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Abstract11

Incidence of postoperative atrial fibrillation (POAF) after cardiac surgery remains high and is12

associated with adverse patient outcomes. Risk scoring tools have been developed to predict13

POAF, yet discrimination performance remains moderate. Machine learning (ML) models can14

achieve better performance but may exhibit performance heterogeneity across race and sex15

subpopulations. We evaluate 8 risk scoring tools and 6 ML models on a heterogeneous cohort16

derived from electronic health records. Our results suggest that ML models achieve higher17

discrimination yet are less fair, especially with respect to race. Our findings highlight the need18

for building accurate and fair ML models to facilitate consistent and equitable assessment of19

POAF risk.20
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1 Introduction22

Although there have been advancements in cardiac surgery techniques, the incidence of postop-23

erative atrial fibrillation (POAF) following cardiac surgery has not decreased significantly and still24

ranges from 15% to 50% [1, 2]. Unfortunately, there are short- and long-term adverse outcomes25

associated with POAF including morbidity, mortality, and longer, more expensive hospitalizations26

[3, 4, 5, 6, 7]. Early identification of patients at risk for developing POAF has long been desired27

to guide preventative and treatment strategies. To this end, more than a dozen POAF risk scoring28

algorithms have been introduced encompassing a variety of risk factors including patient demo-29

graphics and clinical characteristics as well as surgical characteristics. Yet a recent review found30

only patient age had no conflicting evidence across existing studies [8]. Moreover, these scoring31

systems offer moderate discrimination with area under the receiver operating characteristic curve32

(AUROC) scores ranging between 0.55 and 0.87 and may not generalize broadly as the performance33

is assessed on relatively small, homogeneous patient populations.34

Machine learning (ML) has been proposed as an alternative to achieve better predictive perfor-35

mance [9]. A recent scoping review found that support vector machines (SVM), gradient boosting36

machines (GBM), and random forests (RF) using clinical characteristics can predict POAF risk more37

accurately than existing risk scores with promising specificity, sensitivity, and AUROC scores [9].38

Three existing works compared multiple ML algorithms with Lu et al [10] and Parise et al. [11]39

concluding that SVM achieved the best performance while GBM performed the best in Karri et al.40

[12]. Despite their promise, indiscriminate application of ML models can exacerbate existing health41

disparities if they are not trained on a representative sample [13].42

Unfortunately, significant race and sex disparities exist as the number of patients undergoing car-43

diac surgery procedures and the outcomes for these patients [14]. Incidence of POAF after coro-44

nary artery bypass graft (CABG) surgery is higher in White patients [15]. It has also been suggested45

males are more likely to experience POAF following CABG [16, 17] although there exists conflicting46

evidence [18]. However, only 2 studies utilizing ML report the ethnicity composition of the under-47

lying dataset and both studies assessed the performance in populations with less than 4% Black48

patients [12, 19]. Thus, a crucial unanswered question is whether the better performance of ML49
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algorithms may exacerbate existing disparities.50

The objective of this study is to assess both the predictive performance and fairness of existing51

POAF risk scoring tools with popular ML algorithms on a heterogeneous population, with more52

than 20% of the patients identifying as Black. We assess the fairness of the predictive models in53

both race and sex subpopulations. We also restrict our evaluation to common structured data found54

within electronic health records (EHRs) as such algorithms can provide quicker (and hopefully more55

accurate) management strategies [9].56

2 Methods57

2.1 Data Source58

Our study was conducted using de-identified EHRs from the Emory Healthcare clinical data ware-59

house. Secondary data analysis was approved by the Emory University Institutional Review Board.60

Adult patients who received cardiac surgery in the outpatient or inpatient setting between Jan-61

uary 1, 2013 and December 31, 2017 were included. Cardiac surgery was defined using the Current62

Procedural Terminology (CPT) codes as either venous grafting for CABG or surgical procedures on63

cardiac valves (see Supplemental Material for full list). For security purposes, patient identifiers64

were omitted and certain records were excluded based on the date shifting logic. Patients who65

had a prior history of atrial fibrillation (AF), defined by the International Classification of Diseases66

codes of ‘427.31’ for the 9th revision (ICD-9) or ‘I48.XX’ for the 10th revision (ICD-10) were ex-67

cluded from the study. We used the presence of the AF ICD-9 or ICD-10 code following the cardiac68

surgery procedure date to identify cases of POAF. The value of 0 was assigned to patients that did69

not experience POAF and had at least 1 encounter after the cardiac surgery.70

All the clinical variables including age, sex, race, height, weight, and blood pressure were extracted71

from the EHR. We used the most recent value collected within the 1 year prior to the cardiac surgery72

date. The presence of clinical comorbidities for the risk scoring systems was determined using di-73

agnostic (ICD-9 or ICD-10), procedural (CPT), and medication codes. For the ML clinical variables,74

we grouped the diagnostic codes using the single-level Clinical Classifications Software (CCS) sys-75

tem and medication codes using Anatomical Therapeutic Chemical (ATC) Level 3 classification76
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codes.77

