: 175 

current or history of major depressive episode and major psychiatric disorders either 176 

at baseline (e.g., psychotic disorder, bipolar disorder, substance abuse), 177 

neurodegenerative diseases other than AD, vascular dementia, history of stroke with 178 

residual clinical symptoms, history of disseminated malignant disease, severe or 179 

unstable medical conditions, and clinically significant vitamin B12 deficiency at 180 

baseline. Prohibited drugs included chronic use of psychoactive compounds with 181 

sedative or anticholinergic effects, use of anti-dementia agents, and investigational 182 

drugs for the treatment of dementia or cognitive impairment one month before study 183 

entry and throughout the duration of the study. 184 

All participants provided their written informed consent in accordance with the 185 

Declaration of Helsinki at baseline. DELCODE has been registered within the 186 

German Clinical Trials Register (DRKS00007966, 04/05/2015). Ethics committees of 187 

the medical faculties of all participating sites (i.e., Berlin (Charité -  188 

Universitätsmedizin Berlin), Bonn, Cologne, Göttingen, Magdeburg, Munich (Ludwig-189 

Maximilians-University), Rostock, and Tübingen) approved the DELCODE study 190 

protocol before inclusion of the first participants. The ethics committee of the medical 191 

faculty of the University of Bonn led and coordinated the process. 192 
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Total cardiovascular risk score 193 

We established a total cardiovascular risk score for each participant by tallying their 194 

dichotomised (y/n) history of smoking, presence of obesity, hyperlipidemia, arterial 195 

hypertension, and diabetes, as reported in their medical records. We corrected the 196 

sum of present risk factors by the amount of available information. For example, if an 197 

individual had a history of arterial hypertension and diabetes but we did not have 198 

data on smoking, obesity, or hyperlipidemia, the final score would be 1.00. The 199 

corrected total cardiovascular risk scores ranged from 0.0 to 1.0, where the lowest 200 

and highest values denoted the absence or presence of all available risk factors, 201 

respectively. 202 

MRI 203 

MRI acquisition took place at nine DZNE sites or associated university medical 204 

centers equipped with 3T Siemens MR scanners. In the present study, we leveraged 205 

the following structural sequences: T1w MPRAGE (full head coverage, 3D 206 

acquisition, GRAPPA factor 2, 1 mm3 isotropic, 256 × 256 px, 192 sagittal slices, 207 

TR/TE/TI 2500/4.33/1100 ms, FA 7°) and T2w FLAIR (full head coverage, 3D 208 

acquisition, 1 mm3 isotropic, 256 × 256 px, 192 sagittal slices, TR/TE/TI 209 

5000/394/1800 ms). The DZNE imaging network oversaw operating procedures, as 210 

well as quality assurance and assessment (iNET, Magdeburg) [39]. 211 
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MRI-based measurements  212 

Cortical thickness 213 

We used the CAT12 longitudinal pipeline [40] (neuro-jena.github.io) to reconstruct 214 

cortical thickness surfaces for each subject and for each time point (ageing workflow; 215 

default parameters, except for final resolution, which we set to 1 mm3). We 216 

smoothed all surfaces with a 12-mm Gaussian filter and resampled them to the 32k 217 

HCP surface template. We also used CAT12 to estimate mean thickness throughout 218 

the whole brain cortex and within cortical regions as per the Desikan-Killiany cortical 219 

parcellation atlas [41]. 220 

WMH segmentation 221 

We manually segmented WMH using the AI-augmented version of the Lesion 222 

Segmentation Toolbox (LST-AI) [42–44] and based the segmentation on both T1w 223 

MPRAGE and T2w FLAIR imaging data. We then tallied WMH volumes across the 224 

frontal, temporal, parietal and occipital lobes using the UCSLobes Atlas [45].  225 

Statistical analyses 226 

We conducted all data analyses in RStudio (v1.3.1073; R v4.0.2) using lavaan (v0.6-227 

16). We created figures using ggplot2 (v3.4.3) and the ENIGMA toolbox [46]. 228 

We carried out univariate and bivariate LGCM analyses. (B)LGCMs [47] are a 229 

powerful class of structural equation models (SEM) to describe sample average 230 

trajectories of one or two constructs over time through the specification of latent 231 

intercepts and latent slopes (i.e, initial levels and rates of change). First, we used 232 

univariate analyses for contextualisation to examine what covariates were 233 
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associated with the baseline measurements, as well as with potential changes over 234 

repeated measures. We then focused on bivariate models to examine 235 

interrelationships between WMH and cortical thickness over time (Figure 1). Intra-236 

domain and cross-domain relationships can be assessed via the covariance between 237 

these four latent growth parameters [48]. We specifically tested the evidence of four 238 

possible major cross-domain relationships:  239 

1. intercept-intercept covariance ������������
: upon study entry, do individuals 240 

with larger WMH volumes have lower cortical thickness?, 241 

2.  intercept-slope covariance ������������
: do individuals with larger WMH 242 

volumes at study entry experience faster cortical thinning [cerebrovascular 243 

hypothesis]?, 244 

3. intercept-slope covariance ������������
: do individuals with thinner cortices at 245 

study entry exhibit a faster increase in WMH volumes [neurodegenerative 246 

hypothesis]?, and  247 

4. slope-slope covariance ������������
: do individuals exhibiting faster WMH 248 

volume increases also undergo faster cortical thinning over time?  249 

We also studied within-domain intercept-slope covariances (����������
 and 250 

��������������
) to determine whether baseline levels were associated with ongoing 251 

changes over time. 252 

We conducted global and regional analyses to identify associations at two levels of 253 

granularity. In the global analysis—with no spatial specificity—we focused on the 254 

interrelationship between mean cortical thickness and total WMH volume. In order to 255 

elucidate potential region-specific and cross-domain relationships, we additionally 256 

examined all possible pairs of lobar WMH volumes and regional cortical thicknesses 257 
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within Desikan-Killiany atlas regions. Note that our approach is similar to a mass-258 

univariate analysis scheme, with the difference being that we investigate region-259 

specific effects through LGCM rather than through GLM. To reduce the 260 

dimensionality and thereby improve the feasibility of our multivariate SEM analysis, 261 

we considered (corresponding) bilateral regions jointly. We used the superscripts 262 

