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Abstract 

Background 

Radiomics traditionally focuses on analyzing a single lesion within a patient to extract tumor 

characteristics, yet this process may overlook inter-lesion heterogeneity, particularly in the multi-

metastatic setting. There is currently no established method for combining radiomic features in such 

settings, leading to diverse approaches with varying strengths and limitations. Our quantitative review 

aims to illuminate these methodologies, assess their replicability, and guide future research toward 

establishing best practices, offering insights into the challenges of multi-lesion radiomic analysis across 

diverse datasets. 

Methods 

We conducted a comprehensive literature search to identify methods for integrating data from multiple 

lesions in radiomic analyses. We replicated these methods using either the author's code or by 

reconstructing them based on the information provided in the papers. Subsequently, we applied these 

identified methods to three distinct datasets, each depicting a different metastatic scenario. 

Results 

We compared ten mathematical methods for combining radiomic features across three distinct 

datasets, encompassing a total of 16,850 lesions in 3,930 patients. Performance of these methods was 

evaluated using the Cox proportional hazards model and benchmarked against univariable analysis of 

total tumor volume. We observed variable performance in methods across datasets. However, no single 

method consistently outperformed others across all datasets. Notably, while some methods surpassed 

total tumor volume analysis in certain datasets, others did not. Averaging methods showed higher 

median performance in patients with colorectal liver metastases, and in soft tissue sarcoma, 

concatenation of radiomic features from different lesions exhibited the highest median performance 

among tested methods.  

Conclusions 

Radiomic features can be effectively selected or combined to estimate patient-level outcomes in multi-

metastatic patients, though the approach varies by metastatic setting. Our study fills a critical gap in 

radiomics research by examining the challenges of radiomic-based analysis in this setting. Through a 

comprehensive review and rigorous testing of different methods across diverse datasets representing 

unique metastatic scenarios, we provide valuable insights into effective radiomic analysis strategies.  
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Background 

Radiological imaging and its quantitative analysis, known as radiomics, aim to transform medical 

images into mineable data to enhance decision-making in diagnosis, prognosis, and treatment 

planning. [1]. Traditionally, radiomics has focused on the analysis of a single lesion within a patient, 

aiming to extract relevant features and understand the tumor's characteristics [2]. While this practical 

approach minimizes computational complexity and utilizes simpler mathematical models, relying on a 

single lesion's analysis may not provide a complete picture of the disease's intra- and inter-lesion 

heterogeneity, particularly in patients with multiple lesions [3].  

 

Currently, there is no established methodology for the optimal combination of radiomic features for 

patients with multiple lesions [3], [4], which has led to a diverse array of approaches, each offering 

distinct advantages and trade-offs. While it is common to have multiple approaches in various fields, 

specific challenges in radiomics warrant a more comprehensive examination. Many studies lack 

transparency and reproducibility, with methods and code not publicly available, hindering scientific 

progress [5]. Additionally, there is no comprehensive comparative study evaluating different methods 

for combining information from multiple lesions in different metastatic scenarios. With advancements 

in AI and segmentation [6], integrating and comparing multiple lesions has not only become feasible, 

but also an important problem to solve within the context of precision oncology. 

 

In this study, we quantitatively reviewed the state-of-the-art approaches for multi-lesions radiomic 

analysis, highlighting their strengths and weaknesses, to guide future research toward establishing best 

practices in this domain. Serving as a case study in replicability [7], we systematically explore literature 

methods and implement them across diverse datasets. Our goal is to not only assess the replicability of 

these methods but also highlight their applicability and effectiveness in addressing the challenges of 

radiomic analysis in patients with multiple lesions across multiple domains. 

Methods 

The design of the study is represented in Figure 1. 

Literature Search 

We employed a dual-database methodology, utilizing Scopus and PubMed, to execute a 

comprehensive and systematic review. Our search strategy involved the incorporation of specific 

keywords such as radiomics, metastasis, intertumor (lesion), interlesion heterogeneity, feature 

aggregation, response, and survival, aiming to retrieve a diverse range of scholarly articles. We 

specifically focused on full-length articles published in English. Detailed queries can be found in the 

Supplemental section.  
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Selection Criteria 

The selection criteria for inclusion focused on the key aspects of patient-level analysis and 

methodological clarity. Methods were excluded from the review if they met one or more of the 

exclusion criteria in Table 1 or were a duplicate method. 