2.2 Risk Scores78

We evaluated POAF risk scoring systems and incident AF risk scoring systems that utilize com-79

monly collected measures in structured EHR data. Although a recent review identified at least80

12 distinct POAF scoring systems, [8] several used echocardiographic measurements such as left81

atrial dilation, left atrial diameter, and left ventricular ejection fraction which are often captured82

in unstructured text and are not easily accessible broadly. As such, we focused on the following 883

risk scores: (1) CHADS2,[20] (2) CHA2DS2-VASc,[20] (3) HATCH, [21] (4) COM-AF, [22] (5) C2HEST,84

[23] (6) mC2HEST, [24] (7) AFRI [25], and (8) CHARGE-AF [26]. The Python code for the scor-85

ing systems is openly available as a GitHub repository (https://github.com/joyceho/afib). The86

predictor variables for each model can be found in Supplemental Table 3.87

2.3 Machine Learning Models88

Six commonly used ML algorithms were explored that have been previously benchmarked from89

previous existing studies: (1) logistic regression (LR), (2) decision tree (DT), (3) SVM, (4) RF, (5) GBM,90

and (6) multi-layer perceptron (MLP). The ML models were constructed using the popular Python91

open-source software library, scikit-learn version 1.5.0 [27]. The ML models were supplied with92

age, race, gender, CCS, and ATC codes. CCS and ATC codes that were not present in at least93

20% of the patients were excluded. A total of 71 variables were supplied as input to the models.94

Exhaustive hyperparameter optimization was performed using 5-fold cross validation on the training95

dataset (see Supplemental Table 5 for the parameter search space for each model). The optimal96

hyperparameter for each model was identified using AUROC.97

2.4 Training and Evaluation98

We used stratified Monte Carlo cross validation to randomly split the data into 70-30% train-test.99

This process was repeated 10 times to assess model performance. Data imputation was required100

for age, height, weight, and blood pressure. Mean imputation from the training data was used.101

Predictive performance was measured using AUROC and area under the precision recall curve102
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(AUPRC) on the test set. AUROC and AUPRC were calculated using the scikit-learn package on103

the test data. We also assessed the fairness of the models on the sex (female and male) and race104

(White and Black/Other) subgroups. Two popular group fairness metrics were used, demographic105

parity ratio (DPR) and equalized odds ratio (EQR). DPR measures whether the predictive proportion106

of POAF across the subgroups are equal (i.e., the prediction risk should be independent of sex or107

race). EQR ensures the true positive rate and false positive rate of predictions are the same across108

the subgroups. Both DPR and EQR range from 0 to 1 with 1 indicates fairness across the subgroups.109

DPR and EQR were computed using the fairlearn package version 0.10.0.[28] All analyses were110

performed using Python version 3.9.7.111

3 Results112

3.1 Patient Characteristics113

Out of the final study population of 4961 patients, 1953 (39.4%) experienced POAF following cardiac114

surgery with an average onset of xxx. Baseline characteristics of the overall study population and the115

2 outcome groups (no POAF and POAF) are reported in Table 1. The incidence of POAF experienced116

in males (40.1%) and Whites (42.5%) was statistically higher than in females (37.9%) and Blacks117

(32.3%), respectively.118

3.2 Performance Comparison119

Table 2 summarizes the discrimination and fairness performance of the 14 models (8 risk scoring120

algorithms and 6 ML models). For each performance metric, the value represents the mean across121

the 10 test splits. Statistical significance in discrimination performance between any 2 models122

was assessed using a one-tailed paired t-test that the difference is greater than 0 (i.e., one model123

consistently outperforms the other).124

The ML model that achieved the best discrimination was RF with AUROC and AUPRC of 0.671 and125

0.558, respectively. Only GBM yielded a p-value above 0.001 for AUROC (0.03) and AUPRC (0.06)126

during the one-tailed paired t-test between RF and the other 5 ML models. Among the risk scoring127

systems, CHARGE-AF achieved the best performance with AUROC and AUPRC of 0.585 and 0.449,128
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Table 1: Baseline characteristics in patients with and without POAF.

