Modifiable Risk Factors for Stroke, Dementia, and Late-Life Depression: A Systematic Review and DALY Weighted Risk Factors for a Composite Outcome ================================================================================================================================================== * Jasper R. Senff * Reinier W.P. Tack * Akashleena Mallick * Leidys Gutierrez-Martinez * Jonathan Duskin * Tamara N. Kimball * Zeina Chemali * Amy Newhouse * Christina Kourkoulis * Cyprien Rivier * Guido J Falcone * Kevin N Sheth * Ronald M Lazar * Sarah Ibrahim RN * Aleksandra Pikula * Rudolph E. Tanzi * Gregory Fricchione * H. Bart Brouwers * Gabrël J.E. Rinkel * Nirupama Yechoor * Jonathan Rosand * Christopher D. Anderson * Sanjula D. Singh ## Abstract **Background** At least 60% of stroke, 40% of dementia, and 35% of late-life depression (LLD) are attributable to modifiable risk factors, with great overlap due to a shared underlying pathophysiology. This study aims to systematically identify overlapping risk factors for these diseases and calculate their relative impact on a composite outcome. **Methods** A systematic literature review was performed in Pubmed, Embase, and PsycInfo, between January 2000 and September 2023. We included meta-analyses reporting effect sizes of modifiable risk factors on the incidence of stroke, dementia, and/or LLD. The most relevant meta-analyses were selected, and Disability Adjusted Life Year (DALY) weighted beta-coefficients were calculated for a composite outcome. The beta-coefficients were then normalized to assess relative impact. **Results** Our search yielded 182 meta-analyses meeting the inclusion criteria, of which 59 were selected to calculate DALY-weighted risk factors for a composite outcome. Identified risk factors included alcohol use (normalized beta-coefficient highest category: -20), blood pressure (87), BMI (42), fasting plasma glucose (57), total cholesterol (14), leisure time cognitive activity (-54), depressive symptoms (34), diet (27), hearing loss (35), kidney function (60), pain (25), physical activity (-34), purpose in life (-30), sleep (44), smoking (58), social engagement (32), and stress (32). **Discussion** This study identified overlapping modifiable risk factors and calculated the relative impact of these factors on the risk of a composite outcome of stroke, dementia, and LLD. These findings could guide preventative strategies and serve as an empirical foundation for future development of tools that can empower people to reduce their risk of these diseases. **Funding** US National Institutes of Health and American Heart Association. ## Introduction Neurological disorders are the leading cause of disability-adjusted life years (DALYs) worldwide1. This is largely contributed by stroke (>143 million DALYs), dementia (>25 million DALYs), and depression (>37 million DALYs)2. Research indicates that at least 60% of strokes, 40% of dementia, and 35% of late-life depression (LLD) cases could be prevented or slowed down toward the limit of human life span through adequate risk factor control3–6. Epidemiological studies demonstrate that risk factors such as blood pressure, blood sugar, cholesterol, diet, body mass index (BMI), physical activity, smoking, and social isolation are shared among these age-related brain diseases1,7–10. This overlap in risk factors is, at least partially, attributable to the shared underlying pathophysiology of neurodegenerative and cerebrovascular disease, including cerebral small vessel disease (CSVD) – with multifaceted impact on cerebral circulation and brain integrity11,12. Evidence-based tools, such as models or scores, can empower, educate, and motivate both patients and practitioners to facilitate behavioral changes that reduce modifiable risk factors for age-related brain diseases13. However, the currently available tools that address modifiable risk factors have limitations. Most existing tools for dementia, stroke, and LLD mostly focus on risk stratification of individual brain diseases 14–23 or together with cardiovascular disease10, lacking a holistic approach that addresses the shared underlying pathophysiology. In line with the recommendations of the American Heart Association (AHA) and the American Academy of Neurology (AAN)10,24,25, there is a need to develop, optimize, and implement novel and practical tools that address modifiable risk factors to substantiate preventive neurology in both primary care and specialized medical care worldwide. While there are overlapping risk factors for stroke, dementia, and LLD, these factors have varying impacts on each disease1,7–10 To develop effective tools for addressing age-related brain diseases holistically, it is crucial to first understand how overlapping risk factors differentially impact the incidence and burden (expressed in DALYs) of these diseases, which is currently a gap in the available literature. Therefore, this study aims to identify overlapping risk factors, obtain the most relevant effect sizes, and calculate their DALY-weighted effect on a composite outcome of stroke, dementia, and LLD. ## Methods ### Study design The study design, registered in PROSPERO (identifier: CRD42023476939), is illustrated in Figure 1. The systematic review of the literature was conducted in line with the Joanna Briggs Institute and PRISMA guidelines26,27. The search design was based on a PEO (Population, Exposure, Outcome) format28. ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/07/08/2024.07.08.24309905/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2024/07/08/2024.07.08.24309905/F1) Figure 1: Study Design ### Systematic review of risk models: identifying overlapping risk factors One authors (JRS) searched PubMed and Embase from January 2000 to July 2023 (Table S1). Inclusion criteria were: (i) indexed reviews, guidelines, development, and validation studies, (ii) studies describing risk models for stroke, dementia, and/or LLD, (ii) models validated with a predictive value with a c-statistic of ≥0.7029, and (iii) models including modifiable risk factors. We included the most recently validated iteration of any model. Exclusion criteria were: (i) models made for a disease-specific population (e.g., stroke risk in patients with atrial fibrillation) and (ii) machine learning models30. Data extraction included author, publication year, model details, cohort details, statistical analysis, risk factors, and outcomes. We selected modifiable risk factors overlapping in at least two diseases for the systematic review of meta-analyses. ### Systematic review of meta-analyses: obtaining effect sizes of individual diseases per risk factor #### Search strategy A search was conducted in PubMed, Embase, and PsycInfo between January 2000 and September 2023, by two authors: JRS and RWPT (Table S2). Included exposures were the modifiable risk factors previously identified. The outcomes were defined as the incidence of all cause-dementia (including Alzheimer’s disease, vascular dementia, and/or all dementia), stroke (including both ischemic and hemorrhagic stroke) and/or LLD. Both authors performed title and abstract screening and full-text analyses independently from each other. Disagreements were resolved in a consensus meeting with a third reviewer (SDS). The study selection was performed using Covidence (Covidence Systematic Review Software Veritas Health Innovation, Melbourne, Australia)31. #### Inclusion- and exclusion criteria The inclusion criteria were: (i) meta-analyses of observational studies, (ii) written in English, (iii) describing a disease-risk factor relationship expressed as an effect size (Relative Risk [RR], Odds Ratio [OR] or Hazard Ratio [HR]), and (iv) risk factors defined as a dichotomized or categorical variable. Restriction to meta-analyses ensured a well-powered and feasible overview of the current literature32, while restriction to dichotomized or categorized ensured clinical applicability33. For the dietary components, we included factors as stated (either recommended or contraindicated) by the AHA and the Dietary Approaches to Stop Hypertension (DASH)10,34. Our exclusion criteria included: (i) disease-specific populations (e.g., patients with atrial fibrillation) (ii) treatments (e.g., cholesterol levels in statin treatment), and (iii) composite outcomes (e.g., cardiovascular disease instead of stroke) or subtypes of the outcomes (e.g., ischemic stroke only). #### Data extraction Data extract was performed by one of two authors, JRS and RWPT. Extracted data included first author, year of publication, exposure definition, outcome definition, effect size including 95% confidence interval (CI), number of included studies in meta-analyses, total sample size, number of outcomes, level of heterogeneity (I2), risk of bias (ROB) tool (e.g., Newcastle-Ottawa Scale), ROB assessment, and publication bias (Egger’s test, Begg’s test, funnel plot). #### Study selection to identify the most relevant effect sizes Study selection to identify the most relevant effect sizes was performed by two authors (JRS and RWPT) individually. Disagreements were resolved in a consensus meeting. For each factor, the most recent meta-analysis was included. Exceptions were made if an earlier meta-analysis had a sample size at least 20% larger. If two meta-analysis had similar sample size selection was based on a difference in quality assessed through heterogeneity level, ROB assessment, and publication bias. The initial selection was based on studies that reported RR. If no studies reporting RR were available, studies reporting HR, or if not available OR, were selected. ### DALY weighted risk factors for a composite outcome #### Risk factor definition Risk factors cut-offs aligned with the AHA guidelines and Life’s Essential 8 where available10. ### Statistical Analysis Table S4 shows the statistical methodology. To standardize effect sizes and corresponding 95% confidence interval (CI) we transformed HR and OR to RR based on the disease-specific incidence rates (r)35. We obtained disease-specific DALYs using the most recent incidence rates from the Global Burden of Disease study 2019 : “Stroke” (157.99 per 100,000), “Alzheimer diseases and other related dementias” (93.52 per 100,000), and “Major Depressive Disorder” (3551.60 per 100,000)2. To calculate weighted effect size for a composite outcome of stroke, dementia, and