Global and Regional to indicate the type of analysis utilised to generate the reported 263 

values. We report the completely standardised solutions and provide unstandardised 264 

solutions as Supplementary Material. 265 

Adjusting for covariates and confounders 266 

We adjusted latent intercepts and slopes for effects of age, sex, years of education, 267 

total cardiovascular risk factor score, and total intracranial volume (TICV) in all 268 

models. 269 

Data transformation 270 

We applied a Box-Cox transform to WMH volumes to account for potential skewness 271 

and z-scored all variables (pooled across timepoints) prior to model fitting. For the 272 

purpose of contextualisation and plotting, we back-transformed the fitted growth 273 

curve parameters afterwards. 274 

Model fitting 275 

We employed the maximum likelihood robust estimator to fit the model. We used the 276 

full information maximum likelihood estimation to handle missing values. To check 277 

for compliance with the assumption of missingness at random, we tested whether 278 

missingness in one column (1: missing; 0: not missing) could be predicted from the 279 

remaining ones. In all instances, the resulting p-values exceeded 0.05. 280 
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Prior to model fitting and solely to ensure model fit, we used Tukey’s fences to 281 

identify and remove outliers in all data points (threshold of 1.5) [49]. We evaluated 282 

the fit of all global and regional models by analysing their root mean square error of 283 

approximation (RMSEA; values ≤ 0.05 indicate good fit), comparative fit index (CFI; 284 

values exceeding 0.95 indicate good fit), and standardised root mean residual 285 

(SRMR; values < 0.08 suggest good fit) [50]. For the sake of transparency, when 286 

discussing the models, we disclosed their convergence and compliance with the 287 

aforementioned thresholds. 288 

Correction for multiple comparisons 289 

We employed the False Discovery Rate (FDR) correction [51] method to account for 290 

the issue of multiple comparisons on all region-wise analyses (Figure S1 contains 291 

the uncorrected version). 292 

Results 293 

Study participants 294 

We included 436 cognitively unimpaired DELCODE participants with imaging data 295 

available for at least three visits (1834 MRI sessions; median age 69.70 [IQR 65.44, 296 

74.49] years; 52.98% females; median years of education 14 [IQR 13, 17]). 297 
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Univariate findings 298 

WMH volumes increased over the course of four years 299 

Model fit 300 

All univariate LGCM on total and lobar WMH volumes converged and provided good 301 

model fit (����� ≤ 0.05, ��	 ≥ 0.095, ���� ≤ 0.05). 302 

Demographic effects on latent intercept (
���) 303 

Baseline total WMH volumes varied significantly among individuals (variance of ιWMH
Global 304 

= 0.881, �� = 0.033, � = 25.117, 
-value < 0.001). 305 

Total WMH volumes were larger in older individuals (�Age�ι���

Global  = 0.365, �� = 0.043, 306 

� = 8.462, 
-value < 0.001) and in those with higher total cardiovascular risk factor 307 

scores (�Vascular risk�ι���

Global  = 0.090, �� = 0.045, � = 1.978, 
-value = 0.048). Moreover, 308 

WMH across the temporal lobes tended to be higher in those with fewer years of 309 

education (Figure 2; �Education�ι���

Regional  = -0.099, �� = 0.058, � = -1.715, 
-value = 310 

0.086). 311 

Females had larger total WMH volumes than males (�Female�ι���

Global  = 0.175, �� = 312 

0.062, � = 2.830, 
-value = 0.005), especially across frontal brain regions 313 

(�Female�ι���

Regional  = 0.184, �� = 0.064, � = 2.955, 
-value = 0.003), despite females in our 314 

sample being on average younger (�Age�Female
Global  = -0.168, �� = 0.047, � = -3.598, 315 


-value < 0.001) and having lower total cardiovascular risk scores (�Vascular risk�Female
Global   316 

= -0.195, �� = 0.045, � = -4.305, 
-value < 0.001) than males. In addition, females 317 
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had on average fewer years of education (�Education�Female
Global   = -0.233, �� = 0.044, � = -318 

5.346, 
-value < 0.001) than males.  319 

Demographic effects on latent slope (����) 320 

Across participants, total WMH volumes increased over the follow-up period of four 321 

years (Figure 2A,B; intercept of ΔWMH
Global = 1.066, �� = 0.101, � = 10.573, 
-value < 322 

0.001). The frontal and parietal lobes underwent the most substantial progression in 323 

WMH volumes, with an average increase of 0.180 [95%-CI 0.153, 0.207] and 0.175 324 

[95%-CI 0.137, 0.212] ml per year, respectively. Significant WMH progression 325 

occured in occipital and temporal lobes as well (approximated average rates of 326 

change: 0.034 [95%-CI 0.027, 0.042], 0.018 [IQR 0.015, 0.022] ml per year, 327 

respectively). 328 

A strength of the approach is the quantification of WMH progression rate variability 329 

across individuals (Figure 2B; variance of ΔWMH
Global = 0.991, �� = 0.012, � = 80.306, 330 