Missing Overall No POAF POAF P-Value
(n=4961) (n=3008) (n=1953)

Age, mean (SD) 19 64.6 (12.4) 63.3 (13.1) 66.5 (10.9) <0.001
Male, n (%) 0 3300 (66.5) 1976 (65.7) 1324 (67.8) 0.133
Ethnicity, n (%) 0 <0.001
White 3426 (69.1) 1970 (65.5) 1456 (74.6)
Black 1085 (21.9) 735 (24.4) 350 (17.9)
Other 450 (9.1) 303 (10.1) 147 (7.5)

CHF, n (%) 0 2066 (41.6) 1226 (40.8) 840 (43.0) 0.123
HTN, n (%) 0 2999 (60.5) 1888 (62.8) 1111 (56.9) <0.001
DM, n (%) 0 1382 (27.9) 864 (28.7) 518 (26.5) 0.098
Stroke, n (%) 0 959 (19.3) 560 (18.6) 399 (20.4) 0.123
Vascular Disease, n (%) 0 2004 (40.4) 1253 (41.7) 751 (38.5) 0.027
COPD, n (%) 0 509 (10.3) 307 (10.2) 202 (10.3) 0.914
CAD, n (%) 0 4041 (81.5) 2503 (83.2) 1538 (78.8) <0.001
SHF, n (%) 0 379 (7.6) 228 (7.6) 151 (7.7) 0.887
Hyperthyroid, n (%) 0 18 (0.4) 14 (0.5) 4 (0.2) 0.211
Valvular, n (%) 0 3099 (62.5) 1783 (59.3) 1316 (67.4) <0.001
PVD, n (%) 0 1265 (25.5) 723 (24.0) 542 (27.8) 0.004
Obesity, n (%) 0 420 (8.5) 255 (8.5) 165 (8.4) 1.000
Height (m), mean (SD) 65 67.7 (4.6) 67.4 (4.6) 68.0 (4.5) <0.001
Weight (kg) , mean (SD) 41 192.0 (45.8) 189.9 (44.5) 195.3 (47.5) <0.001
SBP, mean (SD) 40 135.3 (22.3) 135.1 (22.2) 135.5 (22.4) 0.559
DBP, mean (SD) 41 74.4 (12.9) 74.8 (12.9) 73.8 (12.8) 0.015

Table 2: Average discrimination and fairness performance of the predictionmodels across 10Monte
Carlo cross-validation splits.

Race Sex
Model AUROC AUPRC DPR EQR DPR EQR

RF 0.671 0.558 0.824 0.816 0.967 0.946
GBM 0.666 0.553 0.837 0.835 0.975 0.948
SVM 0.658 0.540 0.828 0.827 0.976 0.958
LR 0.645 0.521 0.659 0.618 0.949 0.903
DT 0.630 0.534 0.970 0.950 0.962 0.942
MLP 0.622 0.494 0.789 0.772 0.953 0.923
CHARGE-AF 0.578 0.443 0.896 0.895 0.941 0.926
AFRI 0.568 0.474 1.000 1.000 1.000 1.000
COM-AF 0.550 0.416 0.993 0.980 0.884 0.858
HAVOC 0.527 0.401 0.999 0.999 0.999 0.998
HATCH 0.527 0.400 1.000 1.000 1.000 1.000
mC2HEST 0.526 0.408 1.000 1.000 1.000 1.000
CHA2DS2-VASc 0.525 0.408 1.000 1.000 1.000 1.000
CHADS2 0.517 0.401 1.000 1.000 1.000 1.000
C2HEST 0.509 0.401 1.000 1.000 1.000 1.000
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respectively. Notably, all 6 ML models outperformed CHARGE-AF and the other risk scoring tools129

at statistically significant levels (p-value < 0.001) for both discrimination metrics.130

The risk scoring systems generally yielded the best group fairness concerning race as all but131

CHARGE-AF, COM-AF, and HAVOC resulted in both DPR and EQR of 1. Notably, CHARGE-AF is the132

only risk scoring system incorporating race as a variable (see Supplemental Table 3), yet achieves133

the worst group fairness. In contrast, all the ML models except DT perform worse in terms of DPR134

and EQR to CHARGE-AF (DPR = 0.896 and EQR = 0.895).135

A similar group fairness trend is observed for sex in terms of risk scoring systems again as CHARGE-136

AF, COM-AF, and HAVOC do not yield DPR and EQR of 1. However, the ML models achieve slightly137

better performance than CHARGE-AF and COM-AF in terms of DPR and EQR for race. Surprisingly,138

COM-AF which incorporates sex as a variable yields the worst DPR and EQR performance with139

values of 0.884 and 0.858, respectively.140

4 Discussion141

In this study, we evaluated the performance of 6 MLmodels and 8 risk scoring algorithms to predict142