 

Exclusion Criterion Description 

Analysis of multiple lesions but 

not at patient-level 

Multiple lesions were analyzed separately towards tumor-

specific predictions; data was not 

combined/selected/aggregated at the patient level 

Analysis of primary tumor  
Analysis of the primary tumor for prediction of distant or local 

recurrence or some other patient-level outcome 

Methodological applicability 

Detailed descriptions of employed methods lacking or 

insufficient and/or code unavailable, presenting significant 

challenges in method replication and/or proprietary data not 

available  

Method dependent on time series 

data 

Measures of treatment response (e.g., change in lesion size at a 

secondary time point) incorporated into method 

Information integrated at the 

model level 

Transformations or interactions within a model architecture as 

opposed to transformations to the raw or pre-processed data 

used as input to the model 

Table 1: Overview of the methodological exclusion criteria utilized for our quantitative review. 

Data Collection 

For this pan-cancer review we leveraged three different datasets, each presenting a unique context for 

conducting radiomic-based analyses among patients with multiple lesions (Table 2). The first dataset 

encompasses primary tumors accompanied by invaded lymph nodes, offering insights into radiomic 

analysis within the context of localized spread. The second dataset focuses on metastases confined to a 

single organ, providing an opportunity to explore radiomic patterns specific to localized metastatic 

disease. In contrast, the third dataset encompasses patients with metastases distributed ubiquitously 

across the body, allowing for a comprehensive examination of radiomic features in a setting of 

widespread metastatic involvement. These varied settings enable a multifaceted investigation into 

radiomic characteristics across different disease extents, contributing to a more comprehensive 

understanding of radiomic signatures in diverse cancer scenarios.  

TCIA - RADCURE 

The Cancer Imaging Archive (TCIA) - RADCURE dataset encompasses data from 3188 patients, 

comprising computed tomography (CT) images paired with contours delineating primary tumors and 

invaded lymph nodes. Among the patients analyzed, oropharyngeal cancer accounts for 44% of the 
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population, while larynx, nasopharynx, and hypopharynx cancers constitute 27%, 11%, and 5%, 

respectively. Additionally, the publicly-available dataset features clinical data linked to each patient, 

encompassing demographic details, clinical information and survival. Detailed information can be 

found in [8]. 

TCIA - CRLM 

The TCIA - Colorectal-Liver-Metastases (CRLM) dataset comprises CT images and a comprehensive 

clinical record of 197 patients with colorectal liver tumors. Each patient within this dataset underwent 

major liver resection as part of their treatment regimen.  The CT scan images acquired preoperatively, 

while the clinical data confines patients’ demographic, pathologic and survival data for each patient. 

Detailed descriptions can be found in [9]. 

SARC021 

SARC021 is a private dataset obtained from the Sarcoma Alliance for Research through Collaboration 

(SARC). The dataset consists of 545 soft tissue sarcoma patients who were enrolled in a phase III clinical 

trial (TH-CR-406/SARC021, NCT01440088). Patients presented with either locally advanced, 

unresectable or metastatic soft tissue sarcoma. Among the patients, leiomyosarcoma accounts for 37% 

of the population, while liposarcoma, undifferentiated pleomorphic sarcoma and other sarcomas 

constitute 17%, 12%, and 34%, respectively. Data was collected retrospectively and in accordance with 

our institutional REB (#20-5707). Collected data includes pre-treatment CT, patient characteristics and 

survival. Detailed descriptions, including trial protocol and results can be found in [10]. 
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 DATASET 

TCIA – RADCURE TCIA – CRLM SARC021 

GENERAL 

Cancer Type head and neck colorectal soft tissue sarcoma 

 

Setting   
 

primary tumor with 

invaded lymph nodes 

metastases confined to 

a single organ 
widespread metastases 

Number of Patients 3188 197 545 

Publicly Available? 
   

