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Abstract
Background: Generative artificial intelligence (AI) accelerates the development of digital twins, which
enable virtual representations of real patients to explore, predict and simulate patient health trajectories,
ultimately aiding treatment selection and clinical trial design. Recent advances in forecasting utilizing
generative AI, in particular large language models (LLMs), highlights untapped potential to overcome
real-world data (RWD) challenges such as missingness, noise and limited sample sizes, thus empowering
the next generation of AI algorithms in healthcare.

Methods: We developed the Digital Twin - Generative Pretrained Transformer (DT-GPT) model, which
utilizes biomedical LLMs using rich electronic health record (EHR) data. Our method eliminates the need
for data imputation and normalization, enables forecasting of clinical variables, and preliminary
explainability through a human-interpretable interface. We benchmarked DT-GPT on RWD including
long-term US nationwide non-small cell lung cancer (NSCLC) and short-term Intensive Care Unit (ICU)
datasets.

Findings: DT-GPT surpassed state-of-the-art machine learning methods in patient trajectory forecasting
on mean absolute error (MAE) for both the long-term (3.4% MAE improvement) and the short-term
(1.3% MAE improvement) dataset. Additionally, DT-GPT was capable of preserving cross-correlations of
clinical variables (average R2 of 0.98), handling data missingness and noise. Finally, we discovered the
ability of DT-GPT to provide insights into a forecast’s rationale and to perform zero-shot forecasting on
variables not used during fine-tuning, outperforming even fully trained task-specific machine learning
models on 13 clinical variables.

Interpretation: DT-GPT demonstrates that LLMs can serve as a robust medical forecasting platform,
empowering digital twins which virtually replicate patient characteristics beyond their training data. We
envision that LLM-based digital twins will enable a variety of use cases, including clinical trial
simulations, treatment selection and adverse event mitigation.
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1. Introduction
Clinical forecasting involves predicting patient-specific health outcomes and clinical events over time,
which is of paramount importance for patient monitoring, treatment selection and drug development.1

Digital twins are virtual representations of patients that leverage a patient's medical history to generate
detailed multi-variable forecasts of future health states.2 The application of digital twins is poised to
revolutionize healthcare in areas such as precision medicine, predictive analytics, virtual testing,
continuous monitoring, and enhanced decision support.3

Generative artificial intelligence (AI) holds promise for creating digital twins due to its potential to
produce synthetic yet realistic data, but this area of application is still in its infancy.4 Generative AI
methods for predicting patient trajectories include recurrent neural networks, transformers and stable
diffusion.5-9 These often fall short in terms of handling missing data, interpretability and performance.
These challenges can be partially addressed by causal machine learning, but these algorithms face
limitations related to small datasets or being confined to simulations.10,11

Recent breakthroughs in generative AI have been achieved with foundation models, which are pre-trained
AI models adaptable to various specific tasks involving different types of data. Most foundation models
for patient forecasting focus on single-point predictions rather than comprehensive longitudinal patient
trajectories, which are needed for clinical decision-making.12 Less explored for this purpose remain
text-focused Large Language Models (LLMs), which have demonstrated forecasting capabilities,13,14

including the ability of zero-shot forecasting, i.e. forecasting without any prior specific training in the
task, thus highlighting their remarkable generalizability.15,16

We propose the creation of digital twins based on LLMs that leverage data from electronic health records
(EHRs). EHRs are a key source of training data for machine learning models in healthcare, as they record
patient characteristics such as demographics, diagnoses and lab results over time.17 However, they pose
specific challenges such as data heterogeneity, rare events, sparsity and quality issues.12 There have been
developments in machine learning to overcome these challenges, especially for data sparsity, usually by
adapting the model’s architecture, resulting in increased model complexity and the introduction of further
assumptions on the data.6,9

We hypothesize that LLMs will empower digital twins and overcome these challenges. Here, we
introduce the Digital Twin - Generative Pretrained Transformer (DT-GPT) model (Fig. 1), which enables:
i) forecasting of clinical variable trajectories, ii) zero-shot predictions of clinical variables not previously
trained on, and iii) preliminary interpretability utilizing chatbot functionalities. We analyze the
performance of the model by forecasting laboratory values on both a long-term scale (up to 13 weeks) for
non-small cell lung cancer (NSCLC) patients, as well as a short-term scale (next 24 hours) for Intensive
Care Unit (ICU) patients. Based on our results, we anticipate that DT-GPT will pave the way for AI-based
digital twins in healthcare.
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Figure 1: The LLM-based DT-GPT framework enables forecasting patient trajectories, identifying key variables, and
zero-shot predictions. Here exemplified, a) a sparse synthetic patient timeline, which b) DT-GPT utilizes for generating
longitudinal clinical variable forecasts, e.g., c) neutrophil and d) hemoglobin blood levels. DT-GPT can e) chat and respond to
inquiries about important variables, as well as f) perform zero-shot forecasting on clinical variables previously not used during
training.

2. Methods
DT-GPT is a method that employs pre-trained LLMs fine-tuned on clinical data (Fig. 2a). Notably,
DT-GPT is agnostic regarding the underlying LLM and can be applied without architectural changes to
any general-purpose or specialized text-focused LLM.

2.1 Datasets and data preparation
We trained and evaluated DT-GPT for forecasting patients’ laboratory values across two independent
datasets, namely long-term and short-term trajectories of non-small cell lung cancer (NSCLC) and
intensive care unit (ICU) patients, respectively. For the US-based NSCLC dataset, we used the nationwide
Flatiron Health EHR-derived de-identified database. The data are de-identified and subject to obligations
to prevent re-identification and protect patient confidentiality. The Flatiron Health database is a
longitudinal database, comprising de-identified patient-level structured and unstructured data, curated via
technology-enabled abstraction.18,19 During the study period, the de-identified data originated from
approximately 280 cancer clinics (~800 sites of care).

The study included 16,496 patients diagnosed with NSCLC from 01 January 1991 to 06 July 2023. The
majority of patients in the database originate from community oncology settings; relative
community/academic proportions may vary depending on study cohort. Patients with a birth year of 1938
or earlier may have an adjusted birth year in Flatiron Health datasets due to patient de-identification
requirements. To harmonize the data, we aggregated all values in a week based on the last observed value.
We focused on the 50 most common diagnoses and 80 most common laboratory measurements,
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Evidence before this study
Digital Twins (DTs) for forecasting patient-specific clinical trajectories, events and outcomes are being increasingly realized
by the means of generative artificial intelligence (AI). We conducted a comprehensive search using Google Scholar and
Scopus for studies and reviews on methods for predicting longitudinal patient trajectories, published in English between Jan 1,
2019, and March 31, 2024. The search employed the following keyword combinations: “forecasting” and “patient trajectory”,
“forecasting” and “patient”, “forecasting” and “clinical”, “prediction” and “patient trajectory” and “time”, ”forecasting and
electronic health records”, “prediction” and “patient” and “time”, “prediction” and “clinical” and “time”, “prediction” and
“patient trajectory” and “longitudinal”, “prediction” and “patient” and “longitudinal”, “prediction” and “clinical” and
“longitudinal”, “foundation model” and “electronic health records”, “large language model” and “electronic health records”.
We restricted the search results to the studies describing generative AI-based methods. The identified studies introduce
high-performing clinical forecasting methods but their validation is limited to a single application only with a specific disease
indication or dataset. Additionally, these methods typically require extensive data preprocessing, such as imputation of missing
values and normalization. While large language models and foundation models offer a more general setup applicable to
various research questions and datasets, existing methods predominantly focus on single time-point predictions rather than
longitudinal predictions. Moreover, the interpretability of existing models is limited.