POAF. We demonstrated that RF outperformed the other ML methods and all of the risk scores143

considered in terms of AUROC and AUPRC. Furthermore, there were statistical differences between144

the discrimination performance of RF and the other models except for the GBM algorithm. The145

AUROC and AUPRC of these 14 models were all under 0.671 and 0.558 respectively. Compared146

to the existing ML studies, the discrimination performance is lower as they achieved an AUROC147

of at least 0.72. However, these models used indicators related to cardiac surgery which are not148

commonly available in the structured EHR data.149

In contrast to the discrimination performance, six of the risk scores outperformed all of the ML150

methods and three of the risk scores with respect to metrics of fairness. In fact, the results indicate151

the ML models exacerbated race and sex differentials when used for POAF prediction, which is152

consistent with existing evidence for other outcomes such as cardiovascular risk [29], dermatology153

[30], and population health [31]. Thus, better discrimination performancemay not always be desired154

as it might exacerbate existing race and sex disparities. This suggests further investigation is155
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necessary to holistically assess the efficacy of ML algorithms for POAF prognostication in real156

clinical contexts, [32] and whether bias mitigation mechanisms should be adopted to minimize157

disparities in outcomes and interventions.158

Abbreviations159

POAF: post-operative atrial fibrillation; AUROC: area under the receiver operating characteristic160

curve; ML: machine learning; SVM: support vector machines; GBM: gradient boosting machines;161

RF: random forests; CABG: coronary artery bypass graft162
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5 Supplemental Information163

5.1 Risk scoring algorithms164

The variables used for each of the 8 risk scores are summarized in Table 3. While other risk scoring165

systems have been developed using POAF as an event of interest[8], they are not benchmarked in166

our study as they use variables such as left atrial dilatation, left atrial diameter, left ventricular ejec-167

tion fraction, and length of stenosis. The scores in Table 3 can be computed from demographic168

information, diagnosis tables (ICD-9/ICD-10), vital signs commonly collected, and medication ta-169

bles.170

Table 3: Risk scoring systems, the original event of interests, and their associated variables. The
events of interest are thromboembolic events in patients with atrial fibrillation (VTE), incident AF
(AF), and POAF.

Score Event A
g
e
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F
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D
B
P

S
m
ok
in
g

H
T
N
M
ed
s

CHADS2 [20] VTE x x x x x
CHA2DS2-VASc [20] VTE x x x x x x x
HATCH [21] AF x x x x
COM-AF [22] POAF x x x x x x
C2HEST [23] AF x x x x x x
mC2HEST [24] AF x x x x x x
AFRI [25] POAF x x x x
CHARGE-AF [26] AF x x x x x x x x x x x x

5.2 ML for POAF171

A recent scoping review identified 7 papers that usedML for predicting POAF after cardiac surgery.[9]172

Of the 7 studies, 3 relied on electrocardiogram data while the remaining 4 used clinical documenta-173

tion, administrative data, or Holter monitoring. The sample size, ethnicity composition, and model174

performance of the 4 ML studies using administrative data are summarized in Table 4. As can be175

seen, none of the patient populations contains more than 3.4% Black.176

Table 5 summarizes the hyperparameter search space for each of the ML models. For each train-177

test split and ML model, GridSearchCV in scikit-learn was performed using 5-folds on the train178
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Table 4: Previous ML studies for POAF prediction.

Authors Dataset n White-Black Best ML
(%) (AUROC)

Magee et al. [19] Cardiopulmonary Research Sci-
ence and Technology Institute

19620 90.7-3.2 LR (0.72)

Karri et al. [12] MIMIC-III 6040 74.0-3.4 GBM (0.74)
Lu et al. [10] Second Affiliated Hospital of

Zhejiang University School of
Medicine

1400 Unknown SVM (0.78)

Parise et al. [11] Maastricht University Medical
Center+

394 Unknown SVM (0.95)

Table 5: Hyperparameter search space for the different ML models.

Model Parameter Space

LR C: [0.001, 0.01, 0.1, 1]
DT Criterion: [gini, entropy]

Max depth: [3, 4, 5, 6, 7, 8]
RF Max depth: [10, 15, 20]

Min leaf samples: [5, 10]
Num estimators: [50, 100, 200, 300]

GBM Max depth: [5, 8, 10]
Learning rate: [0.1, 0.01]
Min leaf samples: [5, 10]
Num estimators: [50, 100, 150, 200]

SVM C: [0.1, 1, 10, 100]
Kernel: [linear, rbf]

MLP Hidden layers: [(15, 10), (15,), (25, ), (50,), (25, 25, )]

split to find the optimal hyperparameter values. The ML model is then retrained using the optimal179

hyperparameter values and the performance is evaluated on the test set.180
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