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Abstract 

Background: 21st century neurology will require scalable and quantitative tools that can 

improve neurologic evaluations over telehealth and expand access to care. Commercially 

available mixed-reality headsets allow for simultaneous presentation of stimuli via holograms 

projected into the real world and objective and quantitative measurement of hand movement, eye 

movement, and phonation.  

Methods: We created 6 tasks designed to mimic standard neurologic assessments and 

administered them to a single participant via the Microsoft HoloLens 2 mixed-reality headset. 

The tasks assessed postural hand tremor, finger tapping, pronation and supination of hands, hand 

and eye tracking of a center-out task, hand and eye tracking of a random motion task, and vocal 

assessment.  
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Findings: We show the utility of the HoloLens for commonly used neurological exams. First, we 

demonstrate that headset-derived holograms can project hand movements and objects in 3D 

space, providing a method to accurately and reproducibly present test stimuli to reduce test-test 

variability. Second, we found that participant hand movements closely matched holographic 

stimuli using a variety of metrics calculated on recorded movement data. Third, we showed that 

the HoloLens can record and playback exam tasks for visual inspection, sharing with other 

medical providers, and future analysis. Fourth, we showed that vocal recordings and analysis 

could be used to profile vocal characteristics over time. Together, this demonstrates the 

versatility of mixed reality headsets and possible applications for neurological assessment. 

Interpretation: Administering components of the neurologic exam via a self-contained and 

commercially available mixed-reality headset has numerous benefits including detailed 

kinematic quantification, reproducible stimuli presentation from test to test, and can be self-

administered expanding access to neurological care and saving hospital time and money.  

Funding: This work was supported by grants from the National Institutes of Health (NIH) 

(F30AG063468) (E.L.), (F31NS113395) (D.J.C), and the Pilot Grant Award from the University 

of Colorado Movement Disorders Center (D.J.C).  

 

Introduction 

 Characterization of movement is a critical aspect of the neurological examination used to 

assess motor pathology. Movements of the eyes, movements of the limbs, gait, posture, and 

phonation are commonly assessed to detail the severity and progression of disease. Neurologists 

assess these characteristics using agreed upon scales for different disease classes. Clinicians rate 

various features of movement and behaviors pathognomonic for that disease using an integer 
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scale. For cerebellar ataxia, clinicians use the Scale for the Assessment and Rating of Ataxia 

(SARA), for Parkinson’s disease the Unified Parkinson’s Disease Rating Scale (UPDRS), and 

for Huntington’s disease the Unified Huntington’s Disease Rating Scale (UHDRS)1–3.  

 While studies point to consistency of the inter-rater reliability between neurologists 

scoring motor pathology according to these scales4, select aspects of these exams have lower 

reliability, bringing into question the usefulness of rating these movement features for classifying 

disease severity5. Often, these difficult-to-score components of the exam involve the clinician 

attempting to assess features of fast movements, like in the finger chase and fast alternating hand 

movements tests in the SARA. Introducing objective quantification of movement using motion 

capture technology promises improvement in disease severity assessments, however the 

hardware and software necessary for this type of motion capture is often cumbersome, difficult 

to use, and costly in terms of time and resources. Further, variation in the technique of the 

healthcare professional administering the exam can lead to differences in the movements evoked, 

obscuring the results of exams performed across providers or medical sites. Thus, assuring that 

the exam is performed the same way is critical to minimizing test-retest variability.  

A novel way to both present stimuli in a consistent manner and to record behavioral 

responses is with mixed reality headsets. The Microsoft HoloLens 2 is a commercially available 

headset that is worn like a pair of sunglasses. It renders 3D holograms of objects visible to the 

user, superimposed on the real world. The user is then able to interact with holograms in this 

semi-virtual environment (Figure 1 shows an example of a holographic sphere superimposed 

upon a brick wall in the real world). In addition to holographic rendering, the HoloLens 2 has 

built in eye tracking, fully articulated camera-based hand tracking, and a microphone for vocal 

analysis. Unlike fully-immersive virtual reality devices, which are associated with motion 
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sickness in some users6–8, mixed reality is not fully immersive and causes less visual-vestibular 

conflict9, making it a suitable candidate for clinical applications. These capabilities make it an 

ideal device to both guide patients with movement disorders through a standardized neurological 

physical exam and provide clinicians and researchers with high-fidelity behavioral 

characterizations. 