LESIONS 

Distribution 

   

Number of Lesions 

(median [IQR]) 
4 [1,7] 2 [1,3] 2 [1,3] 

SURVIVAL 

Overall Survival Time 

(years; median [IQR]) 
3.62 [1.87,5.72] 5.51 [2.87,8.08] 1.57 [0.76,2.20] 

Number of Events 1013 107 355 
 

Table 2: Overview of the datasets utilized in this pan-cancer study. Each dataset represents a unique

metastatic scenario; two of the datasets are publicly available and one is a private dataset. Statistics

surrounding the number of lesions per patient and survival are expressed in terms of the median and the

interquartile range (IQR). 
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Algorithm Implementation 

Our study utilized 10 different techniques for radiomic analysis of multiple lesions, which can be broadly 

classified into three categories: lesion selection methods, methods that incorporate information from 

select lesions, and methods that incorporate information from all lesions (Table 3).  
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lesion information used / lesion information not used 

Table 3: Descriptions of the methods implemented for our analysis. 

Category Short Name Description 

 
Lesion Selection 

Largest  Largest lesion by volume, irrespective of location[4] 

Largest + Largest lesion + number of lesions[4] 

Smallest Smallest lesion by volume, irrespective of location[4] 

Primary Primary tumor (where applicable)[1] 

Lung Largest lung lesion by volume (where applicable)[11] 

 
Information from 

Select Lesions 

VWA (N-largest) 
Volume-weighted average of the N-largest lesions by 

volume (shape features summed)[4] 

Concatenation 
Column-wise combination of all features from the N-largest 

lesions by volume[12] 

Cosine Similarity 

Two overall heterogeneity measurements, defined as 

follows[13]:  

 

1) Maximal Tumoral Divergence = max(Cosine 

Dissimilarity) 

2) Average Tumoral Heterogeneity = mean(Cosine 

Dissimilarity) 

 

Where Cosine Dissimilarity = 1 - Cosine Similarity 

 
Information from 

All Lesions 

UWA Unweighted average[4] 

VWA Volume-weighted average (shape features summed)[4] 
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Lesion Selection Methods 

For the proposed lesion selection methods, implementation involved simply selecting a lesion for 

analysis based on either the lesion label (e.g., primary tumor) or computed lesion volume. For the 

latter, computation utilized the PyRadiomics library[14], specifically the 'VoxelVolume' shape feature. 

Importantly, lesion label selection was dataset-specific; for instance, the TCIA-RADCURE dataset 

exclusively contained primary tumors, while SARC021 exclusively contained lung lesions. Consequently, 

there were variations in sample sizes, with only 93% of patients in the TCIA-RADCURE dataset having 

primary tumors, and 60% of patients in the SARC021 dataset having at least one lung lesion 

(Supplementary Table S1). 

Information from Select Lesions 

In the proposed combinatorial methods utilizing information from select lesions, we incorporated data 

from N lesions, where N represents the minimum number of lesions observed in any given patient 

across all patients.  

VWA (N-largest) 

For the averaging approach, the N-largest lesions were selected. For the patient population where N 

equals one, this method mirrors the largest lesion approach; however, in groups with two or more 

lesions, radiomic features from the N-largest lesions are incorporated accordingly. Shape features were 

summed over selected lesions; all other features constitute a volume-weighted average of selected 

lesions ((1)). 

�������� �
��	
����� � ��������,��

��
�����

 
(1) 

Concatenation 

For the concatenation approach, the N-largest lesions were selected. Similar to the averaging 

approach, this method mirrors the largest lesion approach for the patient population where N equals 

one; however, in groups with two or more lesions, radiomic features from the N-largest lesions are 

incorporated accordingly. In the case where N equals two, let � represent a 1 � � matrix containing � 

radiomic features for the largest lesion in a given patient. Similarly, let � represent a 1 � � matrix 

containing � radiomics features for the second-largest lesion in the same patient. The matrices � and � 

are horizontally concatenated to create �, a 1 � �2�� matrix, containing � radiomic features for the 

largest lesion and  � radiomics features for the second-largest lesion. This can be expanded for the case 

where N equals three, and so on. 

Cosine Similarity 

For the cosine similarity approach, N-random lesions were utilized to maintain alignment with the 

analysis in [13]. When N equals one, no pairwise comparisons between lesions are possible. 

