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Abstract： 

Background: Digital pathology significantly improves diagnostic efficiency and accuracy; 

however, pathological tissue sections are scanned at high resolutions (HR), magnified by 40 times 

(40X) incurring high data volume, leading to storage bottlenecks for processing large numbers of 

whole slide images (WSIs) for later diagnosis in clinic and hospitals. 

Method: We propose to scan at a magnification of 5 times (5X). We developed a novel multi-scale 

deep learning super-resolution (SR) model that can be used to accurately computes 40X SR WSIs 

from the 5X WSIs.  

Results: The required storage size for the resultant data volume of 5X WSIs is only one sixty-fourth 

(less than 2%) of that of 40X WSIs. For comparison, three pathologists used 40X scanned HR and 

40X computed SR WSIs from the same 480 histology glass slides spanning 47 diseases (such 

tumors, inflammation, hyperplasia, abscess, tumor-like lesions) across 12 organ systems. The 

results are nearly perfectly consistent with each other, with Kappa values (HR and SR WSIs) of 

0.988±0.018, 0.924±0.059, and 0.966±0.037, respectively, for the three pathologists. There were no 

significant differences in diagnoses of three pathologists between the HR and corresponding SR 

WSIs, with Area under the Curve (AUC): 0.920±0.164 vs. 0.921±0.158 (p-value=0.653), 

0.931±0.128 vs. 0.943±0.121 (p-value=0.736), and 0.946±0.088 vs. 0.941±0.098 (p-value=0.198). 

A previously developed highly accurate colorectal cancer artificial intelligence system (AI) 

diagnosed 1,821 HR and 1,821 SR WSIs, with AUC values of 0.984±0.016 vs. 0.984±0.013 (p-

value=0.810), again with nearly perfect matching results. 

Conclusions: The pixel numbers of 5X WSIs is only less than 2% of that of 40X WSIs. The 40X 

computed SR WSIs can achieve accurate diagnosis comparable to 40X scanned HR WSIs, both by 

pathologists and AI.  This study provides a promising solution to overcome a common storage 

bottleneck in digital pathology. 
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Introduction： 

Pathological diagnosis serves as the gold standard for disease diagnosis [1]. Pathology glass slides 

cannot be replicated or transmitted over the network, thus affecting the efficiency of diagnosis and 

expert consultations [2,3]. Digital pathology has facilitated the digitization transformation of 

traditional pathology [4,5], substantially enhancing diagnostic efficiency and representing the 

direction of modern pathology development [6,7]. 

 

The integration of digital pathology and Artificial Intelligence (AI) has given rise to a novel field 

known as computational pathology and pathology informatics [8,9]. The development of AI in 

pathology (AIP) is considered as a key technology to enhance the performance of pathological 

diagnosis [10, 11]. AIP accelerates computer-aided analysis [12, 13], contributing to various 

domains such as disease classification, grading, and outcome prediction, etc. [14-22]. 

 

Nowadays, digital pathology employs a high-resolution (HR) digital scanner to meticulously 

capture tissue details from glass slides, generating digitized high-resolution whole slide images (HR 

WSIs) [23]. The file size of a 40X magnification WSI (10 gigapixels, 0.25 um/pixel) typically 

ranges from 5 Gigabyte (GB) to 10 GB, with the scanning process for a single slide requiring a 

duration of 5 minutes or more [24]. In pathology departments handling tens of thousands of annual 

diagnoses, digitalization of pathological tissue section requires storage spanning hundreds of 

thousands of gigabytes and using multiple expensive scanners [25]. Consequently, the huge expense 

in digitization has emerged as a significant bottleneck for the clinical application of digital 

pathology. It also presents challenges for the training and implementation of AIP, particularly in 

developing nations, where there is a scarcity of a requisite number of digitized images [26]. 

 

Our aim is to devise a cost-effective digitization approach, wherein low-resolution (LR) images, 

such as only those at 5X magnification scanning, are acquired and stored. A 5X image contains only 

1/64th (less than 2%) of the pixels found in a 40X image, leading to a significant reduction of 5X 

resolution file size to 1/64 compared with its 40X counterpart. For later pathological diagnosis, 5X 

LR images are computationally re-generated into 20X or 40X HR images to restore the necessary 

image details.  The process of crafting HR images from LR counterparts is known as super-
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resolution (SR) image generation, which was initially applied to natural images and then some 

medical images [27-30]. 