LLD, the relative risks with corresponding 95% CI for each risk factor category were weighted according to their attributed burden, expressed in DALYs (stroke: 5.654%, dementia: 0.997%, LLD: 1.461%)2. If there was no effect size for a certain disease-risk factor relationship, the disease was not included in the weighting. The relative risks that remained significant after calculating the composite effect size were log transferred into beta (p) coefficients. To enhance interpretation and assess the relative impact of the risk factors on a composite outcome, we normalized the beta-coefficient. The lowest /’5-coefficient was normalized to 1, scaling all other /’5-coefficients by the same factor15. ## Results ### Systematic review of risk models: Identification of overlapping modifiable risk factors In total, 37 articles describing 54 risk models met inclusion criteria (Figure S1). Of the models, 36 (67%) were on stroke, 16 (30%) on dementia, and two (4%) for LLD; none addressed a composite outcome. Table S4 provides an overview of the included models.. The models identified 18 modifiable factors that overlapped in at least two outcomes: (1) alcohol consumption, (2) blood pressure, (3) body mass index (BMI), (4) blood sugar, (5) cholesterol, (6) cognitive activity, (7) depressive symptoms, (8) diet, (9) hearing impairment, (10) kidney function, (11) pain, (12) physical activity, (13) self-rated health, (14) sense of belonging, (15) sleep, (16) smoking, (17) social engagement, and (18) stress. ### Systematic review of meta-analyses: obtaining effect sizes of individual diseases per risk factor Subsequently, our systematic review of meta-analyses yielded 182 articles that met our predefined criteria, encompassing 426 effect sizes (stroke N=260 [61%], dementia N=157 [37%], LLD N=9 [2%]) on 17 modifiable risk factors (Figure 2). Reported effect size metrics were RRs (N=280 [66%]), HRs (N=111 [26%]) and ORs (N=35 [8.2%]). All studies that met our criteria are publicly available at [https://www.zotero.org/groups/5402286/sroma/collections/PY6XGESM](https://www.zotero.org/groups/5402286/sroma/collections/PY6XGESM). ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/07/08/2024.07.08.24309905/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2024/07/08/2024.07.08.24309905/F2) Figure 2: Prisma flowchart of the systematic review of meta-analyses. #### Overview of meta-analyses ##### Alcohol Seven meta-analyses described alcohol intake as a risk factor. For stroke incidence, effect sizes ranged from 0.80 (95%CI:0.72-0.90) – 0.89 (95%CI:0.76-1.06) for low alcohol intake (<15 gr/day), 0.79 (95%CI:0.69-0.91) – 1.10 (95%CI:0.97-1.24) for moderate alcohol intake (15-30 gr/day), and 1.19 (95%CI:0.93-1.52) – 1.64 (95%CI:1.39-1.93) for heavy alcohol intake (>30 gr/day) (reference no alcohol intake)36–40. For dementia incidence, effect sizes ranged from 0.74 (95%CI:0.61-0.91) – 0.75 (95%CI:0.51-1.11) for low-, 0.58 (95%CI:0.38-0.90) – 0.74 (95%CI:0.61-0.91) for moderate-, and 1.00 (95%CI:0.39-2.59) – 1.84 (95%CI:1.01-3.34) for heavy alcohol intake41,42. No meta-analyses were found that assessed the relationship between alcohol intake and LLD incidence. ##### Blood Pressure Twelve meta-analyses described blood pressure as a risk factor. For stroke incidence, effect sizes ranged from 1.22 (95%CI:0.95-1.57) – 1.66 (95%CI:1.51-1.81) for low pre-hypertension (120-129/80-84mmHg), 1.79 (95%CI:1.49-2.16) – 1.95 (95%CI:1.73-2.21) for high pre-hypertension (130-139/85-80 mmHg) and 2.23 (95%CI:2.01-2.48) – 10.92 (95%CI:7.07-16.86) for hypertension (>140/90 mmHg) (reference blood pressure < 120/80 mmHg)36,43–48. For dementia incidence, effect sizes for hypertension ranged from 0.98 (95%CI:0.72-1.33) – 1.41 (95%CI:1.23-1.62)49–52. No meta-analyses were found that assessed the relationship blood pressure and LLD incidence. ##### Body Mass Index Fifteen meta-analyses described BMI as a risk factor. For stroke incidence, the effect size for underweight (<18.5 kg/m2) was 0.93 (95%CI:0.82-1.06), for overweight (25-29.9 kg/m2) it ranged from 1.18 (95%CI:0.98-1.42) - 2.01 (95%CI:1.65-2.47), and for obesity (≥30kg/m2) it ranged from 1.16 (95%CI:1.01-1.35) - 1.47 (95%CI:1.02-2.11) (reference BMI ranging 18.5-25kg/m2)36,47,48,53,54. For dementia incidence, the effect sizes for underweights ranged from 0.92 (95%CI:0.74-0.92) - 1.42 (95%CI:1.12-1.80), for overweight from 0.82 (95%CI:0.74-0.92) - 1.26 (95%CI:1.1-1.44), and for obesity from 0.78 (95%CI:0.70-0.86) - 1.79 (95%CI:1.31-2.41)50,51,55–62. No meta-analyses were found that assessed the relationship BMI and LLD incidence. ##### Blood Sugar Six meta-analyses described blood sugar as a risk factor. For stroke incidence, effect sizes ranged from 1.08 (95%CI:0.94-1.23) - 1.21 (95%:1.02-1.44) for prediabetic blood sugar levels (fasting plasma glucose [FPG] 100-126 mg/dL), and from 1.79 (95%CI:1.68-1.91) -2.15 (95%CI:1.76-2.63) for diabetic blood sugar levels (FPG >126 mg/dL) (reference FPG <100 mg/dL)36,63–65. For dementia incidence, effect sizes ranged from 0.72 (95%CI:0.56-0.92) -1.22 (95%CI:1.06-1.41) for prediabetic blood sugar levels, and from 1.21 (95%CI:1.06-1.37) - 1.49 (95%CI:1.10-2.03) for diabetic blood sugar levels51,66. No meta-analyses were found that assessed the relationship blood sugar and LLD incidence. ##### Cholesterol Fifteen meta-analyses described cholesterol as a risk factor. For stroke incidence, effect sizes ranged from 0.99 (95%CI:0.87-1.12) – 1.14 (95%CI:1.03-1.27) for high total cholesterol, and was 1.09 (95%CI:0.85-1.39) for low-density lipoprotein (LDL) (reference lowest quartiles cholesterol level)36,43,47,48,67–71. For dementia incidence, effect sizes ranged from 1.03 (95%CI:0.74-1.43) – 1.82 (95%CI:1.27-2.6) for high total cholesterol50,51,56,72,73. For LLD, the effect size for the presence of dyslipidemia was 1.08 (95%CI:0.91-1.28)74. ##### Cognitive activity One meta-analysis described cognitive activity as a risk factor for dementia incidence, with an effect size of 0.61 (95%CI:0.42-0.90) (reference no cognitive activity)75. No meta-analyses were found that assessed the relationship cognitive activity and stroke or LLD incidence. ##### Depressive symptoms One meta-analysis described depressive symptoms as a risk factor for stroke incidence, with an effect size of 1.36 (95%CI1.13-1.51) (reference no depressive symptoms)76. No meta-analyses were found that assessed the relationship depressive symptoms and dementia or LLD incidence. ##### Diet For stroke, a meta-analysis was included for all 11 dietary components77–87. For dementia, meta-analyses for dairy, fish, sugar-sweetened beverages and saturated fats intake were retrieved and included88–91. No meta-analyses were found that assessed the relationship diet and LLD incidence. ##### Hearing loss Three meta-analyses described hearing loss as an risk factor. The effect size was 1.33 (95%CI:1.18-1.49) for stroke92, 1.59 (95%CI:1,37-1.86) for dementia93, and 1.47 (95%CI:1.31-1.65) for LLD incidence (reference no hearing loss)94. ##### Kidney Function Four meta-analyses described kidney function as a risk factor. For stroke incidence, the effect size ranged from 1.07 (95%CI:0.98-1.17) - 1.10 (95%CI:1.03-1.19) for mild-, was 1.43 (95%CI:1.33-1.54) for moderate-(eGFR 30-60mL/min/1.73m2) and 1.70 (95%CI:1.47-1.96) for severe kidney disease (eGFR <30mL/min/1.73m2) (reference eGFR ≥90mL/min/1.73min2)36,95,96. For dementia incidence, the effect size was 1.14 (95%CI:1.06-1.22) for mild-, 1.31 (95%CI:0.92-1.87) for moderate-, and 1.91 (95%CI:1.21-3.01) for severe kidney disease97. No meta-analyses were found that assessed the relationship depressive symptoms and LLD incidence. ##### Pain One meta-analysis described the pain as a risk factor for dementia incidence, with an effect size of 1.26 (95%CI:1.18-1.35) (reference no pain)98. No meta-analyses were found that assessed the relationship pain and stroke or LLD incidence. ##### Physical activity Eleven meta-analyses described physical activity as a risk factor. For stroke incidence, effects sizes for a moderate level of physical activity ranged from 0.64 (95%CI:0.48-.0.87) – 0.85 (95%CI:0.78-0.93), and was 0.73 (0.67-0.79) for a high level of physical activity (reference low level of physical activity) 43,99–101. For dementia incidence, effect sizes for a moderate level of physical activity ranged from 0.76 (95%CI:0.61-0.94) – 0.80 (95%CI:0.67-0.94), and from 0.63 (95%CI:0.45-0.89) – 0.80 (95%CI:0.77-0.84) for a high level of physical activity51,101–106. No meta-analyses were found that assessed the relationship physical activity and LLD incidence. ##### Purpose in life Three meta-analyses described purpose in life as a risk factor for dementia107–109, with effect sizes ranging from 0.76 (95%CI:0.72-0.79) – 0.81 (95%CI:0.78-0.85) (reference no purpose in life)107–109. No meta-analyses were found that assessed the relationship purpose in life and stroke or LLD incidence. ##### Sleep Fourteen meta-analyses described sleep as a risk factor. For stroke incidence, the effect sizes of short sleep (≤6 hours) ranged from 1.00 (95%CI:0.97-1.24) – 1.71(95%CI:1.39-2.02), for long sleep (≥8 hours) it ranged from 1.12 (95%CI:1.01-1.24) – 2.12 (95%CI:1.51-2.73), and for insomnia the effect size was 1.55 (95%CI:1.39-1.72) (reference 6-8 hours of sleep)36,110–117. For dementia incidence, the effect size for long sleep was 1.77 (95%CI:1.32-2.37), for short sleep 1.20 (95%CI:0.91-1.59), for insomnia it ranged 1.17 (95%CI 0.95-1.43) – 1.53 (95%CI:1.07-2.18), and for sleep disturbance, it was 1.19 (95%CI1.11-1.29)118–120. For LLD, the effect sizes for sleep disturbance ranged from 1.2 (95%CI:0.80-1.70) – 1.82 (95%CI:1.69-1.97)121,122. ##### Smoking Fifteen meta-analyses described smoking as a risk factor. For stroke incidence, the effect sizes ranged from 1.08 (95%CI:1.03-1.13) – 1.30 (95%CI:0.93-1.81) for former smokers, and from 1.31 (95%CI:1.20-1.43) – 1.84 (1.72-.198) for current smokers (reference never smoked)36,43,47,48,123–126. For dementia incidence, the effect sizes ranged from 0.99 (95%CI:0.81-1.21) – 1.01 (95%CI:0.96-1.06) for former smokers, and from 1.27 (95%CI:1.02-1.60) – 1.30 (95%CI:1.18-1.45) for current smokers 50,51,56,127–129. For LLD, the effect size for current smoking was 1.35 (95%CI:1.00-1.81)74. ##### Social Engagement Seven meta-analyses described social engagement as a risk factor. For stroke