Added value of this study
This study introduces the Digital Twin - Generative Pretrained Transformer (DT-GPT) model, a novel method to fine-tune
large language models (LLMs) to forecast multi-variable patient trajectories, combining the advantages of existing methods
while overcoming the limitations of data heterogeneity and sparsity associated with electronic health records (EHRs). DT-GPT
achieves state-of-the-art forecasting performance on long-term US nationwide non-small cell lung cancer datasets and
short-term intensive care unit datasets, demonstrating its applicability to multiple disease conditions with various time
horizons and both regular and irregular time sampling. Furthermore, DT-GPT learns relationships and preserves
cross-correlation between variables, enabling zero-shot (i.e., without any training) prediction of clinical variables previously
not trained on. Finally, the interactive interface provides preliminary prediction explainability through chatbot functionality.

Implications of all the available evidence
Generative AI-based models enhance the capabilities of patient DTs for treatment selection, patient monitoring, and clinical
trial support by creating state-of-the-art patient trajectory predictions. DT-GPT advances the development of DTs by reducing
the need for extensive data preprocessing and enabling interaction with the model through a human-interpretable interface.
Our method is anticipated to be easily accessible to clinicians, allowing efficient simulations of patient trajectories under
various scenarios to support clinical decision-making.

Research in Context

complemented by the Eastern Cooperative Oncology Group (ECOG) score, metastases, vitals, drug
administrations, response and mortality variables totaling 773,607 patient-days across 320 variables.

For every NSCLC patient, we divided their trajectory into input and output segments based on the start
date of each line of therapy to create each patient sample. All variables up to the start date were
considered input data. The objective was to predict the weekly values up to 13 weeks after the start date
of the following variables and their respective LOINC codes: hemoglobin (718-7), leukocytes (26464-8),
lymphocytes/leukocytes (26478-8), lymphocytes (26474-7), neutrophils (26499-4) and lactate
dehydrogenase (2532-0). These variables were selected due to their frequent measurement and relevance
in reflecting key characteristics of NSCLC treatment response (Appendix A1).

To demonstrate the generalizability of DT-GPT, we analyzed ICU trajectories from the publicly-accessible
Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset.20 We employed an established
processing pipeline, resulting in 300 input variables across 1,686,288 time points from 35,131 patients.21

Here, the objective was to predict a patient’s future hourly lab variables given their first 24 hours in the
ICU. Specifically, the patient history was considered as the first 24 hours for all variables, and the task
was to forecast the future 24 hourly values for the following variables: O2 saturation pulse oximetry,
respiratory rate and magnesium. These variables were selected due to their clinical relevance, high
temporal variability, and the fact that at least 50% of patients had at least one measurement for each.
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Figure 2: The DT-GPT framework transforms EHRs into text and subsequently fine-tunes an LLM on this data. a)
Overview of the pipeline: datasets are split and encoded into input/output text based on landmark timepoints, then used to
fine-tune an LLM, here BioMistral. The model output is evaluated for trajectory forecasting whilst zero-shot predictions and
variable importances are explored via a chat interface. b) Sample size, visit frequency, and sparsity of the non-small cell lung
cancer (NSCLC) and intensive care unit (ICU) datasets. c) Input and d) output encoded examples, emphasizing the chronological
encoding of observations.

These criteria not only increased the forecasting challenge, but also ensured wide representation across
the patient population.

Both datasets were randomly split at the patient level into 80% training, 10% validation, and 10% test set.
Thus, each set comprised disjoint sets of patients to avoid data leakage. The test sets were solely used for
final evaluation and to assess the model’s generalizability (Fig. 2b; Appendix A1).

2.2 Encoding
We encoded patient trajectories by using templates that converted medical histories based on EHRs into a
text format compatible with LLMs, as proposed by Xue et al.14 and Liu et al.15 (Fig. 2c,d; Appendix A4).
The input template is structured into four components: 1) Patient history, 2) demographic data, 3) forecast
dates and 4) prompt. The patient history contains a chronological description of patient visits, requiring no
data imputation for missing variables. The output trajectories were also encoded using templates,
containing only the relevant output variables for the forecasted time points. We utilized a manually
developed template for input encoding and JSON-format encoding for the output (Appendix A4, A10).
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2.3 LLMs and fine-tuning
We utilized the biomedical LLM BioMistral 7B DARE, since it is provided with an open source license
and based on a recognized LLM.22 Furthermore, BioMistral is instruction tuned and through its
biomedical specialization incorporates compressed representations of vast amounts of biomedical
knowledge. We further fine tuned this LLM using the standard cross entropy loss, masked so that the
gradient was only computed on the output text. We performed 30 predictions for each patient sample
during evaluation, then took the mean for each time point as the final prediction.16,23 All hyperparameters
used in fine-tuning are shown in Appendix A5.

2.4 Chatbot and zero-shot learning
We employed the DT-GPT model to run a chatbot based on patient histories for prediction explanation
and zero-shot forecasting. For this, first we used DT-GPT to generate forecasting results from patient
history and, consecutively, added a task-specific prompt surrounded by the respective
instruction-indication tokens to the DT-GPT chat history for receiving a response. For prediction
explanation, the prompt asked for the most important variables influencing the predicted trajectory. For
zero-shot forecasting, the prompt specified the output format and days to predict new clinical variables
that were not subject to optimization during training. Example prompts and chatbot interactions for both
tasks are provided in Appendix A6 and Fig. 5a,e.

2.5 Baseline models
We employed five multi-step, multivariate baselines, ranging from a simple baseline to state-of-the-art
forecasting models. Specifically, we used a naïve model that copies over the last observed value, a linear
regression model, a time series LightGBM model, a Temporal Fusion Transformer as well as a TiDE
model.8,24,25 These models were selected due to their ability to handle future variables and state-of-the-art
performance in both medical and standard time series forecasting.26,27 The hyperparameters and training
details are shown in Appendix A7.

2.6 Evaluation
For evaluation of the forecasted patient trajectories, we used the mean absolute error (MAE) as our
primary metric. We first standardized and calculated the pairwise error between the forecasted value and
the true value of a given sample and time step, averaged over all patients and timepoints, and then
averaged again over all variables.25 All error bars refer to the standard error of the model aggregated
across all variables.28 For the evaluation of the effects of RWD missingness we randomly sampled 200
patients of the test set. Chatbot exploration and zero-shot forecasting were analyzed on the whole test set.

2.7 Role of the funding source
The study’s funders provided support for access to the data, computational resources, oversight
committees as well as salaries, but had no further role in data collection, method development,
interpretation or writing.
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Model

a) NSCLC b) Intensive Care Unit

Hemo-
globin

Leuko-
cytes

Lympho-
cytes/

Leuko-
cytes

Lympho-
cytes

Neutro-
phils

Lactate
Dehydro-

genase

Magne-
sium

Resp.
Rate

Oxygen
Saturation

Copy
Forward 0·698 0·969 0·731 0·569 0·974 0·433 0·681 0·769 0·746

Linear
Regression 0·486 0·782 0·668 0·506 0·778 0·475 0·606 0·680 0·681

Temporal
Fusion
Transformer

0·469 0·719 0·651 0·463 0·717 0·480 0·537 0·635 0·644

TiDE 0·464 0·737 0·655 0·465 0·740 0·453 0·534 0·635 0·652

LightGBM 0·453 0·727 0·644 0·456 0·734 0·425 0·520 0·634 0·644

DT-GPT
(ours) 0·440 0·689 0·650 0·437 0·699 0·417 0·505 0·636 0·635

Table 1: Benchmark of clinical variable forecasting across two datasets. DT-GPT outperformed the baselines in the majority
of cases on both a) the long-term non-small cell lung cancer (NSCLC) and b) the short-term intensive-care unit (ICU) datasets.
All errors refer to mean absolute error (MAE; lower is better) normalized by standard deviation. For example, an MAE of 0·6
means that the model prediction is on average within 0·6 standard deviations of the observed value. Best performing models are
highlighted in bold.