 

To our knowledge, we have introduced a multiscale model (MSR) for the first time that 

demonstrates no significant difference in diagnostic consistency between 100 paired SR and HR 

regions of interest (ROIs) from some typical diseases [31, 32]. Subsequent studies have further 

confirmed that SR generation can generate high-quality pathological images [33-35]. However, 

there is not yet sufficient evidence to demonstrate the overall diagnose performance of SR WSIs on 

a large scale, in particular, whether SR images can establish accurate AIPs.  

 

This paper makes significant contributions in several key areas. We introduced an improved SR 

model designed to mitigate potential color bias issues in images from various organs within the 

framework of MSR [32]. Subsequently, we conducted a comprehensive WSI-based evaluation on a 

large scale, assessing diagnostic consistency, accuracy and time, utilizing 480 HR and 480 SR WSIs 

from the same slides encompassing 47 diseases (such tumors, inflammation, hyperplasia, abscess, 

tumor-like lesions) across 12 organ systems (including brain, lymph nodes, lungs and so on). 

Furthermore，we demonstrated the clinical-level accuracy that a well-developed colorectal cancer 

(CRC) AIP can achieve on SR WSIs, highlighting the notable potential of SR in overcoming 

challenges on data storage, a currently major challenge in advancing digital pathology.  

 

 Results 

Three pathologists were recruited to perform diagnostic experiment. Pathologist A has 8 years of 

diagnostic experience and holds the title of attending physician; B has 15 years of diagnostic 

experience and is an associate chief physician; C has 22 years of diagnostic experience and holds 

the title of chief physician. The study pipeline is shown in Figure 1.   

We collected 47 diseases from 12 organ systems (as displayed in Figure. 1(a) legend). Each organ 

system comprises 40 samples, totaling 480 40X HR WSIs (Dataset-Ass, Table 1). Additionally, we 

gathered 300 40X WSIs (Dataset-SR-T, Table 1), divided them into 157,304 patches and 

downsampled 5X patches, for training the proposed multiscale super-resolution (MSR) model 

(Figure. 1(b)). Dataset-Ass was downsampled to 5X and then generated to 40X SR WSIs (Dataset-
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Ass-SR) using the MSR model, alongside Dataset-Ass, for pathological diagnostic evaluation 

(Figure1 (c)).  To evaluate the diagnostic capability of AI on SR WSIs, we firstly trained a CRC AI 

(model-HR) using 20X HR patches (Table2) annotated in previous studies [22]. Subsequently, the 

1,821 20X WSIs (Dataset-CRC-Ass, Table3) from the study were downsampled to 5X, and 20X SR 

WSIs (Dataset-CRC-Ass-SR) were generated using the proposed MSR model. The diagnostic 

performance of the model-HR on Dataset-CRC-Ass-SR was then compared with that on Dataset-

CRC-Ass (Figure1. (d)) to evaluate whether AI trained HR WSIs can accurately diagnose the SR 

WSIs. More details are provided in the Methods section.  

 

Assessment of diagnostic consistency between HR and SR WSIs. Pathologist A-C diagnosed 480 

HR WSIs (Dataset-Ass, Table1) and their corresponding SR WSIs (Dataset-Ass-SR). The Kappa 

test results are shown in Figure 2(a): Pathologist A (average Kappa value and standard deviation of 

SR and WSIs across 12 organs): 0.988±0.018; B: 0.924±0.059; C: 0.966±0.037. Except for 

Pathologist B in the lymphatic system (Kappa value=0.772), all other Kappa values are above 0.85 

(Figure 2(b)). Figure 3 shows the frequencies of agreement correct, agreement incorrect, and 

disagreement of diagnosis for HR and SR WSIs. The numbers on the diagonal are much larger than 

those off the diagonal, indicating that consistent correct or incorrect agreements occur much more 

frequently than inconsistent ones. This demonstrates a high level of diagnostic consistency between 

HR and SR WSIs across different organs and pathologists. 

 

Assessment of diagnostic accuracy between HR and SR WSIs. The diagnostic results of 

Pathologists A-C on Dataset-Ass and Dataset-Ass-SR are compared with those of the ground truth. 