incidence, the effect size for social isolation/loneliness was 1.32 (95%CI:1.04-1.68), and 0.77 (95%CI: 0.57-1.04) for having a larger social network (reference not being lonely / small social network)130,131. For dementia incidence, the effect size for social isolation/loneliness ranged from 1.23 (95%CI:1.16-1.31) – 1.58 (95%CI0.80-3.12), and was 0.81 (95%CI:0.74-0.89) for having a larger social network132–136. No meta-analyses were found that assessed the relationship social engagement and LLD incidence. ##### Stress Two meta-analyses described stress as a risk factor. For stroke incidence, the effect size was 1.33 (95%CI:1.17-1.50) (reference no perceived stress)137. For dementia incidence, the effect size was 1.44 (95%CI:1.07-1.95)138. No meta-analyses were found that assessed the relationship stress and LLD incidence. ### Study selection to identify the most relevant effect sizes Of 182 meta-analyses that met the inclusion criteria, 59 were selected to calculate DALY-weighted risk factors for a composite outcome. An overview of the selected studies is presented in Table 1, with the reasoning for selection detailed in Table S5. Study characteristics are reported in Table S6. View this table: [Table 1:](http://medrxiv.org/content/early/2024/07/08/2024.07.08.24309905/T1) Table 1: Selected studies and identification of the most relevant effect size ### DALY weighted risk factors for a composite outcome The calculalted DALY weighted effect sizes for each risk factors are presented in Table 2 and Figure 3 (intermediate calculations Table S7). Highest risk of age-related brain disease were found in hypertension, with a normalized beta of 87 and severe kidney disease (eGFR<30 ml/min/1.73m2), with a normalized beta of 60. The highest protective effect sizes were found in leisure time cognitive activity, with a normalized beta of -54 and high levels of physical activity with a normalized beta of - 34 (Figure 4). ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/07/08/2024.07.08.24309905/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2024/07/08/2024.07.08.24309905/F3) Figure 3: Effect sizes for stroke, dementia, LLD and a composite outcome. Abbreviations: BMI: body mass index, dL: deciliter, eGFR: estimated glomerular filtration rate, F: female, FPG: fasting plasma glucose, KG: kilograms, LLD: late-life depression, LDL: low density lipoprotein, M: male, m: meters, mg: milligram, min: minutes, mmHg: millimeters mercury. SSB: sugar sweetened beverages. ![Figure 4:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/07/08/2024.07.08.24309905/F4.medium.gif) [Figure 4:](http://medrxiv.org/content/early/2024/07/08/2024.07.08.24309905/F4) Figure 4: Normalized beta-coefficients for a composite outcome Abbreviations: dL: deciliter, eGFR: estimated glomerular filtration rate, F: female, FPG: fasting plasma glucose, LL: late-life, M: male, m: meters, mg: milligram, ML: midlife min: minutes, mmHg: millimeters mercury. View this table: [Table 2:](http://medrxiv.org/content/early/2024/07/08/2024.07.08.24309905/T2) Table 2: DALY weighted effect sizes for a composite outcome ## Discussion This study identified 18 overlapping modifiable risk factors for stroke, dementia, and LLD and calculated their relative impacts on a composite outcome using DALY-weighted beta-coefficients. By analyzing data from two systematic reviews, we weighted these risk factors according to their contribution to the burden of age-related brain diseases. This approach provided a comprehensive understanding of the relative impacts of each risk factor on the risk of a composite outcome of age-related brain disease. When assessing individual components, hypertension was the factor with the highest individual weight. This is mainly attributable to the well-established significant association between stroke and hypertension3,139, and is reinforced by our methods’ DALY-based weighting system, which assigns greater impact to stroke compared to dementia or LLD140. Cholsterol showed limited weight with no significant LDL effect. We focused on all strokes, not distinguishing between ischemic and hemorrhagic types, which might have attenuated the effect due to the contradicting impact of cholesterol levels across stroke subtypes141. Additionally, excluding meta-analysis on specific treatmens or dose-responses limited available cholesterol studies. We also revealed substantial weights of leisure time cognitive activities, purpose in life, and absence of social isolation. These weights are mainly due to their association with dementia, where reverse causality may play a significant role142. Further, long sleep duration emerged as a major risk factor, potentially due to its relationship with possible confounders such as obesity, hypertension, and diabetes or due to reverse causality or confounding by aging. We focused on individual dietary elements as outlined by AHA Life’s Essential 8 and the DASH diet. While we did not explore the complex interplay between these dietary components118,143,144, there could be an overestimation of the weights of diet if combined in a future tool that builds on the results of our analysis145. Furthermore, dietary comparisons were often made between the highest and lowest quartiles, limiting the clinical applicability. Pain showed a significant effect on dementia risk, likely due to the direct effects of pain and the associated reduction in physical activity98, as well as possible reverse causality146. Finally, depression was included in our analysis not only as an outcome but also as a risk factor due to its bidirectional associations with vascular brain disease 147. Depressive symptoms showed an increased risk of stroke, which might be due to both immunological and inflammation effects148, as well as its association with poor health behaviors such as smoking and physical inactivity149. As we did not include disease-specific populations, we did not access the associations of post-stroke and post-dementia depression150,151. Some limitations should be considered when interpreting our results. First, we only included overlapping risk factors across the three age-related brain diseases, thereby possibly excluding important modifiable risk factors for an individual disease, such as personality attributes and maladaptive thoughts and behaviors for LLD152. However, emerging evidence shows similarities in the biological pathology of dementia, stroke, and LLD, particularly due to small vessel disease - which subsequently has overlapping modifiable risk factors3,9,153. Second, potential interactions between risk factors, such as interactions or collinearity, were not considered143,154. Third, variations in definitions across different meta-analyses were encountered during our weighted risk factor calculations, which limited our use of these categorizations. Fourth, the potential for bias (including reverse causality, particularly important for dementia with its extended prodromal stages) and confounding presents a significant challenge and may have influenced the effect sizes155. Fifth, we limited inclusion criteria to articles written in English. Finally, the limited amount of published meta-analyses on LLD risk factors could affect our risk factor weight calculations’ overall comprehensiveness, and representativeness. Given the limited meta-analyses on modifiable risk factors for LLD, future research should prioritize producing high-quality meta-analyses in this area. The overlap in modifiable risk factors presents an opportunity to simultaneously reduce the risk of stroke, dementia, and LLD. Developing holistic tools or models that effectively address these factors could facilitate the prevention and management of age-related brain diseases10,24,25. This study provided insights into the relative impact of modifiable risk factors, filling a critical gap in the literature necessary for building such comprehensive tools or models. Future research can use our findings as an empirical foundation for building such tools. Future studies should explore certain areas that our current calculations have not fully resolved, to enhance the development of a tool or model ready for validation. These areas include assessing the utility and feasibility of the findings, which should incorporate an evaluation of social determinants of health, as well as refining the calibration process. These shortcomings could be addressed in a Delphi process156, ensuring the development of a comprehensive tool that leverages all available evidence to empower, educate, and motivate patients and practitioners to adopt lifestyle changes and reduce the risk of stroke, dementia, and LLD13. ## Conclusion In this study, we systematically identified overlapping modifiable risk factors and calculated the relative impact of these factors on the risk of a composite outcome of stroke, dementia, and depression. These findings could guide preventative strategies and could serve as an empirical foundation for future development of tools that can empower people to change modifiable risk factors associated with these diseases. ## Supporting information Supplementary Material [[supplements/309905_file03.docx]](pending:yes) ## Data Availability This manuscript only utilized previously published data. All data employed in this study, including the intermediate calculations, are comprehensively presented in the supplementary tables accompanying this manuscript. Should there be any inquiries or requests for further clarification regarding the data, please contact the corresponding author. [https://www.zotero.org/groups/5402286/sroma/collections/PY6XGESM](https://www.zotero.org/groups/5402286/sroma/collections/PY6XGESM) ## Disclosures C.D.A. receives sponsored research support from the US National Institutes of Health, the American Heart Association, and Bayer AG, and has consulted for ApoPharma. M.C. is supported by the Wellcome Trust [grant number 205339/Z/16/Z]. JR receives sponsored research support from the US National Institutes of Health and the American Heart Association, receives payments for consulting and expert testimony from the National Football League, consulting for Eli Lilly, and has a leadership or fiduciary role at Columbia University and Lancet Neurology. G.F. receives sponsored research support from the National Institute of Mental Health Clinical Global Mental Health Research T32 Fellowship, receives royalties or licenses from Johns Hopkins University Press, University of Chicago Press, Belvoir Press, and the American Psychiatric Press, is on a Data Safety Monitoring Board or Advisory Board of Healthy Hearts Healthy Minds DSMB, is a Board of Directors member at the Rosalynn Carter Institute, and has stock or stock options from Revival Therapeutics Consultant. ## Data sharing statement This manuscript only utilized previously published data. All data employed in this study, including the intermediate calculations, are comprehensively presented in the supplementary tables accompanying this manuscript. Should there be any inquiries or requests for further clarification regarding the data, please contact the corresponding author. ## Acknowledgment Funding: US National Institutes of Health and American Heart Association. * Received July 8, 2024. * Revision received July 8, 2024. * Accepted July 8, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## References 1. 