Here, we designed a suite of virtual tasks to elicit behaviors of interest in a neurological 

examination. Tasks are designed to be self-paced by the user and fully administered by the 

headset while providing robust behavioral data for the purposes of neurological assessment. This 

approach has several benefits. First, it can free up the time of medical staff as data can be 

collected in an asynchronous manner that does not require the physical presence of a highly 

trained physician. Second, it can administer perfectly reproducible stimuli and provide high-

fidelity measurements. This could improve quantification of neurological changes over time and 

in response to medications or interventions. Third, it democratizes access to quality assessment 

of neurological status. Many patients, especially in rural areas, do not have access to trained 

movement disorder staff. A commercially available and mass-produced headset like the 

HoloLens 2 theoretically allows patients to wear the headset at home or in a primary care setting 

and upload their results to a qualified physician for interpretation. These results could be 

followed up via telehealth appointments to discuss results. Fourth, presentation of holographic 

stimuli using the HoloLens 2 allows for quantification of novel tasks that are not possible in a 

standard neurological examination. This can allow for the discovery of new and clinically 

relevant psychophysical metrics of movement disorders that have yet to be described. All data 

displayed in this study are from a single member of the study staff to provide proof of concept. 
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Future studies will aim at using this application in a patient population that have movement 

disorders of interest. 

 

Results 

Task design and instruction 

Task instructions, stimuli, and participant recording were designed and tested in Unity 

software and uploaded to the HoloLens headset with Visual Studio (Figure 1a). We designed 6 

tasks to mimic several commonly used neurological exam maneuvers: 1) A tremor assessment 

task where users attempt to hold their hands still in front of them for 10 seconds; 2) A tapping 

task where users are instructed to tap their index finger and thumb together as fast as they can, 

while spreading the thumb and index fingertips as wide as possible on each tap, for 10 seconds; 

3) A pronation-supination task where users are instructed to turn their hand back and forth as fast 

as possible, while turning as far as possible in each direction, for 10 seconds; 4) A center out task 

where users interacted with a holographic sphere that would move in 1 of 8 radial directions and 

users were instructed to track it with their fingertip; 5) A random tracking task where users are 

instructed to track the position of a holographic sphere moving in a pseudo-randomized path with 

their fingertip; 6) And a vocal assessment task where users read phrases presented to them on 

their display aloud.  

Each task is introduced to the user using written instructions displayed on the screen of 

the headset. In the finger tapping and pronation-supination tasks, holographic displays of the 

hand were presented to the user as a visual guide to supplement the written instructions (Figure 

1b). Once the user has read the instructions, they start the task by selecting a start icon with their 

fingertip or by saying “Start”.  
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For the tapping, pronation-supination, center out, and random tracking tasks users 

completed the tasks first with their right hand and then their left. For tasks involving hand 

movements (tasks 1-5), positional data for was collected for 26 points on each hand and gaze 

data was collected to assess eye movements at 60 Hz (see Methods). In the vocal tracking task, 

audio recordings and gaze data were collected.  

 

Postural tremor assessment task 

Tremors are the most common movement disorder and can be classified as resting, 

postural, or action tremors. Postural tremors can be seen in physiologic tremor, essential tremor, 

metabolic disturbances, and Parkinson’s disease10,11. To test for and quantify postural tremor, 

users were instructed to hold both hands and arms straight out in front of them for 10 seconds 

(Supplemental Video 1). Once the headset had detected that the hands are visible and have 

crossed a positional threshold in the outward direction, it initiated a 10-second countdown 

displayed to the user. At the end of the 10 seconds users are instructed that they may put their 

hands back down. This task is presented first so that the length of the user’s arms can be 

measured during the hold period and can be utilized in later tasks to appropriately place 

interactable holograms within the user’s reach.  

To quantify the characteristics of a user’s postural tremor we isolated the position, speed, 

and acceleration of the center of the right and left hands during the 10-second countdown (Figure 

2a). Measuring the average speed and acceleration magnitude in the tracked point during this 

window provided a quantitative score reflecting the stillness of the user’s hands (right hand: 

speed = 0.0147 ± 0.0086 m/s, acceleration = 0.549 ± 0.293 m/s2; left hand: speed = 0.0197 ± 

0.0131 m/s, acceleration = 0.786 ± 0.486 m/s2; mean ± SD).  
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To further characterize the presence of tremor and tremor amplitude in each tracked point 

in the hands, we performed a fast Fourier transform of the speed at each of the 26 tracked points 

of each hand. We assessed the power spectral density (PSD) of each point across the frequencies 

from 1-20 Hz to identify tremors in each joint (Figure 2b). Patients with tremors exhibit peaks 

that could be identified in the PSD analysis, with precise understanding of the magnitude of 

tremor in each of the tracked joints, providing a detailed fingerprint of the idiosyncratic tremor 

that individual patients might exhibit. 