Figure 4(a) shows the distribution of average Area under the curve (AUC) for Pathologist A-C 

across 12 organ systems.  Specifically, for Pathologist A, the average AUC and 95% confidence 

intervals on 480 HR vs. corresponding 480 SR WSIs are 0.920±0.164 vs. 0.921±0.158, with a p-

value of 0.653(two-sided Paired-sample t-test); Pathologist B: 0.931±0.128 vs. 0.943±0.121, P-

value=0.736; Pathologist C: 0.946±0.088 vs. 0.941±0.098, P value=0.198. Figure 4(b) displays the 

numerical values of the AUC for each organ in the HR and SR WSIs, where the approximate 

overlap of the two AUC curves indicates that the AUC values for each organ are very close. Figure 

4(c) shows the sensitivity of 47 diseases by three pathologists, which doesn't present higher 

sensitivity on HR WSIs than that on SR WSIs. 
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Assessment of diagnostic time between HR and SR WSIs. The diagnostic times for Dataset-Ass 

and Dataset-Ass-SR are shown in Figure 5. For pathologist A, the average diagnostic time and 95% 

confidence interval on HR and HR WSIs respectively are 30.877±38.7359 vs. 30.043±48.017, with 

a p-value of 0.489 (two-sided Paired-sample t-test). Pathologist B: 23.577±13.812 vs. 

23.560±14.055, p-value=0.957. Pathologist C: 22.225±11.338 vs. 22.333±12.277, p-value= 0.768. 

This indicates that there is no significant difference in diagnostic time between HR and SR WSIs.  

 

Performance comparison of CRC AI for HR and SR WSIs.  The average AUC and 95% 

confidence interval of model-HR on Dataset-CRC-Ass is 0.984±0.016, but on Dataset-CRC-Ass-SR 

it is 0.939±0.063, showing there is a noticeable decline (P-value<0.001) on SR and HR WSIs for 

the CRC AI trained on HR images. This indicates that the model-HR is more sensitive to the SR 

images, with more significant decrease in specificity 0.901±0.131 vs. 0.971±0.035 for SR WSIs and 

HR WSIs. After model-HR is fine-tuned on Dataset-CRC-Training-SR, the AUC of obtained 

finetuned-SR (finetuned version of model-HR on SR images) on Dataset-CRC-Ass-SR is 

0.984±0.013, with no significant difference compared to the AUC of model-HR on Dataset-CRC-

Ass (P-value =0.810). Furthermore, there is no difference in sensitivity, specificity, and accuracy 

between model HR on HR WSIs and finetuned-SR on SR WSIs (Figure 6). This suggests that fine-

tuning the model-HR (trained on HR WSIs) can also yield accurate AI for SR WSIs.  

 

Discussion 

Digital pathology facilitates the storage, retrieval, and sharing of pathological slides, enhancing the 

precision, efficiency, and dependability of pathology practices. Furthermore, whole slide images 

(WSIs) can be analyzed through artificial intelligence, aligning with the trajectory of computational 

pathology's advancement. The pathological tissue sections are scanned at high resolutions (HR), 

magnified by 40X or 20X is imperative to preserve these intricate image details. However, HR 

scanning yields sizable file dimensions that can leading to storage bottlenecks for processing large 

numbers of WSIs for later diagnosis in clinic and hospitals. 

 

Theoretically, compared to 40X WSIs, 5X WSIs consist of only less than 2% pixels, leading to a 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.05.24310022doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.05.24310022
http://creativecommons.org/licenses/by-nc-nd/4.0/


1/64 reduction in data storage requirements. Therefore, we assume that storing 5X WSIs can 

overcome the data bottlenecks associated with the challenge of the data storage required by the 

aforementioned 40X scanning. Each pixel in 5X WSIs is approximately 2 microns, allowing for the 

visualization of cells and structural features in tissue sections.  The smallest cell for pathological 

diagnosis is the small lymphocytes, with a diameter of approximately 7 microns [36] which 

occupies 3.5x3.5 pixels in a 5X WSI. Hence, the small lymphocyte for diagnosis can be observed 

effectively in 5X images. Therefore, when there is obvious 5X information about the smallest 

structures present, it is possible to obtain a higher magnification, such as 40X, to visualize these 

structures in greater details by an effective method of image processing. Moreover, another benefit 

of 5X WSIs is the faster scanning speed, as it involves capturing and digitizing less pixel numbers 

compared to HR scanning. 

 

We have demonstrated that the proposed multiscale SR method can regenerate SR WSIs that 

closely resemble 40X HR WSIs from 5X WSIs. Three pathologists with varying levels of 

experience participated in the experiment, indicating comparable diagnostic efficacy between HR 

and SR WSIs. Furthermore, the metrics like AUC suggest no significant differences in diagnostic 

accuracy. Additionally, their diagnostic times did not differ. These experiments, conducted on a 

large scale, confirm that the proposed method can yield accurate SR WSIs with highly consistent 

diagnostics with HR WSIs, providing robust support for diagnosis pipeline based on 5X WSIs and 

SR generation. 