1.Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–480. doi:10.1016/S1474-4422(18)30499-X [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1474-4422(18)30499-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 2. 2.Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019). Seattle, United States: Institute for Health Metrics and Evaluation (IHME). Published online 2020. 3. 3.Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. doi:10.1016/S1474-4422(21)00252-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1474-4422(21)00252-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 4. 4.Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153-e639. doi:10.1161/CIR.0000000000001052 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/CIR.0000000000001052&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35078371&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 5. 5.Zenebe Y, Akele B, W/Selassie M, Necho M. Prevalence and determinants of depression among old age: a systematic review and meta-analysis. Ann Gen Psychiatry. 2021;20(1):55. doi:10.1186/s12991-021-00375-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12991-021-00375-x&link_type=DOI) 6. 6.Chang SC, Pan A, Kawachi I, Okereke OI. Risk factors for late-life depression: A prospective cohort study among older women. Prev Med. 2016;91:144–151. doi:10.1016/j.ypmed.2016.08.014 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ypmed.2016.08.014&link_type=DOI) 7. 7.Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. doi:10.1016/S1474-4422(21)00252-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1474-4422(21)00252-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 8. 8.Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9(2):137–150. doi:10.1016/S2215-0366(21)00395-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2215-0366(21)00395-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35026139&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 9. 9.Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–446. doi:10.1016/S0140-6736(20)30367-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)30367-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32738937&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 10. 10.Lloyd-Jones DM, Allen NB, Anderson CAM, et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation. 2022;146(5):e18–e43. doi:10.1161/CIR.0000000000001078 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/cir.0000000000001078&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 11. 11.Empana JP, Boutouyrie P, Lemogne C, Jouven X, van Sloten TT. Microvascular Contribution to Late-Onset Depression: Mechanisms, Current Evidence, Association With Other Brain Diseases, and Therapeutic Perspectives. Biological Psychiatry. 2021;90(4):214–225. doi:10.1016/j.biopsych.2021.04.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2021.04.012&link_type=DOI) 12. 12.Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: A clinical review. Neurology. 2019;92(24):1146–1156. doi:10.1212/WNL.0000000000007654 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1212/WNL.0000000000007654&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 13. 13.Singh SD, Gutierrez-Martinez L, Newhouse A, Sonni A, Chemali Z, Rosand J. Brain health begins with brain care. Lancet Neurol. 2022;21(11):961–962. doi:10.1016/S1474-4422(22)00397-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1474-4422(22)00397-0&link_type=DOI) 14. 14.Schiepers OJG, Köhler S, Deckers K, et al. Lifestyle for Brain Health (LIBRA): a new model for dementia prevention. Int J Geriatr Psychiatry. 2018;33(1):167–175. doi:10.1002/gps.4700 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/gps.4700&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28247500&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 15. 15.Anstey KJ, Cherbuin N, Herath PM. Development of a new method for assessing global risk of Alzheimer’s disease for use in population health approaches to prevention. Prev Sci. 2013;14(4):411–421. doi:10.1007/s11121-012-0313-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11121-012-0313-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 16. 16.D’Agostino RB, Wolf PA, Belanger AJ, Kannel WB. Stroke risk profile: adjustment for antihypertensive medication. The Framingham Study. Stroke. 1994;25(1):40–43. doi:10.1161/01.str.25.1.40 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjc6IjI1LzEvNDAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8wNy8wOC8yMDI0LjA3LjA4LjI0MzA5OTA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 17. 17.Cattelani L, Murri MB, Chesani F, Chiari L, Bandinelli S, Palumbo P. Risk Prediction Model for Late Life Depression: Development and Validation on Three Large European Datasets. IEEE J Biomed Health Inform. 2019;23(5):2196–2204. doi:10.1109/JBHI.2018.2884079 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/JBHI.2018.2884079&link_type=DOI) 18. 18.Hippisley-Cox J, Coupland C, Brindle P. Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study. BMJ. 2013;346:f2573. doi:10.1136/bmj.f2573 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNDYvbWF5MDJfMS9mMjU3MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 19. 19.Xing X, Yang X, Liu F, et al. Predicting 10-Year and Lifetime Stroke Risk in Chinese Population. Stroke. 2019;50(9):2371–2378. doi:10.1161/STROKEAHA.119.025553 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/STROKEAHA.119.025553&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 20. 20.Qiao Q, Gao W, Laatikainen T, Vartiainen E. Layperson-oriented vs. clinical-based models for prediction of incidence of ischemic stroke: National FINRISK Study. Int J Stroke. 2012;7(8):662–668. doi:10.1111/j.1747-4949.2011.00692.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1747-4949.2011.00692.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22098944&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 21. 21.Fisher S, Hsu A, Mojaverian N, et al. Dementia Population Risk Tool (DemPoRT): study protocol for a predictive algorithm assessing dementia risk in the community. BMJ Open. 2017;7(10):e018018. doi:10.1136/bmjopen-2017-018018 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMjoiNy8xMC9lMDE4MDE4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 22. 22.Barnes DE, Beiser AS, Lee A, et al. Development and validation of a brief dementia screening indicator for primary care. Alzheimers Dement. 2014;10(6):656–665.e1. doi:10.1016/j.jalz.2013.11.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jalz.2013.11.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24491321&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 23. 23.Huque MH, Kootar S, Eramudugolla R, et al. CogDrisk, ANU-ADRI, CAIDE, and LIBRA Risk Scores for Estimating Dementia Risk. JAMA Netw Open. 2023;6(8):e2331460. doi:10.1001/jamanetworkopen.2023.31460 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamanetworkopen.2023.31460&link_type=DOI) 24. 24.Rost NS, Salinas J, Jordan JT, et al. The Brain Health Imperative in the 21st Century—A Call to Action. Neurology. 2023;101(13):570–579. doi:10.1212/WNL.0000000000207739 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibmV1cm9sb2d5IjtzOjU6InJlc2lkIjtzOjEwOiIxMDEvMTMvNTcwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 25. 25.Lazar RM, Howard VJ, Kernan WN, et al. A Primary Care Agenda for Brain Health: A Scientific Statement From the American Heart Association. Stroke. 2021;52(6):e295–e308. doi:10.1161/STR.0000000000000367 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/STR.0000000000000367&link_type=DOI) 26. 26.The Joanna Briggs Institute (2014) Joanna Briggs Institute Reviewers’ Manual. 2014 Edition, The Joanna Briggs Institute. [Http://Joannabriggs.Org/Assets/Docs/Sumari/ReviewersManual-The-Systematic-Review-of-Economic-Evaluation-Evidence-2014_v2.Pdf](http://Joannabriggs.Org/Assets/Docs/Sumari/ReviewersManual-The-Systematic-Review-of-Economic-Evaluation-Evidence-2014_v2.Pdf). 27. 27.Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1136/bmj.n71&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33782057&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 28. 28.Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med Res Methodol. 2018;18(1):5. doi:10.1186/s12874-017-0468-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12874-017-0468-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 29. 29.Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–138. doi:10.1097/EDE.0b013e3181c30fb2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/EDE.0b013e3181c30fb2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20010215&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272872900023&link_type=ISI) 30. 30.Rudin C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2019;1(5):206–215. doi:10.1038/s42256-019-0048-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s42256-019-0048-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35603010&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 31. 31.Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia. Available at [Www.Covidence.Org](http://Www.Covidence.Org). 32. 32.Haidich AB. Meta-analysis in medical research. Hippokratia. 2010;14(Suppl 1):29–37. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21487488&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 33. 33.Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43(6):1969–1985. doi:10.1093/ije/dyu149 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ije/dyu149&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25080530&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 34. 34.Filippou CD, Tsioufis CP, Thomopoulos CG, et al. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr. 2020;11(5):1150–1160. doi:10.1093/advances/nmaa041 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/advances/nmaa041&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32330233&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 35. 35.Shor E, Roelfs D, Vang ZM. The “Hispanic mortality paradox” revisited: Meta-analysis and meta-regression of life-course differentials in Latin American and Caribbean immigrants’ mortality. Social Science & Medicine. 2017;186:20–33. doi:10.1016/j.socscimed.2017.05.049 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.socscimed.2017.05.049&link_type=DOI) 36. 36.Yuan W, Wu B, Lou M, et al. Identification of Risk Factors for Stroke in China: A Meta-Analysis of Prospective Cohort Studies. Frontiers in Neurology. 2022;13 doi:10.3389/fneur.2022.847304 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fneur.2022.847304&link_type=DOI) 37. 37.Zheng YL, Lian F, Shi Q, et al. Alcohol intake and associated risk of major cardiovascular outcomes in women compared with men: a systematic review and meta-analysis of prospective observational studies. BMC Public Health. 2015;15:773. doi:10.1186/s12889-015-2081-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12889-015-2081-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26264040&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 38. 38.Zhang X, Shu L, Si C, et al. Dietary Patterns and Risk of Stroke in Adults: A Systematic Review and Meta-analysis of Prospective Cohort Studies. J Stroke Cerebrovasc Dis. 2015;24(10):2173–2182. doi:10.1016/j.jstrokecerebrovasdis.2015.05.035 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jstrokecerebrovasdis.2015.05.035&link_type=DOI) 39. 39.Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011;342:d671. doi:10.1136/bmj.d671 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE2OiIzNDIvZmViMjJfMS9kNjcxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 40. 40.Reynolds K, Lewis B, Nolen JD, Kinney GL, Sathya B, He J. Alcohol consumption and risk of stroke: a meta-analysis. JAMA. 2003;289(5):579–588. doi:10.1001/jama.289.5.579 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.289.5.579&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12578491&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000180787500029&link_type=ISI) 41. 41.Xu W, Wang H, Wan Y, et al. Alcohol consumption and dementia risk: a dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(1):31–42. doi:10.1007/s10654-017-0225-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10654-017-0225-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28097521&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 42. 42.Anstey KJ, Mack HA, Cherbuin N. Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry. 2009;17(7):542–555. doi:10.1097/JGP.0b013e3181a2fd07 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/JGP.0b013e3181a2fd07&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19546653&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000267582500002&link_type=ISI) 43. 43.Wang J, Wen X, Li W, Li X, Wang Y, Lu W. Risk Factors for Stroke in the Chinese Population: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis. 2017;26(3):509–517. doi:10.1016/j.jstrokecerebrovasdis.2016.12.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jstrokecerebrovasdis.2016.12.002&link_type=DOI) 44. 44.Lee M, Saver JL, Chang B, Chang KH, Hao Q, Ovbiagele B. Presence of baseline prehypertension and risk of incident stroke: a meta-analysis. Neurology. 2011;77(14):1330–1337. doi:10.1212/WNL.0b013e3182315234 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibmV1cm9sb2d5IjtzOjU6InJlc2lkIjtzOjEwOiI3Ny8xNC8xMzMwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 45. 45.Huang Y, Cai X, Li Y, et al. Prehypertension and the risk of stroke: a meta-analysis. Neurology. 2014;82(13):1153–1161. doi:10.1212/WNL.0000000000000268 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibmV1cm9sb2d5IjtzOjU6InJlc2lkIjtzOjEwOiI4Mi8xMy8xMTUzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 46. 46.Han M, Li Q, Liu L, et al. Prehypertension and risk of cardiovascular diseases: A meta-Analysis of 47 cohort studies. Journal of Hypertension. 2019;37(12):2325–2332. doi:10.1097/HJH.0000000000002191 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/HJH.0000000000002191&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31335511&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 47. 47.Birhanu MM, Zaman SB, Thrift AG, Evans RG, Zengin A. Risk factors for incident cardiovascular events among adults in low- and middle-income countries: A systematic review and meta-analysis of prospective cohort studies. Prev Med. 2022;158:107036. doi:10.1016/j.ypmed.2022.107036 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ypmed.2022.107036&link_type=DOI) 48. 48.Wu Y, Xiong Y, Wang P, et al. Risk factors of cardiovascular and cerebrovascular diseases in young and middle-aged adults: A meta-analysis. Medicine (Baltimore*)*. 2022;101(48):e32082. doi:10.1097/MD.0000000000032082 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MD.0000000000032082&link_type=DOI) 49. 49.Ou YN, Tan CC, Shen XN, et al. Blood Pressure and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 209 Prospective Studies. Hypertension. 2020;76(1):217–225. doi:10.1161/HYPERTENSIONAHA.120.14993 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/HYPERTENSIONAHA.120.14993&link_type=DOI) 50. 50.Li XY, Zhang M, Xu W, et al. Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies. Curr Alzheimer Res. 2019;16(14):1254–1268. doi:10.2174/1567205017666200103111253 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/1567205017666200103111253&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 51. 51.Wu J, Xiong Y, Xia X, et al. Can dementia risk be reduced by following the American Heart Association’s Life’s Simple 7? A systematic review and dose-response meta-analysis. Ageing Res Rev. 2023;83:101788. doi:10.1016/j.arr.2022.101788 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.arr.2022.101788&link_type=DOI) 52. 52.Lennon MJ, Lam BCP, Lipnicki DM, et al. Use of Antihypertensives, Blood Pressure, and Estimated Risk of Dementia in Late Life: An Individual Participant Data Meta-Analysis. JAMA Netw Open. 2023;6(9):e2333353. doi:10.1001/jamanetworkopen.2023.33353 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamanetworkopen.2023.33353&link_type=DOI) 53. 53.Strazzullo P, D’Elia L, Cairella G, Garbagnati F, Cappuccio FP, Scalfi L. Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke. 2010;41(5):e418–26. doi:10.1161/STROKEAHA.109.576967 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjk6IjQxLzUvZTQxOCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 54. 54.Riaz H, Khan MS, Siddiqi TJ, et al. Association Between Obesity and Cardiovascular Outcomes: A Systematic Review and Meta-analysis of Mendelian Randomization Studies. JAMA Netw Open. 2018;1(7):e183788. doi:10.1001/jamanetworkopen.2018.3788 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamanetworkopen.2018.3788&link_type=DOI) 55. 55.Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426–37. doi:10.1111/j.1467-789X.2010.00825.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1467-789X.2010.00825.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21348917&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000289687500041&link_type=ISI) 56. 56.Ford E, Greenslade N, Paudyal P, et al. Predicting dementia from primary care records: A systematic review and meta-analysis. PLoS One. 2018;13(3):e0194735. doi:10.1371/journal.pone.0194735 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0194735&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 57. 57.Qu Y, Hu HY, Ou YN, et al. Association of body mass index with risk of cognitive impairment and dementia: A systematic review and meta-analysis of prospective studies. Neurosci Biobehav Rev. 2020;115:189–198. doi:10.1016/j.neubiorev.2020.05.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neubiorev.2020.05.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 58. 58.Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14–21. doi:10.1093/ageing/afv151 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ageing/afv151&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26764391&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 59. 59.Loef M, Walach H. Midlife obesity and dementia: meta-analysis and adjusted forecast of dementia prevalence in the United States and China. Obesity (Silver Spring*)*. 2013;21(1):E51–5. doi:10.1002/oby.20037 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/oby.20037&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23401370&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 60. 60.Danat IM, Clifford A, Partridge M, et al. Impacts of Overweight and Obesity in Older Age on the Risk of Dementia: A Systematic Literature Review and a Meta-Analysis. J Alzheimers Dis. 2019;70(s1):S87–S99. doi:10.3233/JAD-180763 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-180763&link_type=DOI) 61. 61.Beydoun MA, Beydoun HA, Wang Y. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008;9(3):204–218. doi:10.1111/j.1467-789X.2008.00473.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1467-789X.2008.00473.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18331422&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000255061600003&link_type=ISI) 62. 62.Rahmani J, Roudsari AH, Bawadi H, et al. Body mass index and risk of Parkinson, Alzheimer, Dementia, and Dementia mortality: a systematic review and dose-response meta-analysis of cohort studies among 5 million participants. Nutr Neurosci. 2022;25(3):423–431. doi:10.1080/1028415X.2020.1758888 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/1028415X.2020.1758888&link_type=DOI) 63. 63.Shi H, Ge Y, Wang H, Zhang Y, Teng W, Tian L. Fasting blood glucose and risk of Stroke: A Dose-Response meta-analysis. Clin Nutr. 2021;40(5):3296–3304. doi:10.1016/j.clnu.2020.10.054 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.clnu.2020.10.054&link_type=DOI) 64. 