3. Results
DT-GPT achieved state-of-the-art forecasting performance, being stable to address common RWD
challenges and forecast zero-shot lab variables. Additionally, we explored how DT-GPT provides
preliminary insights into its predictions.

3.1 DT-GPT achieved state-of-the-art forecasting performance
DT-GPT achieved the lowest overall mean absolute error (MAE) across both benchmark tasks (Table 1).
On the NSCLC dataset, DT-GPT achieved an average MAE of 0·55 ± 0·04, whilst LightGBM, the second
best model, achieved an average MAE of 0·57 ± 0·05, showing a relative improvement of 3·4% (Table
1a). On the ICU dataset, DT-GPT achieved an average MAE of 0·59 ± 0·03, whilst the second best
model, LightGBM, performed at 0·60 ± 0·03, equivalent to a 1.3% improvement (Table 1b; Appendix
A8).

DT-GPT forecasts preserved inter-variable relationships. The correlations between the variables
forecasted by DT-GPT aligned with the correlations between the variables in the test datasets with an R2

of 0·98 and 0·99, whilst those of LightGBM achieved an R2 of 0·97 and 0·99 (Appendix A8) on the
NSCLC and ICU datasets, respectively. Additionally, DT-GPT outperformed LightGBM in the majority
of timepoints in both datasets, demonstrating that the improvement was consistent across time (Fig. 3a,b;
Appendix A8).
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Figure 3: Performance analysis of DT-GPT. a) The long-term non-small cell lung cancer (NSCLC) and b) the short-term
intensive-care unit (ICU) dataset, with the x-axis showing relative time points and the y-axis the corresponding mean absolute
error (MAE), comparing with the second best forecasting model LightGBM. Here exemplified, DT-GPT forecasts of neutrophil
counts in patients with c) low and d) high error, for all weeks where the ground truth exists. e) Histogram of MAE distribution for
all predicted neutrophil counts.

DT-GPT can be further improved by exploring alternative trajectory aggregation methods. To inspect both
low and high MAE predictions from DT-GPT, we visualized two sample individual-patient forecasts for
the variable neutrophils (Fig. 3c,d) picked from the low and high end of performance distribution (Fig.
3e). Note that the final prediction was derived by averaging 30 generated trajectories and that, even in
poor performing cases, individual non-averaged forecasted trajectories were sometimes able to capture
parts of the true trajectory. To explore the importance of trajectory aggregation, we calculated the error
given an optimal aggregation. To this end, we selected the individual trajectories with the lowest MAE
and recalculated the hypothetical MAE on the NSCLC dataset, achieving a 26% improvement in error to
0·40 ± 0.02, without any further model training. Note that this is a theoretical lower bound. Finally, we
noted that in the distribution of MAE for neutrophils across all patients, most of the errors were
right-skewed, indicating that high errors came from a small number of outlier patients (Fig. 3e).
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Figure 4: DT-GPT is robust to common RWD issues in the long-term NSCLC dataset. a) Mean absolute error (MAE)
according to the number of patients in the training set. Assessing impact on MAE based on b) added missingness, on top of the
baseline 94·4% missingness of the NSCLC dataset, and c) injected misspellings in the input.

3.2 DT-GPT is robust to common RWD challenges
DT-GPT is flexible and robust to common practical data challenges, exhibiting desired properties in a
variety of ablation studies, here exemplified on the average performance on all six clinical variables of the
NSCLC dataset. First, DT-GPT performance was competitive with baselines after training with data
corresponding to 5,000 patients and it further improved with the number of patients in the training dataset
(Fig. 4a; Table 1). Additionally, DT-GPT could handle increased input missingness, with performance
degradation only showing after more than 20% of the input was randomly masked, on top of the 94·4%
initial missingness of the NSCLC dataset (Fig. 4b). Thirdly, DT-GPT was stable to misspellings in the
input, only significantly degrading in performance after 25 misspellings per patient sample (Fig. 4c). Note
that misspellings cannot be handled by most established machine learning methods and either require
completely dropping or manual curation of the data.

3.3 DT-GPT enables prediction insights and zero-shot forecasting
DT-GPT retained its conversational capability post-fine-tuning for the forecasting task, facilitating user
interaction and enabling the inquiry of prediction reasoning. For each patient sample, 10 predicted
trajectories were generated, accompanied by a set of explanatory variables elucidating these predictions
(Fig. 5a). We extracted explanatory variables from 25,575 out of 27,730 chatbot responses. The most
influential variables were therapy, ECOG status and leukocyte count (Fig. 5b; Appendix A11). For
example, the therapy significantly influenced hemoglobin dynamics: patients receiving immunotherapy
and targeted therapy (EGFR inhibitors) generally exhibited higher hemoglobin levels over time compared
to those undergoing chemotherapy or combination therapies (i.e. chemotherapy and immunotherapy),
whose hemoglobin levels tended to decline due to the chemotherapy impacting bone marrow (Fig. 5c;
Appendix A12,A13).29 Additionally, the last recorded ECOG value in a patient’s medical history
impacted the predicted hemoglobin trajectories (Fig. 5e), with lower ECOG values (less performance
restriction) correlating with higher hemoglobin levels over time, which is concordant with literature as
well.30 These findings are also consistent with the original data (Fig. 5d,f).

DT-GPT supports zero-shot forecasting of 69 non-target clinical variables that are observed in patient
medical histories but were not subject to model fine tuning. In our experiments, we forecasted each
non-target variable separately (Fig. 5g) and extracted 81,004 trajectories from 81,918 forecasting results.
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Figure 5: DT-GPT preserves its conversational ability after the fine-tuning, allowing inquiring into prediction rationale
and zero-shot forecasting. a) Example of a chatbot interaction providing explanations for predictions. b) Five most important
variables for predicting all variables derived from forecasting test patient samples with 10 predicted trajectories each. c) The most
important variable, therapy, influences predicted hemoglobin trajectories, with d) the corresponding ground truth. Here, the lines
show average trajectories and the error bars correspond to the standard error. e) The second most important variable, ECOG,
influences predicted hemoglobin trajectories, and f) showing the corresponding ground truth. Lines represent average trajectories
and the error bars correspond to the standard error. g) Example of a chatbot interaction for forecasting a variable not previously
trained on. h) DT-GPT outperforms LightGBM models on 13 out of 69 non-target variables. Notably, LightGBM models were
trained on more than 13,000 patient data in a supervised manner, whereas DT-GPT is performing here fully zero-shot predictions.
i) DT-GPT is superior for variables more closely related to the target variables used during fine tuning, with the respective
LOINC codes depicted in parentheses. (Abbreviations: ECOG - Eastern Cooperative Oncology Group performance status scale,
LDH - Lactate dehydrogenase, ALT - Alanine aminotransferase).
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We compared the performance of zero-shot DT-GPT with a supervised LightGBM model, which was
trained on each non-target variable separately using data from over 13,000 patients. Notably, LightGBM
is a fully supervised model and therefore anticipated to perform better than a zero-shot model.

Surprisingly, however, zero-shot DT-GPT outperformed LightGBM on 13 out of 69 non-target variables
(Fig. 5h,i). The variables with improved performance can be described as closely related to the target
variables (Fig. 5i). For instance, segmented neutrophils, band form neutrophils and neutrophils by
automated count have different LOINC codes from the trained variable (30451-9, 26507-4, 751-8,
respectively), but are correlated with the target variable neutrophils (LOINC 26499-4). A table containing
MAE values for DT-GPT and the LightGBM baseline is provided in Appendix A14.

4. Discussion
Our main finding is that a simple yet effective method allows training LLMs on EHRs to generate
detailed patient trajectories that preserve inter-variable correlations. This method achieves novel zero-shot
performance, potentially making DT-GPT a digital twin platform that can mimic individual patients, with
applications such as treatment selection and clinical trial support.