 

It is worth noting that, in order to eliminate other potential interfering factors, all experiments on 

diagnosis were conducted solely based on WSIs. Apart from the location of the specimens, no 

additional patient information from other examinations was utilized. Moreover, each organ involved 

4-5 typical diseases, and each disease has samples from several to twenty patients. As a result, the 

AUC values for some organs experienced slight reductions, yet with the AUC values for HR and 

SR maintaining either consistently high or low levels without differences.  

 

One highlight of our study is the investigation of whether the performance of artificial intelligence 

trained on HR WSIs can be replicated on SR WSIs. Experimental results indicate a slight decrease 

in performance of AI trained on HR WSIs when directly applied to SR WSIs, possibly due to the 
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higher sensitivity of the AI than human to image details. Previous studies [46] have also noted 

similar variations in the performance of pathological AI across different scanners or medical centers. 

However, the fine-tuning on SR WSIs can achieve diagnostic performance comparable to that of 

HR WSIs. Therefore, SR WSIs do not lead to a decline in AI performance. 

 

The main limitation of this study is the use of bilinear interpolation to acquire 5X WSIs, which 

might introduce some differences compared to real 5X WSIs from scanner directly. The primary 

reason is the current absence of LR such as 5X scanners. However, the deep learning can effectively 

learn the relations between paired images for example LR and HR images. Moreover, a significant 

body of SR research demonstrates that SR images can closely approximate HR images when the 

reconstruction conditions remain consistent with the training conditions of SR models. Therefore, 

the findings of this study are expected to be reproducible in real scanning systems if training and 

testing WSIs are from the same scanner systems. Additionally, this study was conducted solely in 

the histopathology images. Although this study provides the crucial evidence for the development 

of novel digital technologies that can overcome the existing bottlenecks in digital pathology, we 

believe that a broader assessment is necessary. 

 

The next step of research involves the development of a 5X scanner. By obtaining paired 5X images 

on a 5X scanner and 40X images alongside a 40X scanner, the SR model of this study can be 

retrained to achieve the MSR model on LR scanning and SR information reconstruction for real LR 

scanning. This study will greatly advance the development of digital pathology by overcoming 

storage bottlenecks. 

 

Conclusions. 

To overcome the existing bottlenecks of huge storage requirements in digital pathology, this paper 

introduces an alternative approach based on LR scanning. This approach reconstructs LR WSIs into 

SR WSIs and undergoes extensive evaluations alongside HR WSIs, demonstrating a high level of 

consistency in pathological diagnosis and AI system. The findings of this study highlight the 

potential of a novel strategy based on LR scanning for digital pathology, which could drive 

advancements in the field and enhance the efficiency and accuracy of pathological diagnosis by 

overcoming storage bottlenecks. 
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Method 

The study was conducted in accordance with the Declaration of Helsinki (2013 revision) and 

approved by the Institutional Review Board of School of Basic Medical Sciences, Central South 

University (No. 2022-KT74), and individual consent was waived for retrospective analysis.  

 

Data collection and review 

All glass slides were prepared by Formalin-fixed paraffin-embedded tissue (FFPE) and sourced 

from the Department of Pathology at Xiangya Hospital, Central South University. To ensure 

comprehensive representation of various human tissues, the collection spans across 12 organ 

systems. Dataset-SR-T was utilized for MSR model training, where 25 glass slides were randomly 

selected from each system, resulting in a total of 300 slides.  Dataset-Ass were utilized for clinical 

assessments, where the types of disorders were meticulously chosen to encompass malignancies, 

inflammatory conditions, and other illustrative disorders from various organ systems. The slides 

were randomly retrieved from the pathology archive by technicians by the key word including 

names of organ system, and then digitized utilizing a scanner (3DHISTECH Ltd., Budapest, 

Hungary) at 40X magnification, resulting in the acquisition of 40X WSIs, boasting a resolution of 

0.12 µm per pixel.  