64.Lee M, Saver JL, Hong KS, Song S, Chang KH, Ovbiagele B. Effect of pre-diabetes on future risk of stroke: meta-analysis. BMJ. 2012;344:e3564. doi:10.1136/bmj.e3564 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNDQvanVuMDdfMy9lMzU2NCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 65. 65.Liao HW, Saver J, Yeh HC, et al. Low fasting glucose and future risks of major adverse outcomes in people without baseline diabetes or cardiovascular disease: a systematic review and meta-analysis. BMJ Open. 2019;9(7):e026010. doi:10.1136/bmjopen-2018-026010 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMToiOS83L2UwMjYwMTAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8wNy8wOC8yMDI0LjA3LjA4LjI0MzA5OTA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 66. 66.Xue M, Xu W, Ou YN, et al. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944. doi:10.1016/j.arr.2019.100944 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.arr.2019.100944&link_type=DOI) 67. 67.Banach M, Shekoohi N, Mikhailidis DP, Lip GYH, Hernandez AV, Mazidi M. Relationship between low-density lipoprotein cholesterol, lipid-lowering agents and risk of stroke: a meta-analysis of observational studies (n = 355,591) and randomized controlled trials (n = 165,988). Archives of Medical Science. 2022;18(4):912–929. doi:10.5114/aoms/145970 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5114/aoms/145970&link_type=DOI) 68. 68.Qie R, Liu L, Zhang D, et al. Dose-Response Association Between High-Density Lipoprotein Cholesterol and Stroke: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Prev Chronic Dis. 2021;18:E45. doi:10.5888/pcd18.200278 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5888/pcd18.200278&link_type=DOI) 69. 69.Peters SA, Singhateh Y, Mackay D, Huxley RR, Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis. 2016;248:123–131. doi:10.1016/j.atherosclerosis.2016.03.016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.atherosclerosis.2016.03.016&link_type=DOI) 70. 70.Liu Y, Jin X, Fu K, et al. Non-traditional lipid profiles and the risk of stroke: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2023;33(4):698–714. doi:10.1016/j.numecd.2023.01.003 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.numecd.2023.01.003&link_type=DOI) 71. 71.Wang P, Sun J, Xie T, Lv S. Serum non-high-density lipoprotein cholesterol and risk of stroke in the general population: A meta-analysis. International Journal of Clinical and Experimental Medicine. 2018;11(3):1467–1474. 72. 72.Zhu Y, Liu X, Zhu R, Zhao J, Wang Q. Lipid levels and the risk of dementia: A dose-response meta-analysis of prospective cohort studies. Ann Clin Transl Neurol. 2022;9(3):296–311. doi:10.1002/acn3.51516 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/acn3.51516&link_type=DOI) 73. 73.Anstey KJ, Ashby-Mitchell K, Peters R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis. 2017;56(1):215–228. doi:10.3233/JAD-160826 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-160826&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 74. 74.Valkanova V, Ebmeier KP. Vascular risk factors and depression in later life: a systematic review and meta-analysis. Biol Psychiatry. 2013;73(5):406–413. doi:10.1016/j.biopsych.2012.10.028 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2012.10.028&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23237315&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000314634900005&link_type=ISI) 75. 75.Yates LA, Ziser S, Spector A, Orrell M. Cognitive leisure activities and future risk of cognitive impairment and dementia: systematic review and meta-analysis. Int Psychogeriatr. 2016;28(11):1791–1806. doi:10.1017/S1041610216001137 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S1041610216001137&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27502691&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 76. 76.Eurelings LSM, van Dalen JW, Ter Riet G, et al. Apathy and depressive symptoms in older people and incident myocardial infarction, stroke, and mortality: A systematic review and meta-analysis of individual participant data. Clinical Epidemiology. 2018;10. doi:10.2147/CLEP.S150915 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/CLEP.S150915&link_type=DOI) 77. 77.Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke. 2014;45(6):1613–1619. doi:10.1161/STROKEAHA.114.004836 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjk6IjQ1LzYvMTYxMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 78. 78.Bechthold A, Boeing H, Schwedhelm C, et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr. 2019;59(7):1071–1090. doi:10.1080/10408398.2017.1392288 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/10408398.2017.1392288&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29039970&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 79. 79.Hu H, Zhao Y, Feng Y, et al. Consumption of whole grains and refined grains and associated risk of cardiovascular disease events and all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr. 2023;117(1):149–159. doi:10.1016/j.ajcnut.2022.10.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajcnut.2022.10.010&link_type=DOI) 80. 80.Papp RE, Hasenegger V, Ekmekcioglu C, Schwingshackl L. Association of poultry consumption with cardiovascular diseases and all-cause mortality: a systematic review and dose response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2023;63(15):2366–2387. doi:10.1080/10408398.2021.1975092 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/10408398.2021.1975092&link_type=DOI) 81. 81.Mendes V, Niforou A, Kasdagli MI, Ververis E, Naska A. Intake of legumes and cardiovascular disease: A systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis. 2023;33(1):22–37. doi:10.1016/j.numecd.2022.10.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.numecd.2022.10.006&link_type=DOI) 82. 82.Shao C, Tang H, Zhao W, He J. Nut intake and stroke risk: A dose-response meta-analysis of prospective cohort studies. Sci Rep. 2016;6:30394. doi:10.1038/srep30394 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/srep30394&link_type=DOI) 83. 83.Wang Y, Zhao R, Wang B, Zhao C, Zhu B, Tian X. The Dose-Response Associations of Sugar-Sweetened Beverage Intake with the Risk of Stroke, Depression, Cancer, and Cause-Specific Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients. 2022;14(4). doi:10.3390/nu14040777 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/nu14040777&link_type=DOI) 84. 84.Rossi M, Turati F, Lagiou P, Trichopoulos D, La Vecchia C, Trichopoulou A. Relation of dietary glycemic load with ischemic and hemorrhagic stroke: a cohort study in Greece and a meta-analysis. Eur J Nutr. 2015;54(2):215–222. doi:10.1007/s00394-014-0702-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00394-014-0702-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24770867&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 85. 85.Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567. doi:10.1136/bmj.b4567 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzMzkvbm92MjRfMS9iNDU2NyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 86. 86.Kang ZQ, Yang Y, Xiao B. Dietary saturated fat intake and risk of stroke: Systematic review and dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis. 2020;30(2):179–189. doi:10.1016/j.numecd.2019.09.028 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.numecd.2019.09.028&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 87. 87.Zhang XW, Yang Z, Li M, Li K, Deng YQ, Tang ZY. Association between dietary protein intake and risk of stroke: A meta-analysis of prospective studies. Int J Cardiol. 2016;223:548–551. doi:10.1016/j.ijcard.2016.08.106 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijcard.2016.08.106&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 88. 88.Talebi S, Asoudeh F, Naeini F, Sadeghi E, Travica N, Mohammadi H. Association between animal protein sources and risk of neurodegenerative diseases: a systematic review and dose-response meta-analysis. Nutr Rev. 2023;81(9):1131–1143. doi:10.1093/nutrit/nuac114 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/nutrit/nuac114&link_type=DOI) 89. 89.Bakre AT, Chen R, Khutan R, et al. Association between fish consumption and risk of dementia: a new study from China and a systematic literature review and meta-analysis. Public Health Nutr. 2018;21(10):1921–1932. doi:10.1017/S136898001800037X [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S136898001800037X&link_type=DOI) 90. 90.Zhu RZ, Chen MQ, Zhang ZW, Wu TY, Zhao WH. Dietary fatty acids and risk for Alzheimer’s disease, dementia, and mild cognitive impairment: A prospective cohort meta-analysis. Nutrition. 2021;90:111355. doi:10.1016/j.nut.2021.111355 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nut.2021.111355&link_type=DOI) 91. 91.Sun Q, Yang Y, Wang X, Yang R, Li X. The Association between Sugar-Sweetened Beverages and Cognitive Function in Middle-Aged and Older People: A Meta-Analysis. Journal of Prevention of Alzheimer’s Disease. 2022;9(2):323–330. doi:10.14283/jpad.2021.71 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.14283/jpad.2021.71&link_type=DOI) 92. 92.Khosravipour M, Rajati F. Sensorineural hearing loss and risk of stroke: a systematic review and meta-analysis. Sci Rep. 2021;11(1):11021. doi:10.1038/s41598-021-89695-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-021-89695-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 93. 93.Liang Z, Li A, Xu Y, Qian X, Gao X. Hearing Loss and Dementia: A Meta-Analysis of Prospective Cohort Studies. Frontiers in Aging Neuroscience. 2021;13. doi:10.3389/fnagi.2021.695117 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fnagi.2021.695117&link_type=DOI) 94. 94.Lawrence BJ, Jayakody DMP, Bennett RJ, Eikelboom RH, Gasson N, Friedland PL. Hearing Loss and Depression in Older Adults: A Systematic Review and Meta-analysis. Gerontologist. 2020;60(3):e137–e154. doi:10.1093/geront/gnz009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/geront/gnz009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 95. 95.Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B. Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ. 2010;341:c4249. doi:10.1136/bmj.c4249 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNDEvc2VwMzBfMS9jNDI0OSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 96. 