Unsupervised feature reduction was performed prior to calculating the metrics; given the definition of 
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only two metrics (Table 3), no supervised feature selection was carried out. Moreover, the cosine 

similarity method is distinct from other methods as it uses secondary features derived from radiomic 

features, rather than the radiomic features themselves.  

Information from All Lesions 

For the proposed combinatorial methods utilizing information from all lesions, no modifications or 

adjustments were made. Lesion volume for the volume-weighted averaging was computed as 

described above, using the PyRadiomics ‘VoxelVolume’ shape feature. 

UWA 

Shape features were summed over all lesions; all other features constitute an average of all � lesions 

((2)). 

�������� �
����������,�

�
 

(2

) 

VWA 

Shape features were summed over all lesions; all other features constitute a volume-weighted average 

of all � lesions (as in (1), but with all � lesions). 

Research Reproducibility 

To ensure transparency, reproducibility and reusability of the study outputs, we packaged all the 

processed data and computer code into a fully-specified software environment to ensure that the 

results can easily be reproduced. To achieve this, we built a Code Ocean capsule and published it under 

https://codeocean.com/capsule/7943659/tree. 

Data Analysis 

In the context of this study, we have raw data with lesion-level information and a transformed dataset 

with patient-level information. The lesion-level dataset refers to the raw data that contains detailed 

information about individual lesions. This dataset is created by extracting radiomic features from all 

lesions [in all patients] in each dataset, using PyRadiomics [14] (version 3.0.1). Algorithms were 

implemented on each lesion-level dataset in turn, including lesion selection, combining data from 

select lesions, and utilizing information from all lesions (Table 3). to create patient-level datasets. The 

patient-level datasets contain the transformed data, that aggregates or summarizes the lesion-level 

information. Each resultant patient-level dataset was partitioned, stratified by lesion count. 

Subsequently, unsupervised feature reduction was applied to the training set, where applicable. 

Initially, a variance filter was employed to eliminate features with less than 10% variance, followed by 

the removal of radiomic features exhibiting an absolute Spearman rho correlation with lesion volume 

greater than 0.1[15]. From the resulting reduced feature set, a supervised feature selection technique, 
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specifically mRMR, was utilized to select 10 features[16]. Overall survival analysis employed the Cox 

proportional hazards model, a widely utilized method for modeling time-to-event data[17]. Optimal 

hyperparameters were identified by Grid Search[18], employing five-fold cross-validation; the training 

set was subsequently equipped with these hyperparameters and underwent bootstrapping to ascertain 

a confidence interval for the concordance index (C-Index)[19]. A total of 100 bootstrap samples were 

used, with each sample consisting of 50% of the training data. The training hyperparameters were then 

utilized to train a model on the testing set. Univariable analysis using total lesion volume was used for 

benchmarking. Key aspects of our study, including the literature search and analysis pipeline, are 

visualized in Figure 1. 

 
Figure 1: Our study encompasses both a literature search and analysis pipeline. Within the literature 

search section, inquiries are categorized into article-specific and method-specific, accommodating papers 

detailing multiple radiomic-based analysis methods in the context of multiple ROIs. The analysis pipeline 

section is divided into pre-processing and modeling components. Radiomics features, initially forming an N 

× J lesion-level matrix (where N is the number of lesions and J is the number of radiomic features), are 

transformed post-method implementation into an M × J patient-level matrix (where M represents the 

number of patients). Following unsupervised feature reduction, the resulting matrix contains fJ radiomic 

features, with f representing a fraction within the range [0,1]. Figure was generated using Miro. 

Subgroup Analysis 

A subgroup analysis was conducted to compare model performance across lesion selection and feature 

aggregation methods by including patients with variable numbers of lesions. Specifically, we examined 

patients across all lesion counts, as well as exclusive subgroups with two or more lesions, and three or 

more lesions. This analysis was motivated by the hypothesis that with an increasing number of lesions, 

the application of certain methods may exhibit performance improvements.  
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Results 

Literature Search 

Of the 263 articles screened for our study, only 11% met the inclusion criteria for our study (Figure 1). 