Building on past LLM research in general forecasting, DT-GPT outperforms existing baselines in NSCLC
and ICU datasets.15,16 These findings align with recent LLM forecasting developments, demonstrating that
clinically-specific adjustments enable accurate predictions.13,14 Additionally, DT-GPT’s generative nature
allows for multiple trajectory simulations per patient, offering insights into possible patient scenarios,
cohort simulations and uncertainty estimates.

The positive performance of LLMs for patient forecasting may stem from parallels between natural
language and biomedical data, such as non-random missingness. For example, a doctor might skip
measuring blood pressure if a patient appears healthy, indicating information by omission. Natural
language implicitly handles such ambiguity; unspoken words can still convey meaning or none at all.
Recent advancements suggest that LLMs can capture these complex relationships.31

DT-GPT addresses electronic health record (EHR) challenges including noise, sparsity and lack of data
normalization.12 Unlike most established machine learning models that require data normalization and
imputation, DT-GPT operates without these requirements. Here, we demonstrated its robustness to
sparsity, misspellings and noisy medical data often encountered in real-world datasets. Moreover, EHR
data often contain mixed data encodings; for instance, drug information may vary in encoding, such as the
dosage used or noted only as “administered”, both of which DT-GPT handles without additional
preprocessing. Overall, DT-GPT simplifies and streamlines data preparation, thus enabling faster
deployment across diverse datasets.

DT-GPT can be inquired about the rationale of predictions, which increases the interpretability of the
model. This capability bridges the gap between medical expert and model, enabling the exploration of
prediction rationales and alternative patient scenarios efficiently. We anticipate that this advancement
represents a significant leap in human-computer interaction with AI predictions, which is expected to
profoundly influence clinical practices in the near future.
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DT-GPT enables zero-shot predictions, demonstrating its ability to forecast variables not explicitly
included in its fine-tuning phase by learning their dynamics and adapting to novel tasks. Remarkably,
zero-shot DT-GPT outperforms a supervised, fully-trained machine learning model on a subset of clinical
variables, highlighting the pioneering potential of LLM-based approaches in RWD forecasting. This
underscores the transformative potential of LLM-based models like DT-GPT to revolutionize forecasting
in healthcare, suggesting a promising future for AI-driven advancements in clinical decision-making and
precision medicine.

A challenge of LLM-based models is the restricted number of simultaneously forecasted variables. The
current constraint on the number of forecasted variables is due to the limited sequence length of both
input and output of the LLMs used in fine-tuning. Advances in extending the context length will enable
modeling of additional patient variables. Furthermore, we anticipate that transitioning from zero-shot to
few-shot learning, where the model receives further training on a small subset of data, would enable a
wider span of forecasted variables and extend DT-GPT's applicability to broader clinical challenges.

Another established shortcoming of LLM-based models is their tendency to hallucinate. In our case, this
could be reflected in explainability results not necessarily providing true answers. This is critical for the
medical domain and an active field of research in explainable AI, which we believe will be the focus of
the next generation of LLM-based models.

Finally, we observe that high error predictions often occur due to the high variance between the multiple
generated trajectories of each patient sample, with the mean aggregation into the final prediction not
capturing key dynamics. It is thus an open challenge to develop improved aggregation methods, for
example by using a second LLM as an arbiter or by having a human expert select the most realistic
trajectory.

In conclusion, DT-GPT serves as a digital twin forecasting platform, enabling accurate and stable
predictions, exploratory interpretability via a natural-language interface, and forecasting of patient
variables not used in fine-tuning. DT-GPT exhibits true digital twin behaviors, potentially reproducing all
aspects of the patients it represents, and surpassing traditional AI methods optimized for individual
variables. We believe patient-level digital twins will impact clinical trials by supporting biomarker
exploration, trial design, and interim analysis. Additionally, digital twins will assist doctors in treatment
selection and patient monitoring. Overall, we envision LLM-powered digital twins becoming integral to
healthcare systems.
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Appendix

A1 Dataset details

Table A1.1: Dataset details.

The outlier processing method is outlined in Appendix A2. The splitting into training/validation/test datasets is
performed randomly for the MIMIC-IV dataset, whilst stratified by group stage, smoking status, number of
observations per visit and number of visits with drug administrations for the NSCLC dataset to ensure a balanced
evaluation.

For the NSCLC dataset, we selected the number of laboratory variables to incorporate all variables that were already
used in linear prognostic models [21], as well to have variables seen in at least 2000 patients. The number of
diagnoses was chosen to include key information, as well as to have enough patient data for useful model training,
having at least 1700 observations. With the clinical importance of variables shown in Table A1.2.

For the MIMIC-IV dataset, we define high variability as measured by the R2 for the last observed value for the full
forecast. The lower the R2, the higher the variability.
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Flatiron Health - NSCLC ICU - MIMIC-IV

# Patients 16496 35131

# Time Points 773607 1686288

# Input Variables 320 300

# Output Variables 6 3

Avg. % Missing in Input 94·4% 98·1%

Avg. % Missing in Output 74·5% 35·1%

Female/Male/NA % 51·0/49·0/0·0 39·7/51·1/9·2

Avg./Std. Age at Start 67·5/10·2 64·0/16·3

Avg./Std. Length of Full Patient
Trajectory

160·5/328·6 days 46·78/0·87 hours

Avg./Std. Nr of Total Events per
Patient Trajectory

35·4/33·1 47·3/2·3

Avg./Std. average length between
events

5·8/17·0 weeks 1·0/0·2 hours

Time Point Resolution Weekly Hourly

Input Time Horizon Unlimited 24 hours

Forecast Time Horizon Up to 13 weeks Up to 24 hours
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Variable LOINC Impact

Leukocytes [109/L] 26464-8 NSCLC treatment, particularly chemotherapy, can cause
leukopenia, leading to decreased leukocyte counts. This
reduction in leukocytes can increase the risk of infections due to
a compromised immune system.

Lymphocytes/Leukocytes [%] 26478-8 This ratio is often used to monitor the immune status and
inflammatory response.

Neutrophils [109/L] 26499-4 Chemotherapy can lead to neutropenia, resulting in a reduced
neutrophil count. Neutropenia increases the risk of infections.

Lymphocytes [109/L] 26474-7 Lymphocyte counts often decrease during NSCLC treatment due
to the immunosuppressive effects of chemotherapy. This
reduction can impair the body's ability to fight infections and
may affect the overall immune response.

Lactate Dehydrogenase [U/L] 2532-0 Elevated levels of lactate dehydrogenase (LDH) can be
observed, indicating tissue damage or tumor burden.

Hemoglobin [g/dL] 718-7 Hemoglobin levels may decrease, leading to anemia, as a side
effect of chemotherapy or due to the cancer itself. Anemia can
cause symptoms such as fatigue, weakness, and shortness of
breath, impacting the patient's quality of life.

Table A1.2: Details on the NSCLC output variables.

A2 Outlier processing

To remove outliers, all target values more than three standard deviations were initially filtered out. Since there was
still too much noise in the data, a second round of the filter was applied, though this time values were clipped, since
high values could be outliers but still provide useful information.

A3 Base pretrained LLM

We focus on biomedical LLMs as base LLMs, since they have been shown to contain biomedical knowledge,
potentially improving the performance of the overall model. A number of different biomedical LLMs have been
proposed, one of them BioMistral 7B DARE.22 We selected this model because it has an open source license, is
based on a set of popular existing LLMs and has been shown to perform well on biomedical tasks. Additionally,
following Gruver et. al, the model tokenizes numbers into individual digits.16 Here we use the 7B parameter version
since it allows for a larger amount of experimentation with limited computational costs. Because the method is
agnostic to the underlying LLM, DT-GPT can be equally developed based on larger models as well, which could
potentially produce better forecasts.

