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Abstract 17 

Background: 18 

Translation of blood RNA signatures may be accelerated by identifying more parsimonious biomarkers. 19 
We tested the hypothesis that single-gene transcripts provide comparable accuracy for detection of 20 
subclinical TB to multi-gene signatures and benchmarked their clinical utility to interferon-y release 21 
assays (IGRAs). 22 

Methods: 23 

We identified datasets where participants underwent RNA sampling and at least 12 months of follow-24 
up for progression to TB. We performed a one-stage individual participant data meta-analysis to 25 
compare multi-gene signatures against single-gene transcripts to detect subclinical TB, defined as 26 
asymptomatic prevalent or incident TB (diagnosed ≥21 days from enrolment, irrespective of symptoms) 27 
over a 12-month interval. We performed decision curve analysis to evaluate the net benefit of using 28 
RNA biomarkers and IGRA, alone or in combination, compared to treating all or no individuals with 29 
preventative treatment.  30 

Results: 31 

We evaluated 80 single-genes and eight multi-gene signatures in a pooled analysis of four RNAseq and 32 
three qPCR datasets, comprising 6544 total samples and including 283 samples from 214 individuals 33 
with subclinical TB. Five single-gene transcripts were equivalent to the best-performing multi-gene 34 
signature over 12 months, with areas under the receiver operating characteristic curves ranging from 35 
0.75-0.77, but none met the WHO minimum target product profile (TPP) for a TB progression test. IGRA 36 
demonstrated much lower specificity in higher burden settings, while sensitivity and specificity of RNA 37 
biomarkers were consistent across settings. In higher burden settings, RNA biomarkers had greater net 38 
benefit than IGRA, which offered little clinical utility over treating all with preventative therapy. In low 39 
burden settings, IGRA approximated the TPP and offered greater clinical utility than RNA biomarkers, 40 
but combining both tests provided the highest net benefit for services aiming to treat <50 people to 41 
prevent a single case. 42 

Interpretation: 43 

Single-gene transcripts are equivalent to multi-gene signatures for detection of subclinical TB, with 44 
consistent performance across settings. Single transcripts demonstrate potential clinical utility to stratify 45 
treatment, particularly when used in combination with IGRA in low burden settings. 46 

Funding: 47 

National Institute for Health Research, Wellcome Trust. 48 
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Research in Context 50 

Evidence before this study 51 

With increasing recognition of the spectrum of tuberculosis and the importance of subclinical TB, the 52 
International Consensus for Early TB (ICE-TB) group recently developed a framework to classify 53 
disease states and called for diagnostic development to detect the subclinical states. We performed a 54 
systematic search of PubMed from inception to June 10, 2024 using terms for ‘tuberculosis’, ‘subclinical’ 55 
and ‘RNA’, without language restrictions. Multiple studies have discovered or validated multi-gene blood 56 
RNA signatures for TB, including to discriminate individuals who progress to clinical TB from non-57 
progressors. In our previous head-to-head evaluation of these signatures, we demonstrated that eight 58 
signatures had equivalent performance to predict progression to TB. More parsimonious biomarkers, 59 
such as single-gene transcripts, may facilitate clinical translation. However, no previous studies have 60 
systematically compared the performance of single-gene transcripts to multi-gene signatures. 61 
Moreover, the clinical utility of RNA biomarkers to detect subclinical TB and guide treatment decisions, 62 
compared to alternative strategies including using interferon-gamma release assays (IGRAs), remains 63 
untested.  64 

Added value of this study 65 

To our knowledge, this is the largest pooled analysis of RNA biomarkers to predict progression to clinical 66 
TB, the first head-to-head comparison of single-gene transcripts to multi-gene signatures and the first 67 
RNA analysis to align with the ICE-TB definitions. We tested 80 single-genes and eight multi-gene 68 
signatures to detect subclinical TB in a pooled dataset from four RNAseq and three qPCR datasets, 69 
comprising over 6500 RNA samples. We show that five co-correlated single-gene transcripts were 70 
equivalent to the best-performing multi-gene signature to detect subclinical TB over a 12-month interval, 71 
but none met the WHO minimum target product profile (TPP) for a TB progression test. Discriminative 72 
performance of single-gene transcripts waned over increasing time intervals from sampling. BATF2, the 73 
transcript with the highest discrimination point estimate, showed consistent performance across 74 
settings. In contrast, IGRA performance was heterogenous, approximating the WHO minimum TPP in 75 
low TB burden settings, but demonstrating poor specificity in higher burden settings. Decision curve 76 
analysis comparing the clinical utility of BATF2 and IGRA showed that BATF2 offered highest net benefit 77 
in high burden settings. In low burden settings, IGRA offered greater net benefit, while a two-step 78 
approach combining both tests achieved the greatest net benefit for services aiming to treat fewer than 79 
50 people to prevent a TB case. 80 