-value < 0.001), which we found to be tied to baseline demographics and pre-331 

existing WMH volumes. WMH progression rates in parietal regions were lower in 332 

individuals with advanced age (�Age�Δ���

Regional  = -0.233, �� = 0.068, � = -3.431, 
-value = 333 

0.001) and with more years of education (Figure 2C; �Education�Δ���

Regional  = -0.166, �� = 334 

0.066, � = -2.506, 
-value = 0.036). Similarly, those with the highest initial regional 335 

WMH volumes tended to exhibit the least progression of WMH in the same region 336 

over time (parietal: �ι����Δ���

Regional  = -0.305, �� = 0.066, � = -4.654, 
-value < 0.001; 337 

occipital: (�ι����Δ���

Regional  = -0.159, �� = 0.078, � = -2.032, 
-value = 0.042; temporal: 338 

�ι����Δ���

Regional  = -0.247, �� = 0.125, � = -1.982, 
-value = 0.048), except in the frontal 339 

lobe (�ι����Δ���

Regional  = -0.102, �� = 0.080, � = -1.275, 
-value = 0.202). Sex differences 340 
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in WMH progression rates were evident across the occipital lobe, with females 341 

showing faster occipital WMH progression than males (Figure 2C; �Female�Δ���

Regional  = 342 

0.221, �� = 0.088, � = 2.510, 
-value = 0.012).  343 

Cortical thickness decreased over the course of four years 344 

Model fit 345 

All univariate LGCM fitted to cortical thickness converged and had good fit indices 346 

(����� ≤ 0.05, ��	 ≥ 0.095, ���� ≤ 0.05).  347 

Demographic effects on latent intercept (
%&'()) 348 

Cortical thickness values were, on average, lower in individuals with advanced age 349 

(�Age�ιThick  
Global  = -0.190, �� = 0.024, � = -8.077, 
-value < 0.001), especially within 350 

cortical regions associated with processing sensory information and orchestrating 351 

motor functions (peaks - postcentral: �Age�ιThick  

Regional = -0.342, �� = 0.045, � = -7.666, 352 


-value < 0.001; superiortemporal: �Age�ιThick  

Regional = -0.352, �� = 0.044, � = -7.937, 353 


-value < 0.001; superiorfrontal: �Age�ιThick  

Regional = -0.309, �� = 0.044, � = -7.035, 
-value < 354 

0.001). We did not observe sufficient evidence relating sex or cardiovascular risk 355 

factors to initial cortical measurements in the cognitively unimpaired cohort 356 

investigated here. 357 

Demographic effects on latent slope (�%&'()) 358 

The thickness of cerebral cortex generally decreased over the course of four years 359 

(Figure 2D,E; intercept of ΔThick
Global = -0.269, �� = 0.082, � = -3.263, 
-value = 0.001). 360 

Global thinning rates varied substantially among individuals (Figure 2E; variance 361 
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ΔThick
Global = 0.958, �� = 0.035, � = 27.413, 
-value < 0.001). Thinning was particularly 362 

pronounced across the cingulate and temporal cortex (Figure 2D, F; intercept of 363 

ΔThick
Global  peaked in the caudal anterior cingulate cortex = -0.875, �� = 0.107, � = -364 

8.196, 
-value < 0.001). Caudal anterior and posterior cingulate cortices, for 365 

instance, underwent the most cortical thinning over the course of four years, with an 366 

average decrease in thickness of -0.014 [IQR -0.016, -0.013] and -0.011 [95%-CI -367 

0.012, -0.009] mm/year, respectively. Annual cortical thinning rates tended to 368 

decelerate with advance age (�Age�ΔThick  
Global  = -0.147, �� = 0.089, � = -1.652, 
-value = 369 

0.098). Neither global or regional analyses hinted at an association between sex, 370 

years of education, cardiovascular risk score, and changes in cortical thickness in 371 

our cohort. 372 

Bivariate findings  373 

Model fit 374 

All BLGCMs also converged and had a satisfactory model fit (����� ≤ 0.05, ��	 ≥ 375 

0.095, ���� ≤ 0.05).  376 

Individuals with larger WMH volumes have lower cortical thickness 377 

(������������
) 378 

At baseline, individuals with larger WMH volumes showed lower mean cortical 379 

thickness (������������
Global  = -0.160, �� = 0.049, � = -3.285, 
-value = 0.001). 380 

Subsequent analysis of regional measurements revealed that this association was 381 

more pronounced within the same lobe (Figure 3A): frontal WMH related more 382 

strongly to the frontal cortex (peak at parstriangularis: ������������

Regional
 = -0.177, �� = 383 
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0.050, � = -3.564, 
-value < 0.001), occipital WMH to the occipital cortex (peak at 384 

cuneal cortex: ������������

Regional
 = -0.162, �� = 0.055, � = -2.957, 
-value = 0.003), and 385 

parietal WMH to the parietal cortex (peak at postcentral cortex: ������������

Regional
 = -0.129, 386 

�� = 0.057, � = -2.274, 
-value = 0.023). However, we also observed associations 387 

across distal regions (Figure 3A), for instance, baseline frontal WMH volumes and 388 

cortical thickness in temporal brain regions, occipital WMH volumes and frontal 389 

cortical thickness. 390 

Individuals with larger WMH volumes show faster cortical thinning 391 

(������������
) 392 

Although the association between WMH volumes at baseline and cortical thinning 393 

rates was not observed at a global scale (������������
Global  = -0.121, �� = 0.076, � = -394 