A4 Forecasting prompt examples

We structure the template in four components:
1. The patient’s history is noted down chronologically, using relative dating to prevent overfitting on time or

date. For each patient visit and for each observed value, we note down the variable’s name and value,
whilst omitting any missing variables.

2. Next, we include the patient's baseline data, such as age and cancer stage
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3. Since we do not impute target values, we include information about which variables should be in the output
at which future time points.

4. Finally, we add a short prompt.

The target variables are also converted based on templates, containing only the respective target values. To reduce
the amount of tokens required, the output is formatted so the target variable is provided followed by the list of values
corresponding to the days that we want to output.

Note that for the MIMIC dataset, for each variable, if the value was observed in the patient’s history, it will be
forward propagated, ensuring that we have the information even if the context length is normally not long enough.
Here, we present synthetic examples of both the manual template and JSON input as well as output.

Manual Template Input (Synthetic Patient)

First, patient chronological patient history up until the current day.
Patient visits for the first time, with the following values: advanced
cancer diagnosis is non small cell NSCLC, initial cancer diagnosis is non
small cell NSCLC.
14 days after previous visit, patient visits again, with the following
values: ECOG is 0, alanine aminotransferase is 21, albumin is 42, calcium is
9.4, aspartate aminotransferase is 29, bilirubin is 0.5, carbon dioxide is
24, carcinoembryonic ag is 78.2, hematocrit 2 is 45.5, creatinine is 0.8,
glucose is 123, lactate dehydrogenase 2 is 196, basophils 2 is 0,
eosinophils 2 is 0.2, eosinophils/100 leukocytes is 3.6, erythrocytes 2 is
4.6, leukocytes 2 is 6.3, lymphocytes 2 is 2.5, lymphocytes/100 leukocytes 3
is 39.9, monocytes is 0.5, monocytes/100 leukocytes is 8.1, neutrophils is
3, platelets is 231, protein 2 is 68, basophils/100 leukocytes 2 is 0.7,
granulocytes is 3, granulocytes/100 leukocytes is 47.7, urea nitrogen is 15,
glomerular filtration rate/1.73 sq m.predicted.non black is 103, glomerular
filtration rate/1.73 sq m.predicted.black is 125, alkaline phosphatase is
49, hemoglobin is 15.5, body height is 191.8, body weight is 116.4.

…

14 days after previous visit, patient visits again, with the following
values: Dehydration is diagnosed, Adverse effect of antineoplastic and
immunosuppressive drugs, initial encounter is diagnosed, cisplatin is 60,
pemetrexed is 1225, ECOG is 0, alanine aminotransferase is 21, albumin is
41, … glomerular filtration rate/1.73 sq m.predicted.non black is 80,
glomerular filtration rate/1.73 sq m.predicted.black is 109, alkaline
phosphatase is 44, hemoglobin is 14.5, body height is 191.8, body weight is
117.8.
Next, the baseline data for the patient: birth year is 1948, gender is M,
ses index is 2, is cancer advanced is True, histology is Non-squamous cell
carcinoma, cancer stage is Stage IIIB, smoking status is No history of
smoking, ethnicity is Not Hispanic or Latino, Current line of therapy is
Cisplatin,Pemetrexed, Current line number is 1.
Finally, the variables which you should predict, and for which days in the
future from the current day: {"hemoglobin": [14, 21, 28, 42, 49, 56, 63, 70,
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77], "leukocytes 2": [14, 21, 28, 42, 49, 56, 63, 70, 77], "lymphocytes 2":
[14, 21, 28, 42, 49, 56, 63, 70, 77], "lymphocytes/100 leukocytes 3": [14,
21, 28, 42, 49, 56, 63, 70, 77], "neutrophils": [14, 21, 28, 42, 49, 56, 63,
70, 77]}
Now, your task is as follows: Given the non small cell NSCLC patient's
history, please predict for this patient the previously noted down variables
and future days, in the same JSON format.

JSON Input (Synthetic Patient)

{"Patient history, with each visit in chronological order and relative days
to previous visit": {"0 days": {"initial cancer diagnosis": "non small cell
NSCLC"}, "28 days": {"body height": "172.2", "body weight": "64.4", "oxygen
saturation": "98"}, "126 days": {"creatinine": "1.2"}, "14 days": {"body
weight": "70.4", "oxygen saturation": "99"}, "14 days": {"body height":
"172.2", "body weight": "64.7", "oxygen saturation": "95"}, "70 days":
{"creatinine": "1.5"}, "14 days": {"body height": "170.2", "body weight":
"68.2", "oxygen saturation": "95"}, "21 days": {"body weight": "69.2",
"oxygen saturation": "98"},

…

"14 days": {"body weight": "64.9"}, "7 days": {"Nausea with vomiting,
unspecified": "diagnosed", "carboplatin": "140", "paclitaxel": "88",
"alanine aminotransferase": "13", "albumin": "40", "calcium": "8.8",
"aspartate aminotransferase": "29", "bilirubin": "0.4", "carbon dioxide":
"20", … "neutrophils": "5.9", "neutrophils/100 leukocytes": "79",
"platelets": "176", "potassium": "4.6", "protein 2": "69", "sodium": "136",
"basophils/100 leukocytes 2": "0.1", "urea nitrogen": "15", "glomerular
filtration rate/1.73 sq m.predicted.non black": "63", "alkaline
phosphatase": "119", "hemoglobin": "16.4"}}, "Baseline data": {"birth year":
1941, "gender": "M", "ses index": "4", "is cancer advanced": true,
"histology": "Non-squamous cell carcinoma", "cancer stage": "Stage IA2",
"smoking status": "History of smoking", "ethnicity": "Not Hispanic or
Latino", "line of therapy": "Carboplatin,Paclitaxel", "line number": 1},
"Output variables": {"Variables to predict for respective days":
{"hemoglobin": [7, 14, 21, 28, 35, 42, 49, 56], "lactate dehydrogenase 2":
[56], "leukocytes 2": [7, 14, 21, 28, 35, 42, 49, 56], "lymphocytes 2": [7,
14, 21, 28, 35, 42, 49, 56], "lymphocytes/100 leukocytes 3": [7, 14, 21, 28,
35, 42, 49, 56], "neutrophils": [7, 14, 21, 28, 35, 42, 49, 56]}}, "Prompt":
"Given the non small cell NSCLC patient's history, please predict for this
patient the previously noted down variables and future days, in the same
JSON format."}

Manual Template Output (Synthetic Patient)

hemoglobin starts at 15.5 decreases to 14.4 increases to 14.5 decreases to
13.6 increases to 14.1 increases to 14.8 decreases to 14.4 decreases to
13.8.
lactate dehydrogenase 2 starts at 232.
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leukocytes 2 starts at 6 increases to 7.7 decreases to 3.1 decreases to 2.3
increases to 3.1 increases to 6 decreases to 3.6 increases to 3.7.
lymphocytes 2 starts at 0.6 increases to 0.9 decreases to 0.4 decreases to
0.3 stays at 0.3 increases to 0.5 decreases to 0.4 stays at 0.4.
lymphocytes/100 leukocytes 3 starts at 9.5 increases to 12.3 increases to
13.1 stays at 13.1 decreases to 11.1 decreases to 8.1 increases to 10.2
increases to 12.1.
neutrophils starts at 5.1 increases to 6.2 decreases to 2.5 decreases to 1.8
stays at 1.8 increases to 4.7 decreases to 2.9 decreases to 2.6.