To confirm that the motion captured by the headset was an accurate quantitative 

description of the movements performed, we had the user simulate a tremor at different 

frequencies at the rate of an external auditory stimulus delivered by a metronome. The user 

moved hands rhythmically in the vertical dimension at a rate of 1, 2, 3, and 4 Hz. Analyzing the 

peak of the PSD of the vertical positional traces for the palm in the right and left hands revealed 

a strong correlation with the driving frequency of the metronome (Figure 1Sa; Right hand: linear 

regression of metronome frequency and peak PSD frequency: slope = 0.94, p-value = 2.26 x 10-

4; Left hand: linear regression of metronome frequency and peak PSD frequency: slope = 0.93, p-

value = 3.47 x 10-4).  

 

Tapping task 

 Disruptions in finger tapping of the thumb and index finger can be seen in Parkinson’s 

disease12, atypical parkinsonism13, upper motor neuron demyelinating diseases such as multiple 

sclerosis14,15, and Alzheimer’s disease16. Disease specific changes can be seen in the speed, 

amplitude, and regularity of tapping16. To probe finger tapping movements we designed a task 

that instructed users to tap their thumb and index fingers together for 10 seconds (Supplemental 
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Video 2). The instructions included an animated hologram of a right or left hand tapping to 

improve the user’s understanding of the task. Once users had time to read the instructions, they 

were instructed to push a holographic start button to begin the task. Once the task was started, 

users were instructed to hold their right hand up in front of them. Once the headset detected the 

user’s hand, it began a 5-second countdown with an instruction for users to begin tapping at the 

end the countdown. A go-cue at the end of the countdown instructed users to begin tapping at 

which point they were presented with another 10-second countdown. At the end of the 10 

seconds, they were told they were able to put their hand down, and they were presented the same 

series of instructions for the left hand.  

 Timestamps indicating the time of the go-cue and end of the countdown were used to 

isolate the tapping interval from saved positional data for trials of the right and left hand (Figure 

3a,e). A tap amplitude timeseries was extracted by taking the Euclidean distance between the tip 

of the thumb and index finger (Figure 3b,f). Isolating local minima and maxima of this amplitude 

timeseries allowed us to isolate the start and end of individual taps, which we used to compute 

the time and amplitude of each tap (Figure 3c,d,h,g; Right hand: tap time = 0.119 ± 0.012 s, tap 

amplitude = 0.234 ± 0.018 m, n = 42 taps; Left hand: tap time = 0.250 ± 0.018 s, tap amplitude = 

0.137 ± 0.007 m, n = 38 taps; mean ± SD). The slope of a linear regression fit to the tap 

amplitudes and tap times across the trial was used to assess movement decrement (Right hand: 

linear regression of tap amplitude: slope = -2.48 x 10-4, p-value = 0.10; linear regression of tap 

time: slope = 1.51 x 10-4, p-value = 0.53; Left hand: linear regression of tap amplitude: slope = -

3.27 x 10-4, p-value = 0.001; linear regression of tap time: slope = 3.95 x 10-6, p-value = 0.99).  

 To assess whether the thumb and finger motions captured reflected the rate of hand 

movements, we had the user tap at a rate specified with an auditory tone delivered by a 
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metronome across a range of frequencies (80, 120, and 160 bpm). Tap interval time closely 

matched the metronome beat interval for both the right and left hand (Figure 1Sb; Right hand: 

linear regression of metronome beat interval time and tap interval time: slope = 1.04, p-value < 1 

x 10-15; Left hand: linear regression of metronome beat interval time and tap interval time: slope 

= 0.99, p-value < 1 x 10-15). 

 

Pronation-supination task 

 Pronation-supination movements are another commonly used exam task in the 

assessment of Parkinson’s disease17. We designed a similar task to finger tapping where users 

were instructed to rotate their hand back and forth for 10 seconds (Supplemental Video 3). 

Instructions and task structure followed the format described in the finger tapping task and 

included a holographic animation to guide the users’ movements. 