Excluded articles fell into one of two categories: (1) those focused on radiomic-based analysis of the 

primary tumor for predicting local or distant metastasis, and (2) those centered on radiomic-based 

analysis of a single lesion to predict its response to treatment ((Figure 1)). Among the methods 

reviewed in detail, 26% were included in our study (Figure 1). In addition to the exclusion criteria (Table 

1), redundant methods from one paper that were identical to those from another were eliminated, 

constituting 7 out of 38 methods. 

Method Implementation 

 

Figure 2: Overall survival analysis, organized by dataset (rows) and subgroup (columns). Implemented 

methods are color-coded by category. Violin plots depict the performance distribution of bootstrapped 

samples from the training data, with white circles indicating performance on the testing data. Vertical lines 

in gray and black represent performance benchmarks from a random model and univariable analysis based 

on total lesion volume, respectively. Figure was constructed using Miro; numerical results can be found in 

the Supplemental section. 
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TCIA - RADCURE 

When considering all patients, selecting the primary tumor and using 10 features provides the best 

performance among all implemented methods. For the different subgroups, the primary tumor was the 

largest lesion in 79%, 73%, and 72% of patients, respectively. This could explain the discrepancy in 

model performance when comparing radiomic features from the primary tumor versus radiomic 

features from the largest lesion for all patients. When different subgroups are considered, the 

performance of the model using radiomic features from the primary tumor worsens. Moreover, no 

radiomic-based method consistently outperformed univariable analysis of total tumor volume.  

TCIA - CRLM 

In contrast with TCIA - RADCURE, where univariable analysis of total tumor volume consistently 

outperformed most radiomic methods, in TCIA - CRLM we found that many methods surpassed total 

tumor volume analysis. This suggests that radiomics-based analysis performs well in this setting. 

Furthermore, subgroup analysis based on increasing lesion numbers revealed a notable improvement in 

model performance, underscoring the importance of incorporating information from multiple lesions. 

When increasing from one lesion to two lesions, the median performance of all models increased (C-

Index range [0.001,0.074], with the largest increases observed in the VWA-N-largest and Concatenation 

methods). In terms of performance distribution, the positive shift was significant for all methods, save 

for the Smallest Lesion method (two-sample Kolmogorov-Smirnoff test, p-value range [1.42e-

19,0.470]). When increasing from two lesions to three lesions, the median performance of all models 

increased (C-Index range [0.057,0.127], with the largest increases observed in the Largest+ lesion and 

Concatenation methods). In terms of performance distribution, the positive shift was significant for all 

methods (two-sample Kolmogorov-Smirnoff test, p-value range [3.054e-31,1.555e-7]). The highest 

median performance was observed for the VWA method for the three or more lesions subgroup (C-

Index 0.842). However, it's worth noting that as sample sizes decreased, the distribution of model 

performance widened, indicating potential overfitting. Additionally, averaging methods exhibited 

higher median values in terms of model performance. 

SARC021 

In SARC021, we observed a mixed pattern of results. Similar to TCIA - RADCURE, no radiomic-based 

method consistently outperformed univariable analysis of total tumor volume when considering all 

patients and the subgroup of patients with 2 or more lesions. However, akin to TCIA - CRLM, we noted 

a marked shift in overall model performance in the subgroup of patients with 3 or more lesions, albeit 

with less variability. When increasing from two lesions to three lesions, the median performance of all 

but two models increased (C-Index range [-0.012,0.073], with the largest increases observed in the 

Concatenation method). In terms of performance distribution, the positive shift was significant for all 

methods except the Largest, Largest+ and VWA methods (two-sample Kolmogorov-Smirnoff test, p-

value range [4.959e-43,0.111]). The highest median performance was observed for the Concatenation 

method for the three or more lesions subgroup (C-Index 0.673).  
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Discussion 

Despite the prevalence of multi-metastatic patients, most radiomic studies have traditionally focused 

on a single lesion. At time of publication, a search on PubMed yielded around 12,000 hits for radiomics, 

yet only 38 articles met the criteria for this study, highlighting the need for more comprehensive 

research. Moreover, there is currently no established methodology for effectively combining radiomic 

features from multiple lesions [3], [4]. To address this gap, we conducted a comprehensive quantitative 

review of radiomic-based analyses involving multiple lesions. We replicated and applied 10 different 

methods across three distinct datasets, each representing a unique metastatic scenario. By collating 

and evaluating various methods from the literature, our study provides valuable insights into what 

works, and what does not, in different clinical scenarios. This paper serves as a resource for radiomics 

researchers, offering guidance for implementing similar techniques in their own data and serving as a 

foundation for further exploration in this field. 