JSON Output (Synthetic Patient)

{"hemoglobin": ["13.9", "12.8", "13.4", "13.7", "12.9", "13.1", "12.9",
"12.9", "12.8"], "leukocytes 2": ["2.5", "5.2", "2.3", "5", "1.8", "5.2",
"4.3", "1.7", "2.8"], "lymphocytes 2": ["1.2", "1.5", "0.8", "1.4", "0.6",
"0.9", "1", "0.7", "0.8"], "lymphocytes/100 leukocytes 3": ["47.7", "28.8",
"36", "27.7", "32.4", "17.1", "23.1", "39.4", "28.9"], "neutrophils": ["1",
"3.3", "1.2", "2.9", "0.9", "3.6", "2.7", "0.6", "1.6"]}

A5 Fine-tuning & inference details

We initially experimented with applying the loss to the entire sequence, which would also allow generating synthetic
patients, however the models hallucinated to an usable point. Instead we employed a masking such that the gradient
is only computed for the tokens that need to be forecast. For the training, we set the learning rate to 10-5, a warm up
ratio of 0·1, batch size of 1, employ a cosine learning rate scheduler, with a weight decay 0·1 and the optimizer
being AdamW. During training, we limit the input sequence length to 3400 tokens due to memory constraints. The
optimal epoch was identified based on the loss on the validation set, with the training taking around 20 hours on a
single NVIDIA A100 80GB GPU. For all evaluations, we run the model 30 times on each patient sample, and a
maximum final sequence length of 4000 tokens. We used nucleus sampling with top p set to 0·9 and temperature set
to 1·0.

For the chatbot prediction explainability and zero-shot non-target variable forecasting, we used the same nucleus
sampling parameters (top p = 0·9 and temperature = 1). The maximum sequence length was set to 200 tokens for the
explainability task and 120 tokens for the zero-shot forecasting task, respectively. The numbers were selected to
cover the desired output sequence length and prevent hallucinations. For the zero-shot forecasting, we run DT-GPT
10 times on each patient sample and use mean aggregation to obtain the final prediction.

In the context of patient digital twins, it is crucial to differentiate between simulation and forecasting. Simulations
represent realistic patient trajectories, whereas forecasts predict the trajectories that are most likely to happen.
Ideally, simulations should be able to cover the distribution of all possible patient trajectories.
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A6 Chatbot prompt examples

A two-step chatbot interaction example for the prediction explainability task is provided below.

Original input prompt (Synthetic Patient)

First, patient chronological patient history up until the current day.
Patient visits for the first time, with the following values: metastasis
Adrenal is Adrenal, metastasis Bone is Bone, metastasis Liver is Liver.
21 days after previous visit, patient visits again, with the following
values: advanced cancer diagnosis is non small cell NSCLC, initial cancer
diagnosis is non small cell NSCLC.
14 days after previous visit, patient visits again, with the following
values: Type 2 diabetes mellitus without complications is diagnosed,
Hyperlipidemia, unspecified is diagnosed.

…

14 days after previous visit, patient visits again, with the following
values: carboplatin is 900, paclitaxel protein-bound is 255, ECOG is 1,
alanine aminotransferase is 15, …, hemoglobin is 13.1, body height is 160.2,
body weight is 91.4, oxygen saturation is 97.
Next, the baseline data for the patient: birth year is 1954, gender is M,
ses index is 5 - Highest SES, is cancer advanced is True, histology is
Non-squamous cell carcinoma, cancer stage is Stage IVB, smoking status is
History of smoking, ethnicity is Not Hispanic or Latino, Current line of
therapy is Carboplatin,Paclitaxel Protein-Bound, Current line number is 1.

Finally, the variables which you should predict, and for which days in the
future from the current day: {hemoglobin: [21, 35], leukocytes 2: [21, 35],
lymphocytes 2: [21, 35], lymphocytes/100 leukocytes 3: [21, 35],
neutrophils: [21, 35]}
Now, your task is as follows: Given the non small cell NSCLC patient's
history, please predict for this patient the previously noted down variables
and future days, in the same JSON format. <patient_prediction>

DT-GPT forecasting results response

{"hemoglobin": ["11", "9.8"], "leukocytes 2": ["6.4", "4.7"], "lymphocytes
2": ["0.7", "0.4"], "lymphocytes/100 leukocytes 3": ["11.5", "8.8"],
"neutrophils": ["5.4", "4.1"]}

Prediction explainability prompt

What are the five most important variables or patient's baseline
characteristics for your prediction?
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DT-GPT explainability response

The five most important variables or patient's baseline characteristics for
my prediction are: 1. ECOG 2. alanine aminotransferase 3. albumin 4.
hemoglobin 5. leukocytes 2.

A two-step chatbot interaction example for the zero-shot forecasting task is provided below.

Original input prompt (Synthetic Patient)

First, patient chronological patient history up until the current day.
Patient visits for the first time, with the following values: metastasis
Adrenal is Adrenal, metastasis Bone is Bone, metastasis Liver is Liver.
21 days after previous visit, patient visits again, with the following
values: advanced cancer diagnosis is non small cell NSCLC, initial cancer
diagnosis is non small cell NSCLC.
14 days after previous visit, patient visits again, with the following
values: Type 2 diabetes mellitus without complications is diagnosed,
Hyperlipidemia, unspecified is diagnosed.

…

14 days after previous visit, patient visits again, with the following
values: carboplatin is 900, paclitaxel protein-bound is 255, ECOG is 1,
alanine aminotransferase is 15, …, hemoglobin is 13.1, body height is 160.2,
body weight is 91.4, oxygen saturation is 97.
Next, the baseline data for the patient: birth year is 1954, gender is M,
ses index is 5 - Highest SES, is cancer advanced is True, histology is
Non-squamous cell carcinoma, cancer stage is Stage IVB, smoking status is
History of smoking, ethnicity is Not Hispanic or Latino, Current line of
therapy is Carboplatin,Paclitaxel Protein-Bound, Current line number is 1.

Finally, the variables which you should predict, and for which days in the
future from the current day: {hemoglobin: [21, 35], leukocytes 2: [21, 35],
lymphocytes 2: [21, 35], lymphocytes/100 leukocytes 3: [21, 35],
neutrophils: [21, 35]}
Now, your task is as follows: Given the non small cell NSCLC patient's
history, please predict for this patient the previously noted down variables
and future days, in the same JSON format. <patient_prediction>

DT-GPT forecasting results response
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{"hemoglobin": ["11", "9.8"], "leukocytes 2": ["6.4", "4.7"], "lymphocytes
2": ["0.7", "0.4"], "lymphocytes/100 leukocytes 3": ["11.5", "8.8"],
"neutrophils": ["5.4", "4.1"]}

Non-target variable forecasting prompt

Next, the variables which you should predict, and for which days in the
future from the current day: {calcium: [21, 35]}
Now, your task is as follows: Given the non small cell NSCLC patient's
history, please predict for this patient the previously noted down variables
and future days, in the same JSON format. <patient_prediction>

DT-GPT non-target forecasting results response

{"calcium": ["9.4", "10.3”]]}

A7 Baselines & metric details

The baseline models are implemented in the Darts library and the default hyperparameters are used. For the input
time horizon, both 35 and 91 days were explored for the Flatiron Health NSCLC dataset, whilst the full 24 hours
was used for the MIMIC dataset. Since the models cannot natively deal with missing data, we employ linear
interpolation with forward and backward passes on the input data, and linear interpolation only with forward pass on
the target data. We apply the filtering based on three standard deviations, as with DT-GPT, and then apply
standardization or one hot encoding. To ensure fairness between the baseline models and DT-GPT, we also provide
the baselines with an indicator variable, having 1 for every future date which will be measured and 0 for those which
are imputed.
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A8 Results

In Tables A8.1 and A8.2 we show the performance of the models across the two datasets. It is interesting to note
that LightGBM performs better than more complex models, which we hypothesize is due to the high dimensional
noisy data, though this has also been observed in the literature.26,27

NSCLC

Model Hemoglobin Leukocytes Lymphocytes/Leu
kocytes

Lymphocytes Neutrophils Lactate
Dehydrogenase

MAE Corr. MAE Corr. MAE Corr. MAE Corr. MAE Corr. MAE Corr.