 To quantify pronation-supination, we measured the turn angle around a vector projecting 

from the wrist to the metacarpophalangeal (MCP) joint of the middle finger (see Methods). Local 

minima and maxima were calculated from turn angles to extract single turn cycles which we then 

used to analyze turn angle amplitudes and turn times (Figure 4a-h; Right hand: turn time = 0.376 

± 0.097 s, turn angle amplitude = 187.9 ± 15.9 degrees, n = 24 turns; Left hand: turn time = 

0.410 ± 0.033 s, turn angle amplitude = 182.0 ± 7.7 degrees, n = 24 turns; mean ± SD). The slope 

of a linear regression fit to the turn angle amplitudes and turn times across the trial was used to 

assess movement decrement (Right hand: linear regression of turn angle amplitude: slope = 

0.123, p-value = 0.80; linear regression of turn time: slope = 1.58 x 10-3, p-value = 0.55; Left 

hand: linear regression of turn angle amplitude: slope = -0.348, p-value = 0.13; linear regression 

of turn time: slope = 2.40 x 10-3, p-value = 0.01). 
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To assess whether captured hand rotations reflected the rate of actual hand pronation-

supination movements, we had the user rotate their hand at a rate specified with an auditory tone 

delivered by a metronome across a range of frequencies (80, 120, and 160 bpm). Turn interval 

time closely matched the metronome beat interval for both the right and left hand (Figure 1Sc; 

Right hand: linear regression of metronome beat interval time and turn interval time: slope = 

0.85, p-value < 1 x 10-15; Left hand: linear regression of metronome beat interval time and turn 

interval time: slope = 0.85, p-value = 2.61 x 10-12). 

 

Center out task 

 To assess the users’ ability to track a moving target with their hands and eyes, assess for 

the presence of an action tremor, and measure a patient’s reaction time, we designed a task where 

users are instructed to track a moving holographic sphere with their fingertip and eyes as it 

moves from the center to the periphery and back to the center (Supplemental Video 4). Action 

tremors can be indicative of cerebellar lesions and help differentiate between Parkinson’s disease 

and essential tremor11 and slowed reaction times can also be indicative of Parkinson’s disease18. 

The target is a 4-cm diameter grey sphere that starts at 75% of the user’s reach established in the 

tremor assessment task. When the user touches the sphere, it turns green to provide visual 

feedback during the task. The sphere starts at a central location, and after the user has touched 

the target for 1 second it moves 20 cm to 1 of 8 eccentric locations. The user is then supposed to 

move as quickly and accurately to the target as possible such that they touch the target again. 

After the target has been touched in the eccentric location for 1 second, it moves 20 cm back to 

the starting central location, and users track it again back to this location. We refer to movements 

to the eccentric targets as “center-out” trials and movements back to center as “return-to-center” 
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trials (Figure 5a). The task consists of 48 total trials, such that there are 3 center-out movements 

to each of the 8 eccentric targets, and 3 return-to-center trials from those targets. This task is 

conceptually similar to the finger chase exam commonly used in the scale for the assessment and 

rating of ataxia (SARA)3.  

 In each trial, times indicating when the target started moving to a new location were used 

to divide positional traces of fingertip positions into discrete trials. First, we analyzed reaction 

times by isolating speed profiles aligned to the trial onset time (Figure 5b; Statistics for right 

hand data shown in figure 5b: peak speed = 0.84 m/s, time to peak speed = 0.45 s). To quantify 

clinically relevant features of movement we analyzed tortuosity as a proxy for dysmetria and 

action tremor, time to target as a proxy for accuracy, and peak speed (Figure 5c,d). We defined 

tortuosity as the total path length of a trial’s positional trajectory divided by the distance between 

the target start and endpoint. We also calculated the peak speed of each movement. We plot each 

of these metrics for trials subdivided by the direction of the movement from the start point to the 

endpoint to display any asymmetrical impairment of movement (Right hand mean of all trials: 

tortuosity = 1.30, time to target = 0.65 s, peak speed = 0.89 cm/s; Left hand mean of all trials: 

tortuosity = 1.37, time to target = 0.64 s, peak speed = 1.02 cm/s).  

We also tracked eye angle during these trials. To determine the gaze point we found the 

shortest line between the gaze ray and the target. The location where this line intersected the 

gaze ray we refer to as the “gaze point”. We use this point to measure the 3D position that the 

user was visualizing at each timepoint (see Methods). Analysis of gaze point data divided into 

trials shows that it closely follows the trajectory of the fingertip on individual trials (Figure 5e). 