 

Our findings within the setting of localized metastatic spread align with those of [20], where the top-

performing model incorporated clinical features and tumor volume; although [20] focused on the 

primary tumor and used a subset of our dataset, our results complement theirs by offering a broader 

analysis across multiple lesions. Our study illustrates that no radiomic-based method combining 

information from multiple lesions consistently outperformed univariable analysis based on total tumor 

volume. In this setting, our findings suggest that adhering to the conventional approach of analyzing 

the primary tumor yields optimal results across all patients, albeit with the acknowledgment that total 

tumor volume, a simpler measure, performs comparably well. 

 

Our findings within the setting of metastases confined to a single organ align with those of a previous 

study [4]. In both studies, averaging methods demonstrated optimal performance. Although the 

previous study focused on brain metastases and utilized magnetic resonance imaging, while our study 

centered on colorectal liver metastases and employed computed tomography, the similarity in the 

effectiveness of the methods is noteworthy. In the context of colorectal liver metastases, the number of 

tumors has been identified as a prognostic factor [21], which could potentially explain the observed 

quantitative shift in model performance when analyzing subgroups with increasing numbers of lesions. 

Even so, our analysis revealed greater variability in model performance with decreasing sample sizes, 

indicating potential overfitting and underscoring the need for cautious interpretation of results in 

smaller datasets. 

 

Given the limited precedent in radiomics for sarcoma, particularly in the context of widespread, multi-

metastatic scenarios, our study was presented with unique analytical challenges and opportunities. We 

incorporated the largest lung lesion method into our analysis, recognizing the lung as a common 

metastatic site in sarcomas [11]. Across all patients, the largest lesion method showed marginally 

improved performance compared to univariable analysis of total tumor volume, highlighting 

incremental gains. However, the most intriguing findings surfaced when examining the subgroup of 

patients with 3 or more lesions. Here, nearly all methods demonstrated median model performance 

surpassing that of total tumor volume, with the concatenation method standing out with the highest 
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median performance. These results suggest that in multi-metastatic scenarios, individual lesions may 

harbor unique prognostic information that could potentially enhance prognostic accuracy beyond 

traditional approaches relying solely on total tumor volume. 

 

One method of interest is the cosine similarity metrics originally proposed for characterizing inter-

tumoral heterogeneity, described in [13], which holds promise from both theoretical and applied 

perspectives. However, its effectiveness is hindered by limitations in lesion sampling. In the original 

study, the authors found that sampling 2 or 3 lesions at random recovered 48% and 67% of the average 

tumoral heterogeneity, respectively, and 27% and 55% of the maximal tumor divergence, respectively. 

However, the authors emphasized that "more than eight lesions per patient would have been necessary 

to recover at least 75% of the true heterogeneity captured by the whole lesion distribution analysis" 

[13]. Unfortunately, such extensive sampling is often not feasible due to limited availability of patients 

with multiple lesions sampled. Furthermore, the underwhelming performance of this method in our 

study may also be attributed to the limited number of features used in the model. While only two 

features were defined for this method, our analysis employed 10 features for all other methods, 

potentially impacting its comparative performance. 

 

Our study has several potential limitations. From a methodological standpoint, our study relates to the 

sample size and the approach to feature selection. We aimed to maintain consistency across all 

datasets by employing a standardized process, including the use of 10 imaging features from each 

method, with the exception of the cosine method. This decision was made to ensure comparability of 

results across different datasets. However, the choice of 10 features was influenced by the number of 

events in the TCIA - CRLM dataset, which had 107 events. While it may have been feasible to use more 

features for datasets with a higher number of events, we opted to err on the side of caution to limit 

overfitting or the introduction of bias in this specific dataset. Our study also faced challenges in terms 

of replicability, largely due to the limited availability of code for the methods included in our analysis. 