1.595, 
-value = 0.111), it was at a regional scale (Figure 3B). Individuals who 395 

exhibited a steeper decrease in thickness of the cingulate cortices showed larger 396 

WMH volumes across the frontal (Figure 4A.1; peak at caudal anterior: 397 

������������

Regional
 = -0.244, �� = 0.079, � = -3.091, 
-value = 0.002), parietal (peak at 398 

caudal anterior: ������������

Regional
 = -0.260, �� = 0.079, � = -3.302, 
-value = 0.001), and 399 

occipital lobes (peak at caudal anterior: ������������

Regional
 = -0.260, �� = 0.079, � = -400 

3.302, 
-value = 0.001). Individuals with larger occipital WMH at baseline also 401 

showed a steeper decline in thickness in adjacent cortical regions, such as the 402 

inferior parietal cortex (Figure 3B; ������������

Regional
 = -0.247, �� = 0.094, � = -2.611, 403 


-value = 0.009), but also in more remote cortical areas like the superior temporal 404 
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cortex (������������

Regional
 = -0.316, �� = 0.084, � = -3.749, 
-value < 0.001) and the 405 

insular cortex (������������

Regional
 = -0.312, �� = 0.091, � = -3.425, 
-value = 0.001).  406 

Individuals with thinner cortices exhibit faster increases in WMH 407 

volumes (������������
) 408 

Individuals with thinner cortices at baseline tended to undergo faster WMH 409 

progression over the span of four years (������������

Whole-brain
 = -0.123, �� = 0.063, � = -410 

1.964, 
-value = 0.049). Upon closer examination of these associations, we found 411 

evidence for regional specificities (Figure 3C). Individuals with thicker cingulate 412 

cortices at baseline, particularly at the isthmus, experienced a slower progression in 413 

parietal WMH volumes compared to those with thinner cortices (Figure 3C; 414 

������������

Regional
 = -0.205, �� = 0.064, � = -3.185, 
-value = 0.001). Furthermore, 415 

participants with initially thicker precentral, insular, and rostral anterior cingulate 416 

cortices showed a slower progression in occipital WMH volumes (Figure 3C, 4A.2; 417 

precentral: ������������

Regional
 = -0.206, �� = 0.074, � = -2.791, 
-value = 0.005; insular: 418 

������������

Regional
 = -0.218, �� = 0.079, � = -2.743, 
-value = 0.006; rostral anterior: 419 

������������

Regional
 = -0.183, �� = 0.068, � = -2.679, 
-value = 0.007). 420 

Individuals exhibiting faster WMH volume increases also undergo 421 

faster cortical thinning over time (���������	
�) 422 

While we found no clear indication for global slope-slope associations 423 

(������������

Global  = -0.149, �� = 0.145, � = -1.026, 
-value = 0.305), we did observe that 424 

individuals with faster progression of WMH in the frontal lobe tended to undergo 425 
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faster global cortical thinning over time (������������

Global  = -0.269, �� = 0.145, � = -426 

1.861, 
-value = 0.063). Further exploration revealed that this relationship was 427 

evident in the caudal middle frontal, paracentral, posterior cingulate, and superior 428 

frontal cortex (Figure 4B, S1; peaks – caudal middle frontal: ������������

Regional
 = -0.611, 429 

�� = 0.243, � = -2.516, 
-value = 0.012; paracentral: : ������������

Regional
 = -0.288, �� = 430 

0.122, � = -2.361, 
-value = 0.018; posterior cingulate: : ������������

Regional
 = -0.296, �� = 431 

0.125, � = -2.359, 
-value = 0.018; superior frontal: ������������

Regional
 = -0.336, �� = 432 

0.152, � = -2.216, 
-value = 0.027). Slope-slope associations were generally 433 

characterised by sparsity, with only a few regions showing statistical significance. 434 

Consequently, they collectively did not remain significant after FDR correction and 435 

should thus be interpreted with caution (FDR-corrected version: Figure 3D; 436 

uncorrected version: Figure S1).  437 

Discussion 438 

We studied the interrelationships between WMH and cortical thickness over a four-439 

year period in 436 older adults without objective cognitive impairment (1834 MRI 440 

sessions in total) using a longitudinal modelling approach. We made both 441 

methodological and clinical contributions to the ongoing efforts to understand the 442 

relationship between cerebrovascular dysfunction and neurodegeneration. First, our 443 

study demonstrates the potential of integrating surface-based morphometry and 444 

BLGCM to investigate interrelationships between neuroimaging markers over time. 445 

Second, our findings support the notion that cortical thinning and WMH progression 446 

might be mutually reinforcing processes, entangled over a four-year period in a 447 

complex and region-specific manner. Our results suggest that this coupling takes 448 
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place even among individuals with a low vascular risk, given DELCODE's inclusion 449 

and exclusion criteria. 450 

WMH progression 451 

WMH generally progressed over the course of four years, reiterating that ageing is 452 

associated with WMH increase and constitutes a major risk factor for white matter 453 

pathology [2,14,15,28,52]. Progression rates were nonetheless highly subject-454 

specific and dependent on an individual’s pre-existing white matter pathology. 455 