 

Dataset-Ass underwent a retrospective review, accompanied by essential clinical materials, 

conducted by three pathologists holding the title of Associate Chief Physician and possessing a 

minimum of 10 years of clinical experience. Only the WSIs that met the diagnostic criteria were 

retained, resulting in a total of 480 WSIs available for further analysis (Table 1). The three 
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pathologists were not participating in the subsequent research. Given that contemporary 

pathological scanners exclusively utilize 20X or 40X lenses, the WSIs in Dataset-Ass underwent 

40X->5X down sampling using bilinear interpolation [37] and 5X->40X super-resolution 

generation by proposed MSR model, and the resulting 40X SR WSIs are denoted as Dataset-Ass-

SR. 

 

We also developed a CRC AI model using the data from the literature [22], which was obtained 

from Xiangya Hospital and scanned at 20X magnification (KF-PRO-005 scanner, KFBIO company, 

Ningbo City, China). The dataset, named Dataset-CRC, was created by extracting 62,919 patches of 

size 300x300 from 614 WSIs with cancer and 228 WSIs without cancer (Table 2). 

 

We randomly selected 1,821 WSIs from 1,149 subjects from the literature [22] to assess the CRC 

model's patient-level diagnostic capability (Dataset-CRC-Ass). These WSIs were down sampled to 

5X, then reconstructed to 20X by MSR model, resulting in Dataset-CRC-Ass-SR (Table 3).  

 

Data preprocessing pipeline 

The Dataset-SR-T were randomly divided into training and validation set comprising 240 and 60 

WSIs. Each WSI was segmented into non-overlapping patches of 2048x2048 dimensions 

containing human tissue, and a maximum of 1000 patches were randomly selected from each WSI. 

As a result, the training set was formed by a total of 131,656 patches, while the validation set 

included 25,648 40X patches, where the paired 5X patches were subsequently resized to 256x256 

dimensions using bilinear interpolation. 

 

Improved MSR model 

We have developed a multi-scale SR approach, which occasionally leads to color discrepancies [32]. 

Drawing inspiration from [38], we present an improved MSR model to identify an SR image that 

closely matches the style of HR image within the hidden space. The model comprises three key 

modules: an encoder, a style transfer unit, and a decoder, as illustrated in Figure 7. The encoder 

transforms the input image into 20 latent vectors. Alongside the consistent input from style transfer 

[39], the down-sampled input images are integrated with these latent vectors using FBLOCK. This 

amalgamation aims to identify images that exhibit similarities to HR image styles. Subsequently, 
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images sharing comparable styles undergo further decoding to ensure that the resulting SR images 

embody the authentic attributes of HR images. 

 

MSR model training 

Considering that the style transfer network is initially trained on natural images, it encounters 

difficulties in proficiently generating pathological images from latent vectors. As a result, the 

second module (depicted in Figure 2(b)) undergoes a pretraining process after FBLOCK is removed. 

This pretraining involves employing 40X patches from Dataset-SR-T adhering to the default 

hyperparameters of styleGAN[38]. Subsequently, the MSR model is trained, with the in the second 

module are initialized using pretrained styleGAN, while other modules are initialized randomly. 

The paired LR patches and HR patches in the training set from Dataset-SR-T are utilized for 

training which the validation set is employed to select hyperparameters that yield the highest PSNR 

and SSIM values. The selected hyperparameters are outlined in Supplemental Table 1. The code is 

built upon Python [43] and PyTorch [44], with the module construction utilizing the codebase from 

Openmmlab [45]. The implementation was carried out on a server with a Tesla A100 80GB GPU 

and 256 GB memory.  

 

SR WSIs generation 

The 40X WSIs in Dataset-Ass and Dataset-CRC-Ass was segmented into non-overlapping patches 

of 2048x2048 dimensions, and down sampled to 5X patches, which was utilized to generate HR 

patches using our MSR model. The HR patches are arranged to form SR WSIs (Dataset-Ass-SR in 

Table 1 and Dataset-CRC-Ass-SR in Table 3). 

 

Diagnoses assessment settings 

In order to accurately assess the diagnostic performance of SR WSIs, we employed a double-blind 

experimental design. First, the HR and SR WSIs from Dataset-Ass and Dataset-Ass-SR, were 

randomly divided into two groups. Each in two paired SR and HR WSI appeared in only one of the 

groups. Secondly, there pathologists were randomly assigned to diagnose one group first, and then 

the other group. To prevent mutual influence between the two groups, the multi-reader multi-case 

analysis (MRMC) was utilized. The time interval between the diagnoses of the two groups was set 

at one month.  All diagnoses were based solely on the images themselves, with no additional 
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clinical or examination information used other than the organ name. Therefore, in conducting a 

quantitative comparison between SR images and HR images for diagnostic purposes, the 

experiment controls for covariates that account for differences in sample complexity and pathologist 

diagnostic proficiency.  