Unfortunately, this reflects a broader issue within research, where adherence to open science standards 

varies. Despite this obstacle, we endeavored to mitigate replicability concerns by developing modular 

functions closely aligned with the literature and making them publicly available. This approach not only 

enhances transparency but also enables future researchers to easily adapt and utilize our methods for 

their own analyses, thus contributing to the advancement of open science practices in radiomics 

research. 

Conclusion 

Our study fills a critical gap in radiomics research by examining the challenges of analyzing multiple 

lesions in multi-metastatic patients. Through a comprehensive review and rigorous testing of different 

methods across diverse datasets representing unique metastatic scenarios, we provide valuable 

insights into effective radiomic analysis strategies. Moreover, our publicly available code on GitHub and 

Code Ocean enhances reproducibility and serves as a valuable resource for researchers in the field. 
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Supplemental 

Literature Search (Specific Database Queries) 

Scopus 

X TITLE-ABS ( radiomics AND ( metastas?s OR intertumor ) AND ( response OR survival ) ) AND ( 

LIMIT-TO ( SUBJAREA , "MEDI" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( 

LANGUAGE , "English" ) ) AND ( LIMIT-TO ( EXACTKEYWORD , "Radiomics" ) ); 

PubMed 

X (radiomics AND inter lesion heterogeneity); 

X (radiomics AND metastases AND interlesion); 

X (radiomics AND feature aggregation); 

 

Summary of Sample Sizes (Subgroup Analysis) 

Subgroup 

Dataset 

TCIA - RADCURE TCIA - CRLM SARC021 

All patients 3188 (2961) 197 545 (325) 

Patients with 2+ lesions 2333 (3165) 127 407 (288) 

Patients with 3+ lesions 2016 (1883) 64 151 (121) 

Table S1: Summary of sample sizes for various subgroup analyses. For the TCIA - RADCURE and SARC021 

datasets, numbers in parentheses represent the number of patients with a primary tumor and with a lung 

metastasis, respectively. 
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Numerical Results 

 RADCURE (n=3188) TCIA-CRLM (n=197) SARC021 (n=545) 

Train (Median (95% CI)) 

(n=2550) 

Test 

(n=638) 

Train (Median (95% CI)) 

(n=157) 

Test 

(n=40) 

Train (Median (95% CI)) 

(n=436) 

Test 

(n=109) 

Largest Lesion 0.599 (0.570-0.634) 0.593 0.664 (0.601-0.739) 0.658 0.622 (0.579-0.659) 0.619 

Largest Lesion 

+ Number of Mets 
0.595 (0.549-0.630) 0.595 0.653 (0.583-0.733) 0.622 0.621 (0.577-0.659) 0.675 

Smallest Lesion 0.556 (0.530-0.585) 0.545 0.656 (0.575-0.732) 0.627 0.593 (0.544-0.633) 0.587 

Primary Tumor* 0.656 (0.625-0.683) 0.611 - - - - 

Largest Lung Lesion* - - - - 0.576 (0.523-0.632) 0.627 

Weighted Average (N-

largest) 
0.599 (0.570-0.634) 0.593 0.664 (0.601-0.739) 0.658 0.622 (0.579-0.659) 0.619 

Concatenation 0.599 (0.570-0.634) 0.593 0.664 (0.601-0.739) 0.658 0.622 (0.579-0.659) 0.619 

Cosine Metrics N/A 

Unweighted Average 0.600 (0.572-0.645) 0.632 0.675 (0.577-0.752) 0.687 0.605 (0.567-0.653) 0.648 

Weighted Average 0.607 (0.577-0.640) 0.600 0.665 (0.594-0.737) 0.644 0.618 (0.576-0.662) 0.682 
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Table S2: Comparison of feature aggregation methods for all patients, irrespective of number of tumors, in three distinct metastatic settings. The Cox 

proportional hazards model was used to fit the data. The training set was bootstrapped to generate confidence intervals (CI) for model performance; 

the metric used for model performance is the Concordance Index (C-Index).  