 

Random tracking task 
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 Dysmetria is the inability to control the distance, speed, and range of motion necessary to 

perform smoothly coordinated movements and can be due to cerebellar damage from trauma, 

tumors, or demyelinating diseases19. We designed a random tracking task to assess a user’s 

ability to follow a holographic target moving in a pseudo-random path that is analogous to the 

finger-chase and smooth pursuit tasks common to neurologic exams (Figure 6a, Supplemental 

Video 5). Quantifying these movements is difficult by physicians in a clinical setting, but the 

high-fidelity behavioral tracking possible with the HoloLens 2 allows for design of tasks that 

would have previously been impossible and may provide a new and clinically relevant metrics. 

 The target in this task was a 4-cm sphere that moved in a pseudo-random 2D path at 75% 

of the user’s reach. Once the user has touched the sphere with their index finger for 1 second it 

starts moving along this predefined path. The upward and lateral components of the path were 

the sum of sine waves which were designed to subsample each quadrant in front of the user 

equally (Figure 6b, see Methods). From the user’s perspective the path moves randomly, 

meaning it could be repeatedly presented from session to session without any ability to predict 

the motion, yielding an untrained estimate of motor function.  

 Fingertip and gaze point data were extracted during the tracking interval and analyzed in 

the lateral and upward directions (Figure 6c). We computed the Euclidean distance between the 

fingertip and target at each point – target error – to estimate the user’s ability to track the target. 

To quantify the tracking in this task we binned the positional data of the target in 5-cm intervals 

and calculated the position of the fingertip and gaze point in each of these bins (Figure 6d,e). The 

slope of a linear regression of binned data is a proxy for the user’s accuracy to track the target, 

with slopes closer to 1 indicating better tracking. Fingertip data was a close match to target 

position across the bins (Right hand: linear regression of lateral position: slope = 0.723, p-value 
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< 1 x 10-15; linear regression of upward position: slope = 0.790, p-value < 1 x 10-15; Left hand: 

linear regression of lateral position: slope = 0.715, p-value < 1 x 10-15; linear regression of 

upward position: slope = 0.771, p-value < 1 x 10-15), however gaze point data was less of a close 

fit, especially in the lateral dimension (Right hand trial: linear regression of lateral position: 

slope = 0.165, p-value < 1 x 10-15; linear regression of upward position: slope = 0.388, p-value < 

1 x 10-15; Left hand trial: linear regression of lateral position: slope = 0.147, p-value < 1 x 10-15; 

linear regression of upward position: slope = 0.382, p-value < 1 x 10-15). This is possibly the 

result of low framerates on HoloLens cameras responsible for eye tracking. Further analysis of 

gaze point data in this task on movement disorder patients would help us understand whether this 

is a useful task for tracking eye movements. Last, we also measure target error of the fingertip as 

a function of speed to assess the user’s responsivity to the target (Figure 6d,e). 

 

Vocal assessment task 

Last, to demonstrate the scope of behavioral tracking that could be accomplished with 

mixed-reality headsets in the clinic, we designed a task to assess the vocal qualities of a user 

while reading phrases aloud. Vocal changes are pathognomonic of many neurological disorders 

including Parkinson’s disease20, progressive supranuclear palsy21, and cerebellar damage19, thus 

quantification of the voice along with the other tasks above could add depth to the diagnostic 

capabilities of physicians. To quantify features of the user’s voice, we designed a task where 

users would be presented with written phrases that they were instructed to read aloud. These 

phrases were a combination of natural sentences and phrases designed to test the user’s ability to 

say lingual, labial, and guttural sounds.  
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At each presentation of a phrase, a 5 second audio clip was recorded for offline 

processing. We used the open-source package Parselmouth, which ports functionality from the 

commonly used speech processing software Praat into Python22,23. In each audio clip we 

analyzed features of the vocal frequency, amplitude, and volume (Figure 7a). We used 

Parselmouth to extract the speaking time, intensity of the voice in decibels, vocal pitch (mean 

frequency of the fundamental formant), shimmer (amplitude variation of the sound wave), and 

the local jitter (the frequency variation from cycle to cycle of F0)24. The mean of these features 

across all spoken phrases was used to compute a vocal fingerprint of the user (Figure 7b; mean 

speaking time = 0.746 s, mean intensity = 56.28 dB, mean F0 pitch = 101.1 Hz, mean local 

shimmer = 0.133 dB, mean local jitter = 0.0352 Hz). This fingerprint could be used to assess 

longitudinal changes to the user’s voice to monitor disease progression or treatment efficacy. 