Parietal, occipital, and temporal WMH progression rates over four years were lower 456 

in subjects who had larger WMH volumes at the time of the baseline visit. This 457 

suggests that WMH progression may follow a non-linear trajectory, with changes 458 

occurring swiftly in its early stages, but gradually reaching a plateau. While non-459 

linear trajectories would be conceivable at late stages of cerebral small vessel 460 

disease (CSVD) spectrum, our finding suggest that this phenomenon also applies to 461 

individuals with low-to-average WMH volumes (compared to CSVD cohorts, see 462 

[52,53]), was somewhat unexpected, albeit not a completely novel finding. The 463 

apparent non-Markovian nature of WMH progression has recently been discussed in 464 

the context of the RUN DMC study [54]. In the RUN DMC study, the total WMH 465 

burden around the age of 64 years predicted their progression over the following 11 466 

years, with severe WMH cases progressing the most, and mild cases progressing 467 

the least [54]. Mild cases rarely progressing to severe stages [54]. Here, we found 468 

that such non-linear trajectories were observable at a study level. However, 469 

significant individual differences in WMH volume changes suggest that there are 470 

numerous other factors that were not accounted for in our study that might contribute 471 

to subject-specific progression of WMH in ageing. For example, heterogeneity of 472 
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WMH volumes and progression rates could be reflective of the brain’s ability to 473 

respond to and heal from white matter injuries. By extension, heterogeneity of WMH 474 

volumes and progression rates could be reflective of past and current socioeconomic 475 

status and cardiovascular risk factors, as well as the adoption of an unhealthy 476 

lifestyle [2,54,55]. This might explain why lower years of education and greater 477 

cardiovascular risk scores were associated with higher baseline WMH volumes in 478 

our sample. 479 

Interestingly, even though, in our study sample, males were generally older than 480 

females and had higher cardiovascular risk factor scores than females, females 481 

showed significantly greater WMH volumes at baseline compared to males even 482 

after accounting for TICV. Total WMH progression rates over the course of four 483 

years between sexes were nonetheless comparable, except in the occipital lobe, 484 

where females exhibited faster progression. For these two scenarios to be 485 

compatible, WMH would clearly need to evolve faster in females than in males in 486 

other cerebral lobes before the age of 70 years (i.e., the median age in this study). 487 

Menopause may constitute a potential explanation for this sex-specific susceptibility 488 

to WMH. A relatively recent work in the Rhineland study, a large population-based 489 

German cohort, found that while pre-menopausal women and men of similar age did 490 

not differ in WMH volumes, post-menopausal women did have significantly larger 491 

WMH volumes compared to men of similar age [56]. This finding suggests that 492 

indeed menopause and accompanying hormonal and physiological changes might 493 

be behind this sex-difference[56]. Another explanation could be that elderly women 494 

in this ageing cohort had, on average, lower educational attainment, which could 495 

also contribute to their vulnerability to CSVD. The likely multifactorial nature of this 496 

finding requires careful consideration during modelling and reporting as well as 497 
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dedicated analysis shedding light on the mechanisms potentially mediating such a 498 

vulnerability. 499 

Albeit less commonly, a small number of participants exhibited clear and consistent 500 

WMH volume regression throughout the study period, as reported in previous 501 

literature [14,57]. The most pronounced case of WMH volume regression was 502 

observed in a female participant in her 60s, with a total cardiovascular risk score of 503 

0.0, and 15 years of education (higher education). Regression in this participant was 504 

most noticeable in occipital brain regions and could be attributed to a loss of 505 

periventricular tissue caused by a substantial enlargement of the occipital horns of 506 

the lateral ventricles over time (Figure S2). While frequently discussed in the context 507 

of a radiological or technical issue [57], our finding adds a new dimension to the 508 

current explanations for WMH regression, wherein genuine changes in one 509 

neuroimaging marker can directly influence another. This finding strongly highlights 510 

the need for multimodal longitudinal strategies to gain a more comprehensive 511 

understanding of the synergistic role of cerebrovascular and neurodegenerative 512 

processes. 513 

Cortical thinning 514 

The thickness of the cerebral cortex decreased over the course of four years, 515 

corroborating that ageing also drives cortical thinning [7,58]. The rate at which 516 

thinning occurred was nonetheless subject- and region-specific. Cortical regions 517 

associated with sensory and sensorimotor functions appeared to be the earliest 518 

affected and most decreased by ageing. A decline in cortical thickness across these 519 

regions might contribute to decreased visual acuity, hearing sensitivity, and motor 520 

abilities [58–61]—all of which are expected during normal ageing, but were not 521 
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examined as per the objectives of the current work. We also found substantial 522 

evidence of thinning across the cingulate cortex. This apparent ageing-related 523 

vulnerability is consistent with previous research indicating that both the caudal 524 

anterior and posterior cingulate cortex shrink during normal ageing [62]. The 525 

behavioural consequences of the rate of thinning in terms of decline in cognitive 526 

control and integrating behavioural, affective, and cognitive processes [63], remain to 527 

be elucidated. 528 

Cortical thinning shows considerable heterogeneity across subjects. Somewhat 529 

surprisingly such inter-subject variability could not be fully explained by age, sex, 530 

years of education or cardiovascular risk factors, suggesting that other factors, e.g., 531 

genetics and lifestyle factors beyond cardiovascular risk factors [10–13], might 532 

influence cortical thinning during late life, possibly to a larger extent than 533 

demographics and established cardiovascular risk factors. Given that the rate of 534 

thinning might affect cognitive performance and activities of daily living, future 535 

research should determine the contribution of brain resilience and (modifiable) 536 

lifestyle factors to abnormal cortical thinning, as such findings could advance the 537 

development of novel interventions [64]. 538 
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Co-occurrence beyond common risk factors 539 