Copy
Forward

0·698 0·629 0·969 0·333 0·731 0·499 0·569 0·603 0·974 0·323 0·433 0·739

Linear
Regr.

0·486 0·759 0·782 0·441 0·668 0·545 0·506 0·656 0·778 0·410 0·475 0·683

TFT 0·469 0·774 0·719 0·504 0·651 0·563 0·463 0·696 0·717 0·476 0·480 0·646

TiDE 0·464 0·768 0·737 0·488 0·655 0·567 0·465 0·704 0·740 0·452 0·453 0·668

Light
GBM

0·453 0·780 0·727 0·508 0·644 0·583 0·456 0·712 0·734 0·467 0·425 0·732

DT-GPT
(ours)

0·440 0·796 0·689 0·540 0·650 0·587 0·437 0·733 0·699 0·496 0·417 0·731

Table A8.1: Performance of all models on the NSCLC dataset. “Corr.” means Spearman Correlation (higher is
better), “MAE” is Mean Absolute Error (lower is better), with the best performance highlighted in bold and ranked
by the average MAE.
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Table A8.2: Performance of all models on the ICU dataset. “Corr.” means Spearman Correlation (higher is better),
“MAE” is Mean Absolute Error (lower is better), with the best performance highlighted in bold and ranked by the
average MAE.

Figure A8.1: a) and b) show a comparison of all baseline models on the NSCLC and ICU datasets, respectively,
with error bars showing the standard error across all variables.

A9 Perturbation study details

The misspelling algorithm randomly performs either perturbation, insertion, deletion or replacement, using all
ASCII letters & digits, applied to the entire input text. This includes dates, variable names, values, baseline
information and prompts. One operation is considered one misspelling.

25

Intensive Care Unit

Model Magnesium Respiratory Rate 02 Saturation

MAE Corr. MAE Corr. MAE Corr.

Copy Forward 0·681 0·462 0·769 0·470 0·746 0·484

Linear
Regression

0·606 0·463 0·680 0·509 0·681 0·525

TiDE 0·534 0·549 0·635 0·559 0·652 0·570

Temporal
Fusion
Transformer

0·537 0·555 0·635 0·562 0·644 0·576

LightGBM 0·520 0·583 0·634 0·562 0·644 0·573

DT-GPT (ours) 0·505 0·609 0·636 0·562 0·635 0·576
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A10 Encoding method comparison

Figure A10.1: Different encoding methods and their respective performances on mean absolute error (MAE), with
the following abbreviations: TI - “Text Input”, TO - “Text Output”, JI - “JSON Input” and JO - “JSON Output”.

DT-GPT is stable with respect to different data encoding strategies (Fig. A10.1), though Text In, JSON Out (TI/JO)
and JSON In, TEXT Out (JI/TO) perform best, with TI/JO being marginally more efficient. Specifically Text In,
Text Out (TI/TO) achieves an average MAE of 0·568 ± 0·05, JSON In, JSON Out (JI/JO) reaches 0·556 ± 0·04,
JSON In, JI/TO reaches 0·554 ± 0·04, TI/JO attains 0·554 ± 0·04.

A11 Most important variables and patient baseline characteristics for the forecasting

For each of 2,773 patient samples in the test set sample, we obtain 10 predicted trajectories and 5 variables or
patient baseline characteristics explaining those trajectories.We present the percentage of trajectories explained by
the most important variables in the table below (Tab. A11.1).

Variable % of predicted trajectories it explains according
to DT-GPT

therapy 87.0

ECOG 55.6

leukocytes 44.5

age 36.2

alanine aminotransferase 26.0

hemoglobin 21.8

neutrophils 21.3

lymphocytes/100 leukocytes 21.0
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body weight and body height 19.4

body height 19.4

albumin 16.5

gender 15.8

lymphocytes 15.8

lactate dehydrogenase 2 12.3

alkaline phosphatase 9.5

ferritin 7.2

Table A11.1: Key variables and the percentage of predicted trajectories they explain as extracted from DT-GPT.

A12 Performance results of zero-shot DT-GPT and LightGBM baselines for non-target forecasting task

We visualize and investigate the influence of the five most important variables, therapy (Fig. A12.1), ECOG (Fig.
A12.2), age (Fig A12.3), leukocytes (Fig A12.4) and alanine aminotransferase (Fig A12.5) on the dynamics of
predicted NSCLC output variables. While the variables were marked as important for the prediction of six output
variables simultaneously, we note that most of them particularly influence dynamics in only a subset of output
variables. For instance, therapy is correlated with neutrophils, hemoglobin and leukocytes trajectories (Fig. A12.1),
ECOG with hemoglobin and lymphocytes to leukocytes ratio trajectories (Fig. A12.2), and age with lactate
dehydrogenase (Fig A12.3), respectively.

For the therapy, we consider 10 most frequent therapies and group them into therapy group as follows: carboplatin &
paclitaxel, carboplatin & pemetrexed and pemetrexed for the chemotherapy group (450 patients), pembrolizumab,
nivolumab and durvalumab for the immunotherapy group (598 patients), carboplatin & pembrolizumab &
pemetrexed, docetaxel & ramucirumab, pembrolizumab & pemetrexed for the combination therapy group (434
patients) and osimertinib for the target therapy group (112 patients), respectively. For the ECOG variable, we
consider values of 0 (765 patients), 1 (1299 patients), 2 (384 patients) and 3 (85 patients). For the age, we define the
following groups based on the age histogram: younger than 50 years old (124 patients), between 50 and 60 years old
(474 patients), between 60 and 70 years old (911 patients), between 70 and 80 years old (981 patients) and older
than 80 years old (261 patients). For leukocytes, we consider the last observed value within 13 weeks of medical
history prior to the start of the treatment as a baseline value, and based on the histogram of leukocytes baseline
values combined with the reference intervals for the leukocytes define four groups: less than 5 109/L (315 patients),
between 5 and 10 109/L (1093 patients), between 10 and 20 109/L (488 patients) and more than 20 109/L (66
patients). Similarly, for the alanine aminotransferase (ALT) we consider the last observed value within 13 weeks of
medical history prior to the start of the treatment as a baseline value, and based on the histogram of ALT baseline
values combined with the reference intervals for the ALT define four groups: less than 10 U/L (365 patients),
between 10 and 20 U/L (1090 patients), between 20 and 30 U/L (602 patients), between 30 and 40 U/L (249
patients) and more than 40 U/L (246 patients). For each of the most important variables, only predicted trajectories
of patients with available variable values and ground truth for output variables were analyzed.

Since we ask DT-GPT to explain all output variables simultaneously, the observed important variables do not lead to
a “perfect” separation of predicted trajectories conditioned on the variable value. For instance, if we perform
forecasting of hemoglobin trajectories only, further variables are said to be important by DT-GPT (Appendix A13).
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Furthermore, the choice of groups in the following analysis can be made arbitrary and might influence the results. A
better grouping approach would include other variables such as age, gender or other demographics or laboratory test
data. Specifically, hemoglobin and ALT have different reference intervals for males and females. Such interactions
were outside of the scope of this analysis. Finally, we note that we can establish only the correlation between
obtained important variables and predicted trajectories; the causal relationships are more complex and are subject to
further investigation.

Figure A12.1: The most important variable, therapy particularly influences the predicted dynamics of neutrophils,
hemoglobin, leukocytes and lymphocytes to leukocytes ratio. Here, lines represent average trajectories with 95%
confidence intervals calculated through bootstrapping.
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Figure A12.2: The second most important variable, ECOG, particularly influences the predicted dynamics of
hemoglobin and lymphocytes to leukocytes ratio. Here, lines represent average trajectories with 95% confidence
intervals calculated through bootstrapping.