 

Discussion 

 Here we show proof of concept of an application on the Microsoft HoloLens 2 mixed-

reality headset that can be administered with little to no input from hospital staff while capturing 

thorough, high-fidelity behavioral data. As a starting point, we designed 6 tasks that replicate 

aspects of the neurologic examination and show the capacity of mixed reality to probe upper 

extremity movement, eye tracking, and vocal analysis.  

 Patients with movement disorders often face lengthy wait times to see movement disorder 

specialists that can diagnose and monitor progression of disease. The American Academy of 

Neurology Workforce Survey suggests that wait times to see neurologists are increasing and that 

the neurologist shortfall for the US will reach 19% by 202525. These trends are worse in regions 

deemed “neurology deserts” that are particularly lacking in neurologic care26. An application, 
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like the one described in this paper, could help solve this issue in several ways. First, because 

headsets like the HoloLens 2 are commercially available and mass-produced, they can be 

distributed to patients themselves, health fairs, pharmacies, primary care offices, or general 

neurology offices. Widespread access could enable low-cost screening for movement disorders 

allowing patients to be identified and escalated to a specialist for diagnosis. Modeling suggests 

that community screening for Parkinson’s disease using low-cost technology can be a cost-

effective way to increase quality-adjusted life years if deployed in public places such as health 

fairs and pharmacies27. Second, for patients who already have a diagnosis, mixed-reality headsets 

could provide more frequent monitoring of disease progression over time and in response to 

treatment. Rather than assessing disease progression and adjusting medications at follow up 

appointments every 3-6 months, patients could use a headset in between appointments and then 

bring their results to their follow up appointment to give the neurologist a more holistic picture 

their day-to-day variability. This could decrease the frequency of in person follow up 

appointments and improve the quality of telehealth assessments, which would be particularly 

beneficial in rural areas without access to movement disorder neurologists. 

 Consistent presentation of stimuli and objective, high-fidelity quantification of behavior 

will decrease measurement variability, which could be useful for assessing efficacy of 

interventions. Lower assay variability allows for better discrimination of positive and negative 

effects and smaller samples sizes. Additionally, the objective nature of the mixed-reality headset 

enforces blinding and removes the potential for subjective bias from the clinician rating the 

exam. This could allow for more robust and less expensive clinical trials to test new drug 

candidates and therapeutic interventions for movement disorders. 
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 Mixed reality headsets and holograms also allow for new tasks that are not yet part of the 

standard neurologic exam and might shed light on previously unappreciated neurologic deficits. 

Such tasks could include puzzles that require manipulation of 3D objects, navigation tasks, or 

tests of spatial memory. We speculate that there are likely unrecognized subsets of neurologic 

diseases that could be revealed by novel tasks and deep analytic algorithms that can cluster 

patient data and point neurologists towards outliers and novel phenotypes. 

   Mixed-reality tasks could also be beneficial for patients with deep brain stimulators 

(DBS) that require periodic reprogramming. DBS is currently used in patients with Parkinson’s 

disease, essential tremor, and dystonias. Occasionally, DBS probes must be reprogrammed to 

ensure they are targeting the correct areas and managing symptoms appropriately. More than a 

third of PD patients report difficulty getting to a clinic26 and consequently, tele-programming has 

started to emerge28. Mixed-reality headsets could allow clinicians to optimize DBS programming 

both in person and over telehealth through the use of short, quantifiable tasks that enable rapid 

iteration and objective comparison between providers over spans of months and years. 

In future work, our paradigm will be applied to patients with movement disorders such as 

Parkinson’s disease to test our ability to discriminate between patients with and without disease. 

Mixed-reality headsets like the HoloLens 2 could serve as the black leather physician bags of the 

21st century neurologist; containing tools to probe and quantify movement, vision, and vocal 

production, enabling better access to care, and allowing for the discovery of new phenotypes and 

disease subtypes.  

 

Methods 

HoloLens application design 
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Applications were built using Unity software (2020.3.21f1) and uploaded to the 

Microsoft HoloLens 2 headset using Visual Studio (2019). In each application, behavioral data 

of interest (hand, eye, voice, events) was written to a text file that was then exported to a 

computer for post-processing. Kinematic data were written to the text files at 60 Hz. Event times 

were written to separate text files following important events during each task including task 

start time, task end time, countdown start times, countdown stop times, target touch times, and 

target move times. Hand data consisted of positional data in 3 dimensions from all tracked points 

on the right and left hand: the wrist, palm, carpometacarpal joints of each finger and thumb, 

metacarpophalangeal joints of each finger and thumb, proximal interphalangeal joint of each 

finger and thumb, distal interphalangeal joint of each finger, and fingertips of each finger and 

thumb for a total of 26 tracked joints. Gaze origin and gaze ray were written to capture eye 

movements in three directions. Vocal data were saved as .wav audio files to the headset.  