Even after adjusting for shared risk factors, we found evidence for a negative 540 

correlation between the initial thickness of the cerebral cortex and the initial volume 541 

of WMH, in line with previous work [3,6,10,23–25]. While other factors may 542 

contribute to this relationship, which we did not include in our analysis (e.g., genetics 543 

and lifestyle), this observation, found in a relatively healthy sample, suggests shared 544 

underlying pathological mechanisms. 545 

WMH and cortical thinning 546 

The initial volume of WMH in the brain partly explained the rate of thinning observed 547 

across multiple cortical regions over four years. This observation is consistent with 548 

the cerebrovascular hypothesis [1,65–67] and supports the notion that WMH are the 549 

visible tip of the iceberg [1], a sign of widespread rather than focal cerebrovascular 550 

and metabolic impairment [68,69].The apparent region-specific nature of the 551 

coupling between lobar WMH and regional cortical thickness raises the possibility 552 

that white matter fibres could be involved in the downstream effects of WMH. 553 

Potential secondary effects of WMH along the superior and inferior longitudinal 554 

fasciculus may, for instance, explain why those with occipital WMH would experience 555 

rapid thinning simulaneously across the temporal cortex and the cingulate cortex, 556 

including its rostral anterior regions. Mounting data indeed suggests that abnormal 557 

tissue characteristics can be found in intra- and perilesional white matter regions, but 558 

also in white matter fibres traversing WMH [1,27,69,70]. Also, cross-sectional 559 

investigations conducted in CSVD cohorts have demonstrated that cortical regions 560 

connected to incident lacunes, subcortical lacunar infarcts, and WMH through white 561 

matter fibers exhibit significantly reduced thickness than those that are not [30,65–562 
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67]. Despite the overall compelling evidence for a contribution of WMH to cortical 563 

thinning, additional research leveraging imaging techniques like white matter 564 

tractography as well as animal models is needed to elucidate the role of white matter 565 

fibres in the long-term and remote effects of WMH in the brain. 566 

Cortical thickness and WMH progression 567 

The rate of WMH volumes increase over four years was partly explained by the 568 

thickness of the cerebral cortex at study enrolment, with slower WMH progression 569 

occuring in participants with higher initial cortical thicknesses. This may indicate 570 

potentially higher brain maintanance as a mechanism of healthy ageing [71]. This 571 

relationship was particularly evident when examining WMH progression across 572 

occipital regions in relation to insular and precentral cortex thickness at baseline. 573 

The simultaneous association of insular and precentral cortex thickness with WMH 574 

development may be multifaceted. Neuronal loss in both cortical regions may be 575 

linked to lifestyle adaptations stemming from ageing that contribute to a decline in 576 

sensorimotor functions—a primary risk factor for cardiovascular disease [72]. 577 

Considering the involvement of the insular cortex in the regulation of autonomic 578 

functions, a decline in this region could also result in blood pressure dysregulation 579 

[73,74], a condition which has been extensively shown to be associated with 580 

increased progression of WMH, and with more severe manifestations of CSVD 581 

[28,54,75]. 582 

The association between baseline cortical thickness and posterior WMH progression 583 

has a fundamental ramification: it supports the spatial heterogeneity of WMH, with 584 

neurodegeneration relating more to the progression of WMH in parietal and occipital 585 

regions than in frontal ones. Since cortical neurodegeneration accelerates with the 586 
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pathophysiology of Alzheimer’s disease (AD), this would explain why posterior WMH 587 

appear in subjects with minimal vascular pathology across the AD spectrum and why 588 

WMH in deep and periventricular posterior regions appear characteristics of AD 589 

[26,36,38,76]. It is also possible that an early (preclinical) increase in biomarkers 590 

indicative for AD may cause changes in the insular cortex, which then affects the 591 

cardiovascular system [73,74,77] and ultimately speeds up the progression of WMH 592 

in the brain—a possible explanation for Figure 3C. While promising, further research 593 

in other cohorts—especially with available amyloid- or tau- positron emission 594 

tomography [78]—are needed to determine how age- and AD-driven cortical 595 

neurodegeneration influences posterior WMH [76]. 596 

WMH progression and cortical thinning 597 

WMH progression and cortical thinning rates were associated with one another, 598 

suggesting a rather consistent and predictable relationship between the two 599 

processes, wherein changes in one marker are accompanied by corresponding 600 

changes in the other and vice versa. In our group of cognitively unimpaired 601 

participants, this slope-slope association was particularly evident across frontal brain 602 

regions. This pattern seems to be less confined and more widespread with advanced 603 

stages of AD, as highlighted in a recent work with autosomal dominant AD and late-604 

onset AD [33]. Further application of our methodology to cohorts at various stages of 605 