 

The training and testing of CRC AI 

From the Dataset-CRC (Table 2), The patches in randomly selected 80% WSIs were used for the 

training (Dataset-CRC-Training), while the patches in remaining 20 %WSIs were allocated for the 

test set (Dataset-CRC-Testing). Within the Dataset-CRC-Training, the patches in randomly selected 

10% WSIs were further extracted to create the validation set. This entire process was repeated 10 

times to train 10 versions of model-HR, facilitating the computation of statistical measures. 

 

A vision transformer with the patch of 16x16 and input size of 224x224 were used to build a patch-

level CRC model, named model-HR, implemented by TFViTForImageClassification library 

initialized from the model checkpoint at google/vit-base-patch16-224-in21k, which was then trained 

by the resized 224x224 patches from the Dataset-CRC-Training. The selected hyperparameters are 

listed in supplemented Table 2. We employed the clustering-based inference strategy described in 

reference [22] for patient-level testing on Dataset-CRC-Ass and Dataset-CRC-Ass-SR. If 2×2 

continuous patches or cluster were identified as having cancer by the model-HR, the cancer may 

indeed exist on WSI. Clinically, multiple WSIs may be obtained for one patient. The inference on 

the patient level was based on positive sensitivity, that is, if all WSIs from the same patient were 

identified as negative (no cancer), then the patient was negative, otherwise the patient was positive.  

 

The finetune and testing of model-HR 

In order to assess the fine-tuning on SR patches could enhance the model-HR's performance on SR 

WSIs, we built the SR version of Dataset-CRC. Considering each patch with dimensions of 

300x300 undergoes a 20X magnification, every 16 patches are randomly selected to compose an 

image with dimensions of 1200x1200. Subsequently, a central region measuring 1024x1024 is 

extracted from this image and down sampled, resulting in a 5X image with dimensions of 256x256. 

These processed images are then utilized as input for the proposed MSR model, producing 20X SR 

images with dimensions of 1024x1024. From the generated SR images, a central region of 900x900 
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is cropped and further divided into 20X SR patches, each measuring 300x300. Following the 

aforementioned steps, the Dataset-CRC-Training-SR is derived from Dataset-CRC-Training, while 

the Dataset-CRC-Testing-SR is derived from Dataset-CRC-Testing. Finally, the model-HR was 

fine-tuned on Dataset-CRC-Training-SR using the same hyperparameters as listed in 

Supplementary Table 1, except for setting the epoch to 50, and the model finetuned-SR was 

obtained. As model-HR was trained 10 times, there are consequently 10 versions of the 

corresponding finetuned-SR. The clustering-based inference strategy were employed for patient-

level diagnosis [22], where if 3×3 continuous patches or cluster were identified as having cancer by 

the finetuned-SR, the optimal balance between sensitivity and specificity is achieved.  
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to the whole slide images in Dataset-Ass and Dataset-CRC for scientific research purposes, please 

contact the corresponding author.  
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Figure 1.   Flowchart of the study pipeline. (a) Human body parts and disease names in Dataset-Ass 

for clinical assessments. The brain includes four diseases: low-grade glioma (LGG, 7 subjects), 

high-grade glioma (HGG, 15), meningioma (MG, 15), and neurofibroma (NF, 8). Lymph nodes: 

lymph node metastasis of breast cancer (LNMBC, 8), classical Hodgkin's lymphoma (CHL, 13), 

non-Hodgkin's lymphoma (NHL, 17), lymphadenitis (LH, 2). Lungs: lung adenocarcinoma (LA, 

15), small cell lung cancer (SCLC, 6), lung squamous cell carcinoma (LSCA, 12), granulomatous 

inflammation (GI, 7). Liver: metastatic liver cancer (MLC, 14), hepatic cysts (HCS, 3), 

hepatocellular carcinoma (HC, 16), severe hepatitis (SH, 5), hepatocellular nodular hyperplasia 

(HNH, 2). Kidneys: clear cell renal cell carcinoma (CCRCC, 21), xanthogranulomatous 

pyelonephritis (XP, 6), chromophobe renal cell carcinoma (CRCC, 7), urothelial carcinoma (UC, 6). 