 

Post-processing of HoloLens data 

 HoloLens positional data was saved as distance in meters in the lateral (x), upward (y), 

and outward (z) directions for postprocessing offline. Data were resampled at 60 Hz then filtered 

with a 2nd order 10 Hz lowpass Butterworth filter forwards then backwards to avoid phase shift29. 

Data were clipped into periods of interest by using the timestamps of event data written to the 

headset.  

 To analyze tremor in the tremor assessment task, we computed the average speed and 

acceleration during the countdown period by calculating the frame-to-frame changes in position 

(speed) or speed (acceleration) and dividing by the sampling rate. The power spectrum of each 

point on the hand was computed as described above. To analyze tapping movement, we 
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computed tap amplitude and tap times as described above. To analyze changes in tap time and 

tap amplitude across the trial, we subjected these variables to a linear regression, with the slope 

indicating the change in tap time or amplitude across the trial. For pronation-supination analysis, 

we first applied a rotation matrix to align the hand to the Y-axis at each frame of saved data. 

Specifically, we aligned a hand vector (the vector projecting from the wrist to the middle finger 

MCP) to the Y-axis by solving for this rotation matrix analytically. Once the hand was aligned, 

we measured the angle of a vector projecting from the middle finger MCP to index finger MCP, 

around the Y-axis to yield a turn angle. We normalize this angle such that 0 degrees was the 

median value of each pronation-supination trial. Turn amplitude and time were analyzed as 

described for tapping above. To analyze center out data, we isolated individual trials by 

extracting index fingertip positions between “target move” event data timestamps. We computed 

the angle of target motion, such that trials can be grouped by movement direction. Speed and 

tortuosity were computed as described above. To analyze random tracking, we measured index 

fingertip position and target position binned in 5-cm intervals in target position location. Target 

error was computed as the Euclidean distance between index fingertip position and target 

position. To calculate “gaze point” location in all tasks, we found the shortest line between the 

target and the gaze ray and found where this line intersected the gaze ray. This point was used as 

a proxy to understand where the user was looking in 3D space. Vocal analysis was performed 

using Parselmouth23. 

 

Random path construction 

The pseudo-random path that users followed in the random tracking task was constructed 

by summing 100 sine waves with random frequencies between 1 and 10 Hz and offset by random 
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phase shifts from 0 to 1 second in 1/60 s intervals. Here Hz refers to the length of the trial (i.e., 1 

Hz = 1 cycle per trial). This was performed 2 times to construct a waveform that described target 

motion in the lateral and upward dimensions. The result was a random trajectory in lateral and 

upward space. The magnitude of these waves was normalized so that the maximum value in each 

dimension was 30 cm.  

 

Metronome stimulus  

We used an online metronome to deliver an auditory tone to provide an external stimulus 

to drive movements. For tapping and pronation-supination experiments users made movements 

at 80, 120, and 160 bpm (0.75, 0.5, and 0.375 second interbeat interval, respectively). For tremor 

experiments the hands were moved up and down in the vertical dimension at 60, 120, 180, and 

240 bpm (1-4 Hz). 
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Figure 1. Using the Microsoft HoloLens 2 mixed-reality headset to elicit and track clinically 

meaningful behavior.  

a. To elicit and track clinically relevant behavior, users wear a mixed-reality headset (top 

graphic). This headset can display holograms to users while tracking the position of 26 joints 

on the user’s hand, the user’s gaze, and the user’s voice.  

b. For each task, users are displayed a set of written instructions. The tapping task and the 

pronation-supination task also have holographic hands that visually guide users through the 

task.  

c. Display from an egocentric vantage point of the user’s experience (left) compared to the 

tracked behavioral data analyzed offline (right). The egocentric view in the top panel shows 

the countdown displayed to the user during the pronation-supination task and on the bottom 

shows the user interacting with a green sphere hologram in the center out task. 
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Figure 2. Hand tremor quantification evoked during the tremor assessment task. 

a. Position (top), speed (middle), and acceleration (bottom) traces of the right and left hand. 