Figure A12.3: The third most important variable, age, particularly influences the predicted dynamics of lactate
dehydrogenase (LDH), whereby younger patients (less than 50 years old) have on average higher LDH values. Here,
lines represent average trajectories with 95% confidence intervals calculated through bootstrapping.
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Figure A12.4: The fourth most important variable, leukocytes, particularly influences the predicted dynamics of
neutrophils, hemoglobin, leukocytes and lymphocytes to leukocytes ratio. Here, lines represent average trajectories
with 95% confidence intervals calculated through bootstrapping.

Figure A12.5: The fifth most important variable, alanine aminotransferase (ALT), particularly influences the
predicted dynamics of neutrophils, hemoglobin. Here, lines represent average trajectories with 95% confidence
intervals calculated through bootstrapping.
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A13 Explainability of predicted hemoglobin trajectories

We highlight complex and non-trivial explanatory abilities of DT-GPT on an example of hemoglobin trajectories. A
set of obtained important variables for predicted hemoglobin trajectories is not constant across all trajectories, but is
correlated with the predicted values. To show this, we first perform clustering of predicted hemoglobin trajectories
as follows: (1) for each of the trajectories we calculate its mean value over time, (2) we consider distribution of
mean values of trajectories and determine 0·15 and 0·75 quantiles of the distribution, (3) we assign trajectories with
the mean value below 0·15 quantile to the low level group (mean value less than 9·76 g/dL), trajectories with the
mean value above 0·85 quantile to the high level group (mean value greater than 13·31 g/dL), and trajectories with
the mean value between 0·15 and 0·85 quintiles to the middle level group, respectively. For each of the groups we
consider 10 most important variables separately and determine their intersection to define a final set of 16 important
variables (Fig A13.1).

The fractions of important variables explaining hemoglobin trajectories (e.g., relative frequency of a variable to be in
the set of important variables as outputted by DT-GPT for the trajectories in each group) are different for each of the
hemoglobin group. While therapy, ECOG and age are the most frequent and considered as important for all three
groups, some of the variables are more present in one of the groups, e.g., height for the high hemoglobin group or
ALT and ferritin for the low level hemoglobin group (Fig A13.1). To quantify observed correlations statistically, we
performed a chi-squared test for independence on the contingency table of the hemoglobin group versus the number
of trajectories explained by each important variable. The null hypothesis of independence was rejected with p-value
< 2.2e-16. Thus, DT-GPT might consider different variables when predicting hemoglobin trajectories of different
levels highlighting its complex prediction explainability potential. However, our analysis only reveals correlations
between hemoglobin level and important variables, thus causal claims are out of scope.

Figure A13.1: Predicted hemoglobin trajectories in low, middle and high level groups have different distributions of
the important variables explaining them. While therapy, age and ECOG are present in each of the groups, the ferritin
and “cancer is advanced” variables have a slightly higher prevalence in the lower group whilst gender is more
frequent for the high hemoglobin level group. Chi-squared test for independence rejected the null hypothesis
(p-value < 2·2e-16) indicating that DT-GPT might put more weight on different variables when predicting
hemoglobin trajectories of different levels. (Abbreviations: ECOG - Eastern Cooperative Oncology Group
performance status scale, LDH - Lactate dehydrogenase, ALT - Alanine aminotransferase, ALP - Alkaline
phosphatase , AST - Aspartate aminotransferase).

A14 Performance results of zero-shot DT-GPT and LightGBM baselines for non-target forecasting task

From the original 80 lab variables, we could evaluate the zero shot performance on 69 (Tab. A14.1). The difference
is due to the 6 variables used in training and a further 5 which had too few samples on either the input or output.
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Variable LOINC MAE
LightGBM

MAE
DT-GPT

ferritin 2276-4 0.07 0.03

lactate dehydrogenase 14804-9 0.55 0.14

erythrocytes 789-8 0.15 0.27

carcinoembryonic ag 2039-6 0.29 0.29

erythrocytes 2 26453-1 0.26 0.37

neutrophils.segmented 30451-9 0.71 0.45

lymphocytes 3 731-0 0.48 0.47

neutrophils.band form 26507-4 0.65 0.55

neutrophils 2 751-8 0.70 0.58

lymphocytes/100 leukocytes 736-9 0.66 0.60

lymphocytes 732-8 0.68 0.60

granulocytes 30394-1 0.78 0.67

leukocytes 6690-2 0.71 0.69

lymphocytes/100 leukocytes 2 737-7 0.75 0.70

bilirubin.non-glucuronidated 1971-1 0.57 0.71

monocytes 26484-6 0.72 0.71

granulocytes 2 20482-6 0.76 0.72

alkaline phosphatase 6768-6 0.46 0.78

coagulation tissue factor induced 5902-2 0.58 0.81

urea nitrogen 3094-0 0.57 0.84
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Variable LOINC MAE
LightGBM

MAE
DT-GPT

glomerular filtration rate/1.73 sq m.predicted 2 69405-9 0.40 0.88

protein 2888-6 0.60 0.93

monocytes/100 leukocytes 2 5905-5 0.78 0.93

platelets 2 777-3 0.64 0.97

glomerular filtration rate/1.73 sq m.predicted.black 48643-1 0.39 1.05

platelets 26515-7 0.64 1.07

hematocrit 2 20570-8 0.49 1.10

glomerular filtration rate/1.73 sq m.predicted.non black 48642-3 0.39 1.12

calcium 17861-6 0.64 1.14

creatinine renal clearance.predicted 35591-7 0.33 1.16

potassium 2 6298-4 0.71 1.17

coagulation tissue factor induced.inr 38875-1 0.33 1.27

urate 3084-1 0.51 1.28

bilirubin.glucuronidated+bilirubin.albumin bound 1968-7 0.60 1.32

monocytes 2 742-7 0.75 1.34

monocytes 3 743-5 0.81 1.37

eosinophils 2 26449-9 0.46 1.38

alanine aminotransferase 1742-6 0.64 1.38

glucose 2345-7 0.66 1.38
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Variable LOINC MAE
LightGBM

MAE
DT-GPT

monocytes/100 leukocytes 26485-3 0.76 1.41

sodium 2 2947-0 0.67 1.57

coagulation surface induced 14979-9 0.80 1.57

monocytes/100 leukocytes 3 744-3 0.71 1.64

eosinophils/100 leukocytes 2 714-6 0.65 1.65

hematocrit 4544-3 0.50 1.76

granulocytes/100 leukocytes 2 19023-1 0.72 1.83

carbon dioxide 2028-9 0.61 1.87

glomerular filtration rate/1.73 sq m.predicted 98979-8 0.57 1.88

bilirubin 1975-2 0.57 1.99

protein 2 2885-2 0.56 2.00

albumin 1751-7 0.53 2.02

potassium 2823-3 0.70 2.24

sodium 2951-2 0.65 2.47

creatinine 2 38483-4 0.40 2.52

granulocytes/100 leukocytes 30395-8 0.71 2.59

aspartate aminotransferase 1920-8 0.60 2.6

chloride 2075-0 0.63 2.69

eosinophils/100 leukocytes 26450-7 0.57 2.82

creatinine 2160-0 0.37 2.84
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Variable LOINC MAE
LightGBM

MAE
DT-GPT

magnesium 19123-9 0.60 2.96

neutrophils/100 leukocytes 26511-6 0.71 3.04

basophils 704-7 0.60 3.06

neutrophils/100 leukocytes 2 770-8 0.73 3.09

eosinophils 712-0 0.54 3.12

basophils/100 leukocytes 3 706-2 0.69 3.16

basophils/100 leukocytes 707-0 0.73 3.21

basophils 2 26444-0 0.64 3.34

basophils/100 leukocytes 2 30180-4 0.70 3.35

gamma glutamyl transferase 2324-2 0.37 3.57

Table A14.1 Zero shot performance of DT-GPT on variables that were previously not trained.
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