Prostate: prostate acinar adenocarcinoma (PAA, 20), chronic prostatitis (CP, 20). Bones: giant cell 

tumor of bone (GCTB, 5), osteochondroma (OC, 12), suppurative osteomyelitis (SO, 10), 

osteosarcoma (OS, 13). Intestines: tubular adenoma (TA, 10), adenocarcinoma (AC, 16), 

gastrointestinal stromal tumor (GST, 6), necrotizing enterocolitis (NE, 8). Ovaries: chocolate cyst 

(CC, 9), serous cystadenoma (SC, 11), ovarian serous carcinoma (OSC, 9), mature cystic teratoma 

(MCT, 11). Cervix: low-grade squamous intraepithelial lesion (LGSIL, 9), high-grade squamous 

intraepithelial lesion (HGSIL, 18), cervical squamous cell carcinoma (CSCC, 7), chronic cervicitis 

(CC, 6). Breasts: granulomatous lobular mastitis (GLM, 8), breast diseases (BD, 9), infiltrating 
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breast carcinoma (IBC, 17), ductal carcinoma in situ (DCS, 6). Thyroid: Hashimoto's disease (HD, 

12), thyroid papillary carcinoma (TPC, 19), adenomatous nodular goiter (ANG, 5), medullary 

thyroid carcinoma (MTC, 4). (b) The process involves training a multi-scale SR model using 

157,304 pairs of 5X and 40X patches from Dataset-SR-T. (c) Assessment of three pathologist's 

diagnostic results on paired 480 SR (Dataset-Ass) and 480 HR WSIs (Dataset-Ass-SR). (d) 

Comparison of patient-level diagnosis of CRC AI on paired 1,821 SR (Dataset-CRC-Ass) and 1,821 

HR WSIs (Dataset-CRC-Ass-SR). The organ charts in Figure 1(a) were modified from Servier 

Medical Art(https://smart.servier.com/), licensed under a Creative Common Attribution 4.0 Generic 

License (https://creativecommons.org/licenses/by/4.0/). 
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Figure 2. Consistency Assessment. (a) displays the distribution of Kappa values for Pathologist A-C, 

while the boxes indicate the upper and lower quartile values, and the whiskers indicate the minima 

and maxima values. The horizontal bar in the box indicates the median, while the cross indicates the 

mean. The circles represent data points, and the scatter dots indicate outliers. (b) lists the Kappa 

values for the twelve organ systems. 
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Figure 3. The frequencies of agreement and disagreement of diagnosis for HR and SR WSIs. The 

numbers in (c) represent the frequencies of agreement correct, agreement incorrect, and 

disagreement, R and W denote correct and incorrect diagnoses, while R and R indicate both HR 

WSI and SR WSI diagnoses are correct, W and W signify both are incorrect, signifying consistency. 

R and W denote one correct and the other incorrect, indicating inconsistency. 0-11 are the human 

organ systems in Figure 1(a). 
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Figure 4. (a) Distribution of Area under the Curve (AUC) in pathologists' diagnostic results across 

12 organs. The boxes depict the upper and lower quartile values, while the whiskers extend to the 

minimum and maximum values. The horizontal bar within the box indicates the median, with a 

cross denoting the mean. Data points are represented by circles, and scatter dots indicate outliers. (b) 

The radar charts illustrate the names of various organs along with their corresponding AUCs. The 

orange lines represent the AUCs for the HR WSIs, while the blue lines represent the AUC for SR 

WSIs. (c) The sensitivity in 47 diseases by three pathologists. 
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Figure 5. Distribution charts of diagnostic times for three pathologists on 480 SR and 480 HR WSIs 

across 12 organ systems. The boxes represent upper and lower quartile values, and the whiskers 

denote the minimum and maximum values. The red horizontal line inside the box indicates the 

median, while the green asterisk represents the mean. 
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Figure 6. Patient-level diagnosis results on HR and SR WSIs. The average accuracy, sensitivity, 

specificity, AUC and 95% confidence interval of the model-HR (trained on HR images) on 1,821 