 

 RADCURE (n=2333) TCIA-CRLM (n=127) SARC021 (n=407) 

Train (Median (95% CI)) 

(n=1868) 

Test 

(n=465) 

Train (Median (95% CI)) 

(n=102) 

Test 

(n=25) 

Train (Median (95% CI)) 

(n=323) 

Test 

(n=84) 

Largest Lesion 0.614 (0.584-0.649) 0.604 0.702 (0.623-0.785) 0.681 0.611 (0.571-0.649) 0.633 

Largest Lesion 

+ Number of Mets 
0.597 (0.572-0.630) 0.587 0.669 (0.583-0.747) 0.609 0.617 (0.573-0.649) 0.677 

Smallest Lesion 0.597 (0.563-0.628) 0.551 0.658 (0.578-0.741) 0.702 0.618 (0.576-0.674) 0.623 

Primary Tumor* 0.570 (0.536-0.605) 0.595 - - - - 

Largest Lung Lesion* - - - - 0.605 (0.539-0.667) 0.602 

Weighted Average (N-

largest) 
0.613 (0.587-0.642) 0.615 0.727 (0.638-0.826) 0.732 0.603 (0.556-0.659) 0.625 

Concatenation 0.579 (0.543-0.612) 0.576 0.699 (0.613-0.797) 0.689 0.600 (0.550-0.658) 0.614 

Cosine Metrics 0.500 (0.500-0.500) 0.500 0.500 (0.500-0.531) 0.500 0.500 (0.500-0.500) 0.500 

Unweighted Average 0.607 (0.578-0.643) 0.614 0.745 (0.656-0.858) 0.689 0.630 (0.583-0.679) 0.671 
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Table S3: Comparison of feature aggregation methods for patients with two or more tumors, in three distinct metastatic settings. The Cox 

proportional hazards model was used to fit the data. The training set was bootstrapped to generate confidence intervals (CI) for model performance; 

the metric used for model performance is the Concordance Index (C-Index).  

 

 

 

 

Weighted Average 0.650 (0.619-0.670) 0.623 0.740 (0.653-0.842) 0.821 0.609 (0.556-0.656) 0.646 

 RADCURE (n=2016) TCIA-CRLM (n=64) SARC021 (n=151) 

Train (Median (95% CI)) 

(n=1613) 

Test 

(n=403) 

Train (Median (95% CI)) 

(n=51) 

Test 

(n=13) 

Train (Median (95% CI)) 

(n=121) 

Test 

(n=30) 

Largest Lesion 0.587 (0.558-0.617) 0.589 0.779 (0.659-0.886) 0.821 0.615 (0.532-0.690) 0.627 

Largest Lesion 

+ Number of Mets 
0.587 (0.557-0.617) 0.582 0.797 (0.674-0.912) 0.804 0.615 (0.525-0.690) 0.672 

Smallest Lesion 0.578 (0.544-0.609) 0.531 0.744 (0.625-0.849) 0.857 0.630 (0.549-0.719) 0.748 

Primary Tumor* 0.594 (0.566-0.626) 0.590 - - - - 

Largest Lung Lesion* - - - - 0.622 (0.550-0.704) 0.572 

Weighted Average (N-

largest) 
0.606 (0.568-0.637) 0.596 0.793 (0.653-0.909) 0.768 0.636 (0.570-0.693) 0.588 

Concatenation 0.568 (0.530-0.603) 0.617 0.756 (0.553-0.864) 0.821 0.673 (0.586-0.739) 0.598 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted July 5, 2024. 
; 

https://doi.org/10.1101/2024.07.04.24309964
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.07.04.24309964
http://creativecommons.org/licenses/by/4.0/


24 

Table S4: Comparison of feature aggregation methods for patients with three or more tumors, in three distinct metastatic settings. The Cox 

proportional hazards model was used to fit the data. The training set was bootstrapped to generate confidence intervals (CI) for model performance; 

the metric used for model performance is the Concordance Index (C-Index). 

Cosine Metrics 0.520 (0.496-0.555) 0.516 0.595 (0.456-0.756) 0.554 0.532 (0.473-0.605) 0.625 

Unweighted Average 0.609 (0.574-0.645) 0.627 0.818 (0.670-0.939) 0.839 0.618 (0.544-0.701) 0.674 

Weighted Average 0.615 (0.581-0.648) 0.586 0.842 (0.714-0.982) 0.982 0.615 (0.545-0.681) 0.674 
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