AD could, for example, provide further information on the mechanisms underlying the 606 

simultaneous progression of both processes. 607 

Strengths and contextualisation 608 

Longitudinal studies with cognitively unimpaired elderly participants exploring cross-609 

domain associations between WMH and cortical thickness are scarce [1,4,79]. 610 
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Whenever this kind of research has been done, the evidence supporting any kind of 611 

coupling has generally been lacking. In septuagenarian community-dwelling 612 

participants, Dickie et al. [4] could not find enough evidence supporting the 613 

relationship between total WMH volumes and cortical thickness of cortical grey 614 

matter structures neighbouring the Sylvian fissures over a three-year period. In a 615 

cohort of cognitively unimpaired participants, Hotz et al. [79] investigated cross-616 

domain associations between total WMH volume and thinning of the entorhinal 617 

cortex over a duration of seven years using BLGCM. The authors found no evidence 618 

for cross-domain coupling and this absence of association was evident both at the 619 

study's baseline and throughout its duration. Our findings are also compatible with 620 

the observation that patients with multiple sclerosis (MS), a neuroinflammatory 621 

condition primarily affecting white matter fiber tracts through demyelination, exhibit 622 

focal thinning of cortical areas [80,81]. 623 

Evidence supporting cross-domain has been, nonetheless, growing in participants 624 

symptomatic or more severe presentations of cerebrovascular [65–67,78,82] and 625 

neurodegenerative pathologies [33,78]. One potential explanation thus far for 626 

contradictory results could be the stage of dysfunction at which each participant is 627 

situated, i.e., coupling only becomes evident at advanced, symptomatic stages of 628 

cerebrovascular and neurodegenerative disease. On the other hand, as emphasised 629 

by our study, there are regional nuances to these cross-domain relationships that 630 

analyses with a lower level of granularity might fail to capture. Had we solely relied 631 

on global analyses for our study, we would have essentially been limited to 632 

observing nothing beyond the evident intercept-intercept association. This 633 

underscores the significance of employing multimodal and regional approaches to 634 
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gain a more comprehensive understanding of the local and distant effects of one 635 

process on the other. 636 

Limitations 637 

Our research has three main limitations. First, even though our BLGCM aligns with 638 

the data, causality remains elusive due to model equivariance. Latent change score 639 

models might be promising for further study of specific interactions over discrete time 640 

intervals [83]. The mass-univariate application of the BLGCM could be streamlined 641 

by using extended measurement models [84]. We can state, however, that our data 642 

supports a specific and partial spatiotemporal coupling between cortical 643 

neurodegeneration and cerebrovascular dysfunction. The specific circumstances that 644 

might lead to such coupling often remain undetermined and likely require the 645 

inclusion of more extensive biological parameters including complementary imaging 646 

modalities, such as diffusion tensor imaging [27,78,80]. If a Wallerian-like 647 

degeneration is responsible for the observed coupling—as also discussed in the 648 

literature [3,5,9,17,26,34,85]—there should be evidence within the white matter 649 

fibres themselves that mediate the interrelationships between cortical thickness and 650 

WMH. Second, we included a relatively healthy sample and a short time span (48 651 

months, i.e., 4 years), which may have prevented a few cross-domain associations 652 

to become evident. The dynamics over longer time periods, as well as in other 653 

cohorts thus remain elusive, but will be a matter of future investigation. Third, we 654 

have, thus far, not assessed potential cognitive sequelae of WMH progression, 655 

cortical thinning, or their coupling in this study. Because these two processes appear 656 

to be coupled prior to any observable objective cognitive deficiencies, it could be that 657 

cognitive consequences are not detectable at this asymptomatic stage or that 658 
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cognitive reserve is still able to compensate for the ongoing pathology or, as a recent 659 

study suggests, that cortical measurements predict well chronological age but not 660 

memory performance [86]. A trivariate latent change score model with WMH, cortical 661 

thickness, and cognitive performance could be used in the future to address this 662 

limitation. 663 

Conclusion 664 

Our work provides longitudinal evidence that cortical thinning and WMH progression 665 

could be mutually reinforcing as opposed to parallel, disassociated processes. The 666 

coupling between these two neuroradiological features appears to be entangled prior 667 

to the onset of any detectable cognitive deficits. Our findings support the ongoing 668 

discussion on perilesional and remote impacts of WMH, but, at the same time, 669 

provide evidence for the effects of cortical neurodegeneration on white matter 670 

integrity. Comprehensive, multimodal approaches, such as the one applied in this 671 

study, have the potential to facilitate the detection of downstream damage 672 

associated with the synergistic interaction among ageing, CSVD, and 673 

neurodegeneration in the brain. 674 
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  981 

Figure legends 982 

Figure 1. BLGCM to probe the coupling of cortical thickness and WMH over repeated 983 
measures. 984 
Illustration of the longitudinal structural equation modeling (SEM) model used on global regional/lobar 985 
level. We employed the conventional notation with squared variables indicating observed and 986 
measured variables (manifest variables) and circular ones referring to latent (unobserved) variables. 987 
Single-headed solid arrows illustrate a modelled relationship between two variables, with the arrow 988 
pointing towards the dependent variable. Single-headed dashed arrows signify a relationship between 989 
two variables, where the weight is fixed. Double-headed arrows represent the covariance 990 
(hyperparameter) between two variables. Grey triangles represent latent intercept estimates. We 991 
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further adjusted latent intercepts and slopes for age, sex, years of education, total cardiovascular risk 992 
factors, and TICV. We omitted these paths for visualisation purposes.  993 
 994 
Figure 2. Changes in WMH volumes and cortical thickness over four years. 995 
We obtained latent intercepts and slopes for each individual through the application of univariate 996 
LGCM to WMH volumes and cortical thickness (separate models for each neuroimaging feature). We 997 
used them to compute latent growth curve parameters and predict individual trajectories, corrected for 998 
age, sex, years of education, total cardiovascular risk scores, and TICV. Prior to plotting and to 999 
enhance interpretability, we back-transformed all predicted measurements. (A) Total WMH volume 1000 
trajectories, as predicted by the model. Blue lines represent the predicted trajectories and the pink 1001 
one the average one. (B) Back-transformed individual factor scores of latent slopes for WMH 1002 
(ΔWMH