HR WSIs from Dataset-CRC-Ass: 0.982±0.018, 0.996±0.004, 0.971±0.035 and 0.984±0.016；

model-HR on 1,821 SR WSIs from Dataset-CRC-Ass-SR: 0.935±0.071, 0.978±0.015, 0.901±0.131 

and 0.939±0.063; finetuned-SR (finetuned version of model-HR on SR images) on 1,821 SR WSIs 

from Dataset-CRC-Ass-SR: 0.983±0.015, 0.994±0.007, 0.975±0.031 and 0.984±0.013. The AUC of 

model-HR on Dataset-CRC-Ass-SR is inferior to that of model-HR on Dataset-CRC-Ass with P-

value<0.001, while there are no difference between  AUC of model-HR on Dataset-CRC-Ass and 

that of finetuned-SR on Dataset-CRC-Ass-SR with P-value=0.810 (two sided paired t-test).  The 

boxes represent upper and lower quartile values, and the whiskers denote the minimum and 

maximum values. The horizontal line inside the box indicates the median, while the asterisk 

represents the mean. The circles represent data points, and the scatter dots indicate outliers. * 

denotes significant difference. 
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Figure 7.  multi-scale SR model.  (a) The RRDB-net [39] is employed for generating the latent 

vectors  ����� . Here, "conv" signifies a convolutional layer with attributes such as kernel size, 

number of output channels, and stride size. For simplicity, the subsequent LReLU activation 

function is omitted. �� indicates a doubling of the number of channels, �indicates no change, and  

�� denotes a reduction by half. �, � denote feature maps, and � 	 denotes repetition 	 times. The 

FCL (fully connected layer) generates 20 latent vectors, each comprising 512 dimensions. (b) 

Latent vector �  are fed into a SBLOCK module, i.e. style-transfer network [37]. The module 

integrates information from latent vectors, noise elements, and feature maps to generate 2X 

enlarged maps through upsampling.  FBLOCK connects inputs through the smallest dimension and 

then undergoes two convolutional operations with conv 3 � 3, ��/1 , 3 � 3, 3/1. The value of � is 1 

to 9. (c) The feature maps of the 5X image and the output g collaborate in decoding the SR images, 

utilizing a pixel shuffle operation for upsampling. The dissimilarity between the SR images at 

10��� 40� obtained through the decoder and the actual HR images is assessed using pixel loss, 

perceptual loss, and discriminator loss [40].The VGG16 network [41] is employed to compute 

image features, and the perceptual loss is computed by utilizing features extracted from the 21st 

layer. The discriminator is from the styleGAN architecture [38]. 
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Supplementary Figure 1.  Visual comparison of some 40X HR and SR images. The left column 

consists of HR images, while the right column consists of SR images. For display, they are scaled to 

appropriate sizes.  
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Table 1.  the datasets for training and clinical assessment of SR model 

Datasets Body parts WSIs/part WSIs Patches 

Dataset-SR-T 12 25 300 157, 304 

Dataset-Ass 12 40 480 - 

Dataset-Ass-SR 12 40 480 - 

Totals - - 1,260 157, 304 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.05.24310022doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.05.24310022
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Patch-level training and testing dataset of CRC model 

 CRC Non-CRC Total 

subjects WSIs patches subjects WSIs patches subjects WSIs patches 

Dataset-CRC 614 614 30,056 228 228 32,863 842 842 62,919 

Dataset-CRC-

Training 

491 491 - 182 182 - 673 673 - 

Dataset-CRC-

Testing 

123 123 - 46 46 - 169 169 - 

 

-The patches in randomly selected 80%WSIs for training and the patches in remaining 20%WSIs 

for testing. This selection was repeated 10 times so this number varies.  
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Table 3. Patient-level diagnosis dataset for CRC model 

Dataset CRC  Non-CRC Total 

subjects WSIs subjects WSIs subjects WSIs 

Dataset-CRC-Ass 509 1,049 640 772 1,149 1,821 

Dataset-CRC-Ass-SR 509 1,049 640 772 1,149 1,821 
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Supplementary Table 1. List of hyperparameters for training MSR model 

Name of hyperparameters values 

Optimizer of generator Adam 

Optimizer of discriminator Adam 

betas 0.9,0.99 

initial learning rate 0.001 

finial learning rate 0.00001 

policy of learning rate cosine restart 

iteration number  300000 

batch size 2 

weight of MSE loss 1.0 

weight of perceptual loss 0.01 

weight of discriminator loss 0.01 
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Supplementary Table 2. List of hyperparameters for AI model 

Name of hyperparameters values 

optimizer  Adam 

epoch number 500 

steps per epoch 250 

batch size 64 

learning rate 0.0001 

decay rate 0.99 

loss function cross entropy 

patience on early stopping 50 

weight of L2 regulzrizer 0.0001 

Name of hyperparameters for finetune values 

epoch number 50 

steps per epoch 250 

patience on early stopping 20 
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