96.Masson P, Webster AC, Hong M, Turner R, Lindley RI, Craig JC. Chronic kidney disease and the risk of stroke: a systematic review and meta-analysis. Nephrol Dial Transplant. 2015;30(7):1162–1169. doi:10.1093/ndt/gfv009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ndt/gfv009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25681099&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 97. 97.Kjaergaard AD, Ellervik C, Witte DR, Nordestgaard BG, Frikke-Schmidt R, Bojesen SE. Kidney function and risk of dementia: Observational study, meta-analysis, and two-sample mendelian randomization study. Eur J Epidemiol. 2022;37(12):1273–1284. doi:10.1007/s10654-022-00923-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10654-022-00923-z&link_type=DOI) 98. 98.Yuan H, Ahmed WL, Liu M, Tu S, Zhou F, Wang S. Contribution of pain to subsequent cognitive decline or dementia: A systematic review and meta-analysis of cohort studies. Int J Nurs Stud. 2023;138:104409. doi:10.1016/j.ijnurstu.2022.104409 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijnurstu.2022.104409&link_type=DOI) 99. 99.Wendel-Vos GC, Schuit AJ, Feskens EJ, et al. Physical activity and stroke. A meta-analysis of observational data. Int J Epidemiol. 2004;33(4):787–798. doi:10.1093/ije/dyh168 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ije/dyh168&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15166195&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000223944100029&link_type=ISI) 100.100.Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis. Stroke. 2003;34(10):2475–2481. doi:10.1161/01.STR.0000091843.02517.9D [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjEwOiIzNC8xMC8yNDc1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 101.101.Kivimäki M, Singh-Manoux A, Pentti J, et al. Physical inactivity, cardiometabolic disease, and risk of dementia: an individual-participant meta-analysis. BMJ. 2019;365:l1495. doi:10.1136/bmj.l1495 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNjUvYXByMTdfMS9sMTQ5NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 102.102.Xu W, Wang HF, Wan Y, Tan CC, Yu JT, Tan L. Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open. 2017;7(10):e014706. doi:10.1136/bmjopen-2016-014706 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMjoiNy8xMC9lMDE0NzA2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 103.103.Iso-Markku P, Kujala UM, Knittle K, Polet J, Vuoksimaa E, Waller K. Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. Br J Sports Med. 2022;56(12):701–709. doi:10.1136/bjsports-2021-104981 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6OToiNTYvMTIvNzAxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 104.104. de Souto Barreto P, Demougeot L, Vellas B, Rolland Y. Exercise Training for Preventing Dementia, Mild Cognitive Impairment, and Clinically Meaningful Cognitive Decline: A Systematic Review and Meta-analysis. J Gerontol A Biol Sci Med Sci. 2018;73(11):1504–1511. doi:10.1093/gerona/glx234 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/gerona/glx234&link_type=DOI) 105.105.Lee J. The Relationship Between Physical Activity and Dementia: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Gerontol Nurs. 2018;44(10):22–29. doi:10.3928/00989134-20180814-01 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3928/00989134-20180814-01&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 106.106.Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of Physical Activity on Cognitive Decline, Dementia, and Its Subtypes: Meta-Analysis of Prospective Studies. Biomed Res Int. 2017;2017:9016924. doi:10.1155/2017/9016924 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2017/9016924&link_type=DOI) 107.107.Sutin DAR, Luchetti M, Aschwanden D, Stephan Y, Sesker AA, Terracciano A. Sense of meaning and purpose in life and risk of incident dementia: New data and meta-analysis. Arch Gerontol Geriatr. 2023;105:104847. doi:10.1016/j.archger.2022.104847 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.archger.2022.104847&link_type=DOI) 108.108.Bell G, Singham T, Saunders R, John A, Stott J. Positive psychological constructs and association with reduced risk of mild cognitive impairment and dementia in older adults: A systematic review and meta-analysis. Ageing Res Rev. 2022;77:101594. doi:10.1016/j.arr.2022.101594 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.arr.2022.101594&link_type=DOI) 109.109.Sutin AR, Aschwanden D, Luchetti M, Stephan Y, Terracciano A. Sense of Purpose in Life Is Associated with Lower Risk of Incident Dementia: A Meta-Analysis. J Alzheimers Dis. 2021;83(1):249–258. doi:10.3233/JAD-210364 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-210364&link_type=DOI) 110.110.Wu TT, Zou YL, Xu KD, et al. Insomnia and multiple health outcomes: umbrella review of meta-analyses of prospective cohort studies. Public Health. 2023;215. doi:10.1016/j.puhe.2022.11.021 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.puhe.2022.11.021&link_type=DOI) 111.111.Wang H, Sun J, Sun M, Liu N, Wang M. Relationship of sleep duration with the risk of stroke incidence and stroke mortality: an updated systematic review and dose-response meta-analysis of prospective cohort studies. Sleep Med. 2022;90:267–278. doi:10.1016/j.sleep.2021.11.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.sleep.2021.11.001&link_type=DOI) 112.112.Li W, Wang D, Cao S, et al. Sleep duration and risk of stroke events and stroke mortality: A systematic review and meta-analysis of prospective cohort studies. Int J Cardiol. 2016;223:870–876. doi:10.1016/j.ijcard.2016.08.302 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijcard.2016.08.302&link_type=DOI) 113.113.Leng Y, Cappuccio FP, Wainwright NW, et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology. 2015;84(11):1072–1079. doi:10.1212/WNL.0000000000001371 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToibmV1cm9sb2d5IjtzOjU6InJlc2lkIjtzOjEwOiI4NC8xMS8xMDcyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 114.114.Jike M, Itani O, Watanabe N, Buysse DJ, Kaneita Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med Rev. 2018;39:25–36. doi:10.1016/j.smrv.2017.06.011 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.smrv.2017.06.011&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 115.115.He Q, Sun H, Wu X, et al. Sleep duration and risk of stroke: a dose-response meta-analysis of prospective cohort studies. Sleep Med. 2017;32:66–74. doi:10.1016/j.sleep.2016.12.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.sleep.2016.12.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 116.116.Cappuccio FP, Cooper D, D’Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484–1492. doi:10.1093/eurheartj/ehr007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/eurheartj/ehr007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21300732&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000295679100012&link_type=ISI) 117.117.Ge B, Guo X. Short and long sleep durations are both associated with increased risk of stroke: a meta-analysis of observational studies. Int J Stroke. 2015;10(2):177–184. doi:10.1111/ijs.12398 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/ijs.12398&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25366107&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 118.118.Fan L, Xu W, Cai Y, Hu Y, Wu C. Sleep Duration and the Risk of Dementia: A Systematic Review and Meta-analysis of Prospective Cohort Studies. J Am Med Dir Assoc. 2019;20(12):1480–1487.e5. doi:10.1016/j.jamda.2019.06.009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jamda.2019.06.009&link_type=DOI) 119.119.de Almondes KM, Costa MV, Malloy-Diniz LF, Diniz BS. Insomnia and risk of dementia in older adults: Systematic review and meta-analysis. J Psychiatr Res. 2016;77:109–115. doi:10.1016/j.jpsychires.2016.02.021 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpsychires.2016.02.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 120.120.Shi L, Chen SJ, Ma MY, et al. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev. 2018;40:4–16. doi:10.1016/j.smrv.2017.06.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.smrv.2017.06.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 121.121.Bao YP, Han Y, Ma J, et al. Cooccurrence and bidirectional prediction of sleep disturbances and depression in older adults: Meta-analysis and systematic review. Neurosci Biobehav Rev. 2017;75:257–273. doi:10.1016/j.neubiorev.2017.01.032 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neubiorev.2017.01.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28179129&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 122.122. Hill Almeida LM, Flicker L, Hankey GJ, Golledge J, Yeap BB, Almeida OP. Disrupted sleep and risk of depression in later life: A prospective cohort study with extended follow up and a systematic review and meta-analysis. Journal of Affective Disorders. 2022;309. doi:10.1016/j.jad.2022.04.133 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2022.04.133&link_type=DOI) 123.123.Shinton R, Beevers G. Meta-analysis of relation between cigarette smoking and stroke. British Medical Journal. 1989;298(6676):789-794. doi:10.1136/bmj.298.6676.789 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIyOTgvNjY3Ni83ODkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8wNy8wOC8yMDI0LjA3LjA4LjI0MzA5OTA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 124.124.Peters SA, Huxley RR, Woodward M. Smoking as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 81 cohorts, including 3,980,359 individuals and 42,401 strokes. Stroke. 2013;44(10):2821–2828. doi:10.1161/STROKEAHA.113.002342 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjEwOiI0NC8xMC8yODIxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 125.125.Pan B, Jin X, Jun L, Qiu S, Zheng Q, Pan M. The relationship between smoking and stroke: A meta-analysis. Medicine (Baltimore*)*. 2019;98(12):e14872. doi:10.1097/MD.0000000000014872 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MD.0000000000014872&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 126.126.Mons U, Müezzinler A, Gellert C, et al. Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ. 2015;350:h1551. doi:10.1136/bmj.h1551 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNTAvYXByMjBfMi9oMTU1MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 127.127.Cao L, Tan L, Wang HF, et al. Dietary Patterns and Risk of Dementia: a Systematic Review and Meta-Analysis of Cohort Studies. Mol Neurobiol. 