Dashed lines indicate the start and end of the trial countdown. For the positional data, traces 

are broken down into the lateral, upwards, and outwards directions.   

b. Power spectral density for each tracked joint of the right and left hand. 
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Figure 3. Quantification of hand movement evoked with the tapping task. 

a, e.  Representative examples of data hand collected in a single tapping cycle for the right (a) 

and left (e) hands. 

b, f.  Extracted tap amplitude (Euclidean distance between the thumb tip and index tip) for the 

right (b) and left (f) hands. The dashed line indicates the time the go-cue was presented to 

the user (GC).  Colored dots indicated the extracted times of the minima and maxima of 

each tap.  

c, g.  Left: quantification of the tap amplitude for each tap in the trial for the right (c) and left (g) 

hand. The line indicates the best fit line of the linear regression with a 95% confidence 

interval. Right: histogram of tap amplitudes. Mean tap amplitude is shown with a dashed 

line. 

d, h. Same as the analysis presented in c and g but instead quantifying tap time.
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Figure 4. Quantification of hand movement evoked with the pronation-supination task. 

a, e.  Representative examples of data hand collected in a single pronation-supination cycle for 

the right (a) and left (e) hands. 

b, f.  Extracted turn angle for the right (b) and left (f) hands. The dashed line indicates the time 

the go-cue was presented to the user (GC).  Colored dots indicated the extracted times of 

the minima and maxima of each turn.  

c, g.  Left: quantification of the turn amplitude for each turn in the trial for the right (c) and left 

(g) hand. The line indicates the best fit line of the linear regression with a 95% confidence 

interval. Right: histogram of turn amplitudes. Mean turn amplitude is shown with a dashed 

line.  

d, h. Same as the analysis presented in c and g but instead quantifying turn time.
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Figure 5. Movement quantification evoked with the center out task. 

a. Users were instructed to touch a holographic sphere with the tip of their index finger. After 

touching the sphere for 1 second, it would move in 1 of 8 directions and users would attempt 

to follow its motion with their fingertip. After touching it for 1 second at the new location the 

target would move back to the origin position.  

b. Speed profiles of the fingertip from the onset of each trial. Center-out trials are shown in red 

and return-to-center trials are shown in blue. The mean speed profile is shown in black. Time 

of mean peak speed is shown as a vertical dashed line.  

c. Positional traces of the fingertip in center-out and return trials. Color of the trace indicates 

the movement direction (in degrees). Dashed circles represent the starting and final positions 

of the sphere.  

d. Polar plots showing the mean tortuosity (top), time to target (middle), and peak speed 

(bottom) in each movement direction for the left and right hands. The scale is shown with a 

horizontal bar in each polar plot.  

e. Positional traces of the gaze point during the trials shown in c.
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Figure 6. Quantifying eye and hand movements evoked with the random tracking task. 

a. Users were instructed that they would be attempting to track a holographic sphere with 

their index finger as it traversed the workspace in front of them in a pseudo-random path.  

b. Holographic sphere trajectory in the upward and lateral plane. The path is symmetrical to 

equally subsample the space in front of the user. 

c. Example session showing the lateral (top) and upward (middle) position of the target, 

fingertip, and gaze point for a right-hand trial. Bottom: Euclidean distance from the 

fingertip to the target (target error). 

d, e.  5-cm binned positional data comparing the target position to the fingertip position in the 

lateral (top) and upward (middle) dimensions for left (d) and right (e) hand trials. Insets 

show binned positional data comparing the gaze point position to the target position. 

Bottom plots show target error as a function of target speed. 
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Figure 7. Quantification of vocal features evoked with the vocal assessment task. 

a. Top: frequency spectrogram of a user saying the phrase “Da, da, da.” Second from top: 

Amplitude of the phrase over time. Third from top: Intensity of the phrase in decibels. 

Bottom: Pitch of the fundamental formant of the phrase plotted during periods of detected 

speech.  

b. Left: Quantification of the speaking time, intensity, F0 pitch, local shimmer, and local jitter 

of 9 phrases ordered by length of speaking time. Right: Histograms of vocal features with 

mean (dashed line).  
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Figure S1. Hand movements match external driving stimuli. 

a. Left: The frequency of positional tremor closely matched the metronome driving frequency 

at 1-4 Hz. Right: Power spectral density of upward position of the palm of the right (red) and 

left (blue) hands. The peak frequency is denoted with a point and vertical dashed line. Note: 

Only Upward position was analyzed because the tremor was simulated by moving hands up 

and down at the rate of the metronome.  

b. Kinematic tracking of finger tap times closely matched the metronome beat interval across a 

range of frequencies for both the right (blue) and left (pink) hands. 

c. Same as b, but for pronation-supination movements.  
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