Regional), summarised in the density plots, indicate that WMH volumes generally increased over time. 1003 
We adjusted density plots such that the modes attain the highest value, irrespective of the actual 1004 
frequency. The rate of change varied substantially across individuals in both cases. WMH 1005 
progression, from fastest to slowest, occurred in the frontal, parietal, occipital, and temporal lobes 1006 
(approximated average rates of change: 0.180 [95%-CI 0.153, 0.207], 0.175 [95%-CI 0.137, 0.212],  1007 
0.034 [95%-CI 0.027, 0.042], 0.018 [IQR 0.015, 0.022] ml / year, respectively). Interestingly, while 1008 
progression was predominant, a few subjects showed a clear and consistent decrease in global WMH 1009 
volumes over the course of the study, especially across the occipital lobes. Visual assessment 1010 
revealed that enlargement of lateral ventricles contributed to such volumetric loss. (C) Annual change 1011 
in parietal and occipital WMH in relation to education and sex, respectively. (D) Regions exhibiting 1012 
substantial cortical thinning over the course of the study. Both the cingulate and lateral temporal 1013 
cortex underwent the most thinning (intercept of ΔThick

Global  peaked in the caudal anterior cingulate cortex 1014 
= -0.875, �� = 0.107, � = -8.196, �-value < 0.001). (E) Back-transformed individual factor scores of 1015 
cortical thicknesses (ΔThick

Regional) across regions experiencing the most pronounced thinning over time. 1016 
Caudal anterior and posterior cingulate cortices underwent the most decline over the course of four 1017 
years, with an average decrease in thickness of -0.014 [IQR -0.016, -0.013] and -0.011 [95%-CI -1018 
0.012, -0.009] mm/year, respectively. The variability in change rates indicated significant inter-1019 
individual differences in regional cortical thinning. (F) Annual change in thickness across the isthmus 1020 
cingulate and parahippocampal cortex in relation to age. 1021 
 1022 
Figure 3. Spatiotemporal coupling between cortical thickness and WMH. 1023 
We employed longitudinal BLGCMs to characterise the spatiotemporal interrelation between lobar 1024 
WMH and regional cortical thickness over the span of four years—one model for each pair. We 1025 
adjusted latent intercepts and slopes for age, sex, years of education, total cardiovascular risk scores, 1026 
and TICV. We applied FDR correction to account for multiple comparisons. In regions highlighted in 1027 
red, we found a statistically significant covariance between latent growth curve parameters after FDR 1028 
correction (���� � 0.05). (A; intercept – intercept covariance). Individuals with larger baseline WMH 1029 
volumes had lower mean cortical thicknesses over the entire brain. (B; WMH intercept – thickness 1030 
slope covariance) Individuals who underwent a steeper decrease in the thickness of their cingulate 1031 
cortices had larger WMH volumes across the frontal, parietal, and occipital lobes. (C; thickness 1032 
intercept – WMH slope covariance). Individuals with thicker cingulate cortices at baseline, particularly 1033 
at the level of the isthmus, experienced a slower progression in parietal WMH volumes compared to 1034 
those with thinner cortices. Also, those with initially thicker precentral, insular, and rostral anterior 1035 
cingulate cortices had a slower progression in occipital WMH volumes. (D; slope – slope covariance) 1036 
Slope-slope covariances did not survive FDR correction. However, a rapid increase in frontal, parietal, 1037 
and temporal WMH volumes was, in general, associated with accelerated cortical thinning across 1038 
multiple brain regions (Figure S1). Associations with temporal WMH volumes did not survive FDR 1039 
correction and, thus, we excluded them from the plot. The uncorrected version of the figure is 1040 
available in Supplementary Material. 1041 
 1042 
Figure 4. Peak intercept-slope and slope-slope asociations. 1043 
(A) Average trajectories of cortical thickness and WMH trajectories over the course of four years, 1044 
stratified by latent WMH and cortical thickness intercepts, respectively. We plotted here the four 1045 
strongest intercept-slope associations, according to Figure 3B and C. We categorised individuals 1046 
based on whether their latent intercepts were below the 33rd or above the 66th percentile, 1047 
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respectively. We then estimated the average trajectories for each of these groups. We back-1048 
transformed all predicted measurements to plotting for interpretability purposes. Solid and dashed 1049 
lines depict the predicted average trajectories for these groups. Shadowed areas represent 1050 
confidence intervals. (A.1) On average, the reduction in anterior cingulate cortex thickness among 1051 
individuals with high frontal WMH volumes would be twice as large as among those with low WMH 1052 
volumes (0.069 mm vs 0.029 mm in four years). Likewise, the decrease in thickness across the 1053 
superior temporal cortices among individuals with high frontal WMH volumes would be approximately 1054 
1.5 times greater than that observed in those with low WMH volumes (0.021 mm vs 0.013 mm over 1055 
four years). (A.2) On average, parietal WMH volume increases among individuals with thick isthmus 1056 
cingulate cortices would be half as large as that observed in those with thin ones (0.146 ml vs 0.294 1057 
ml over four years). Similarly, occipital WMH volume increases across the among individuals with thin 1058 
anterior cingulate cortex would be approximately four times greater than those observed in those with 1059 
thick ones (0.108 ml vs 0.026 ml in four years). (B) Individuals with faster frontal WMH progression 1060 
tended to have faster cortical thinning over time, especially in the caudal middle frontal, paracentral, 1061 
posterior cingulate, and superior frontal cortex. 1062 
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Figure 1. 2 
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Figure 2.  5 
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Figure 3.  8 
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Figure 4.  10 
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