2016;53(9):6144–6154. doi:10.1007/s12035-015-9516-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12035-015-9516-4&link_type=DOI) 128.128.Zhong G, Wang Y, Zhang Y, Guo JJ, Zhao Y. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One. 2015;10(3):e0118333. doi:10.1371/journal.pone.0118333 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0118333&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25763939&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 129.129.Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166(4):367–378. doi:10.1093/aje/kwm116 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/aje/kwm116&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17573335&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000248591700001&link_type=ISI) 130.130.Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: Systematic review and meta-analysis of longitudinal observational studies. Heart. 2016;102(13):1009–1016. doi:10.1136/heartjnl-2015-308790 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiaGVhcnRqbmwiO3M6NToicmVzaWQiO3M6MTE6IjEwMi8xMy8xMDA5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDcvMDgvMjAyNC4wNy4wOC4yNDMwOTkwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 131.131.Park JW, Mealy R, Saldanha IJ, et al. Multilevel resilience resources and cardiovascular disease in the United States: A systematic review and meta-analysis. Health Psychology. 2022;41(4):278–290. doi:10.1037/hea0001069 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1037/hea0001069&link_type=DOI) 132.132.Sommerlad A, Ruegger J, Singh-Manoux A, Lewis G, Livingston G. Marriage and risk of dementia: systematic review and meta-analysis of observational studies. J Neurol Neurosurg Psychiatry. 2018;89(3):231–238. doi:10.1136/jnnp-2017-316274 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiam5ucCI7czo1OiJyZXNpZCI7czo4OiI4OS8zLzIzMSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 133.133.Qiao L, Wang G, Tang Z, et al. Association between loneliness and dementia risk: A systematic review and meta-analysis of cohort studies. Frontiers in Human Neuroscience. 2022;16. doi:10.3389/fnhum.2022.899814 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fnhum.2022.899814&link_type=DOI) 134.134.Kuiper JS, Zuidersma M, Oude Voshaar RC, et al. Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev. 2015;22:39–57. doi:10.1016/j.arr.2015.04.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.arr.2015.04.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25956016&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 135.135.Desai R, John A, Stott J, Charlesworth G. Living alone and risk of dementia: A systematic review and meta-analysis. Ageing Res Rev. 2020;62:101122. doi:10.1016/j.arr.2020.101122 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.arr.2020.101122&link_type=DOI) 136.136.Wang S, Molassiotis A, Guo C, Leung ISH, Leung AYM. Association between social integration and risk of dementia: A systematic review and meta-analysis of longitudinal studies. J Am Geriatr Soc. 2023;71(2):632–645. doi:10.1111/jgs.18094 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jgs.18094&link_type=DOI) 137.137.Booth J, Connelly L, Lawrence M, et al. Evidence of perceived psychosocial stress as a risk factor for stroke in adults: A meta-analysis. BMC Neurology. 2015;15(1). doi:10.1186/s12883-015-0456-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12883-015-0456-4&link_type=DOI) 138.138.Franks KH, Bransby L, Saling MM, Pase MP. Association of Stress with Risk of Dementia and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2021;82(4):1573–1590. doi:10.3233/JAD-210094 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/JAD-210094&link_type=DOI) 139.139.O’Donnell MJ, Chin SL, Rangarajan S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–775. doi:10.1016/S0140-6736(16)30506-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(16)30506-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27431356&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 140.140.Seattle, United States: Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2019 (GBD 2019). Global Burden of Disease Collaborative Network. 141.141.Hackam DG, Hegele RA. Cholesterol Lowering and Prevention of Stroke. Stroke. 2019;50(2):537–541. doi:10.1161/STROKEAHA.118.023167 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/STROKEAHA.118.023167&link_type=DOI) 142.142.Floud S, Balkwill A, Reeves GK, Peto R, Beral V. Cognitive and social activities and long-term dementia risk – Authors’ reply. The Lancet Public Health. 2021;6(5):e270. doi:10.1016/S2468-2667(21)00072-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2468-2667(21)00072-4&link_type=DOI) 143.143.Mirmiran P, Bahadoran Z, Gaeini Z. Common Limitations and Challenges of Dietary Clinical Trials for Translation into Clinical Practices. Int J Endocrinol Metab. 2021;19(3):e108170. doi:10.5812/ijem.108170 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5812/ijem.108170&link_type=DOI) 144.144.Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010;71(5):1027–1036. doi:10.1016/j.socscimed.2010.05.041 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.socscimed.2010.05.041&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20621406&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 145.145.Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases--incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition. 2013;29(4):611–618. doi:10.1016/j.nut.2012.12.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nut.2012.12.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23466047&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 146.146.Achterberg W, Lautenbacher S, Husebo B, Erdal A, Herr K. Pain in dementia. Pain Rep. 2020;5(1):e803. doi:10.1097/PR9.0000000000000803 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/PR9.0000000000000803&link_type=DOI) 147.147.Thomas AJ, Kalaria RN, O’Brien JT. Depression and vascular disease: what is the relationship? J Affect Disord. 2004;79(1-3):81–95. doi:10.1016/S0165-0327(02)00349-X [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0165-0327(02)00349-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15023483&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000220409400009&link_type=ISI) 148.148.Shimbo D, Chaplin W, Crossman D, Haas D, Davidson KW. Role of depression and inflammation in incident coronary heart disease events. Am J Cardiol. 2005;96(7):1016–1021. doi:10.1016/j.amjcard.2005.05.064 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.amjcard.2005.05.064&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16188535&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000232626400027&link_type=ISI) 149.149.Strine TW, Mokdad AH, Dube SR, et al. The association of depression and anxiety with obesity and unhealthy behaviors among community-dwelling US adults. Gen Hosp Psychiatry. 2008;30(2):127–137. doi:10.1016/j.genhosppsych.2007.12.008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.genhosppsych.2007.12.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18291294&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000253750700005&link_type=ISI) 150.150.Wijeratne T, Sales C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. J Clin Med. 2021;10(8). doi:10.3390/jcm10081674 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm10081674&link_type=DOI) 151.151.Muliyala KP, Varghese M. The complex relationship between depression and dementia. Ann Indian Acad Neurol. 2010;13(Suppl 2):S69–73. doi:10.4103/0972-2327.74248 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4103/0972-2327.74248&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21369421&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 152.152.Aziz R, Steffens DC. What are the causes of late-life depression? Psychiatr Clin North Am. 2013;36(4):497–516. doi:10.1016/j.psc.2013.08.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psc.2013.08.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24229653&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 153.153.Farhat NS, Theiss R, Santini T, Ibrahim TS, Aizenstein HJ. Neuroimaging of Small Vessel Disease in Late-Life Depression. Adv Exp Med Biol. 2019;1192:95–115. doi:10.1007/978-981-32-9721-0_5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-981-32-9721-0_5&link_type=DOI) 154.154.Diaz KM, Shimbo D. Physical activity and the prevention of hypertension. Curr Hypertens Rep. 2013;15(6):659–668. doi:10.1007/s11906-013-0386-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11906-013-0386-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 155.155.Sattar N, Preiss D. Reverse Causality in Cardiovascular Epidemiological Research: More Common Than Imagined? Circulation. 2017;135(24):2369–2372. doi:10.1161/CIRCULATIONAHA.117.028307 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNpcmN1bGF0aW9uYWhhIjtzOjU6InJlc2lkIjtzOjExOiIxMzUvMjQvMjM2OSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA3LzA4LzIwMjQuMDcuMDguMjQzMDk5MDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 156.156.Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000;32(4):1008–1015. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1365-2648.2000.01567.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11095242&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000165405100046&link_type=ISI) 157.157.Zhang C, Qin YY, Chen Q, et al. Alcohol intake and risk of stroke: a dose-response meta-analysis of prospective studies. Int J Cardiol. 2014;174(3):669–677. doi:10.1016/j.ijcard.2014.04.225 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijcard.2014.04.225&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24820756&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 158.158.Long J, Duan G, Tian W, et al. Hypertension and risk of depression in the elderly: a meta-analysis of prospective cohort studies. J Hum Hypertens. 2015;29(8):478–482. doi:10.1038/jhh.2014.112 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/jhh.2014.112&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F07%2F08%2F2024.07.08.24309905.atom) 159.159.Wang X, Su W, Huang Y, et al. BMI and risk of stroke: a dose-response meta-analysis. Chinese Journal of Evidence-Based Medicine. 2022;22(11):1330–1338. doi:10.7507/1672-2531.202205032 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7507/1672-2531.202205032&link_type=DOI)