Implications of all the available evidence 81 

Single-gene transcripts perform as well as multi-gene signatures for subclinical TB. These findings may 82 
simplify RNA biomarker testing, encourage commercial competition and facilitate translation of this 83 
technology to clinical practice. RNA biomarkers demonstrate clinical utility to direct treatment decisions, 84 
as a stand-alone test in high burden settings and in combination with IGRA in low burden settings. 85 
Further interventional studies are required to evaluate the clinical and cost-effectiveness of serial RNA 86 
biomarker testing to stratify delivery of preventative therapy, for example among high-risk contacts in 87 
high burden countries, or using a two-step testing approach in combination with IGRA in low burden 88 
settings. 89 
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Introduction 91 

Despite global efforts, tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, 92 
causing 10.6 million cases and 1.3 million deaths in 2022, with a disproportionate burden on 93 
disadvantaged communities1,2. In response to increased recognition of the spectrum of TB, the 94 
International Consensus for Early TB (ICE-TB) group recently developed a framework to classify 95 
disease states. The ICE-TB framework divides TB disease into subclinical or clinical based on signs 96 
and symptoms, with further subdivisions into infectious and non-infectious based on detection of 97 
aerosolised or expectorated M tuberculosis3. Targeting the subclinical disease state, potentially with 98 
truncated treatment regimens4, may prevent progression to clinical disease and reduce risk of onward 99 
transmission. 100 

Current prognostic tests for TB, such as the tuberculin skin test (TST) and interferon-γ release assay 101 
(IGRA), have low positive predictive values (PPVs) for progression to clinical disease5–7, resulting in 102 
unnecessary TB preventative therapy (TPT) for most individuals. This is financially burdensome in 103 
healthcare systems and adverse effects are estimated to affect 3.7% of TPT-treated individuals8. 104 
Measurement of blood RNA levels can be used to detect changes in host gene expression in response 105 
to TB disease. Multiple RNA signatures have been discovered that have promising diagnostic accuracy 106 
for clinical TB9–20 or to predict progression to clinical disease21–24. In a previous analysis comparing the 107 
performance of 17 RNA signatures to predict progression to clinical disease, we demonstrated that 108 
eight signatures performed equivalently, were co-correlated and shared common upstream pathways25. 109 

Development of near-patient, cartridge-based prototype platforms, such as the Cepheid MTB-Host 110 
Response (MTB-HR) assay have paved the way for clinical translation of blood RNA signatures. 111 
However, this progress may be further accelerated by further simplification of multi-gene signatures to 112 
single-gene biomarkers. In view of the co-correlation and common regulators of the genes that comprise 113 
the most accurate signatures to date, multiple genes may not offer orthogonal value. In this study, we 114 
used a pooled dataset of studies with blood RNA sampling and longitudinal follow-up for TB to 115 
hypothesise that single-gene transcripts will perform as well as multi-gene signatures for detection of 116 
subclinical TB. We also sought to benchmark the diagnostic performance and clinical utility of RNA 117 
biomarkers to IGRA, stratified by TB burden. 118 

Methods 119 

Data sources and preparation 120 

We performed a systematic search to identify datasets where participants underwent whole blood RNA 121 
sampling with at least 12 months of follow-up for development of clinical TB (supplementary methods). 122 
Studies using genome-wide (RNAseq or microarray) or targeted transcriptional profiling (qPCR or 123 
NanoString quantification) were included. We included four RNAseq datasets from our previous 124 
individual participant data meta-analysis (IPD-MA)25 and three subsequent studies using qPCR26–28. All 125 
included RNA datasets were publicly available. 126 

The four previously included RNAseq datasets were mapped, batch corrected, and integrated into a 127 
single pooled dataset using transcripts per million measurements, as previously described25. Our data 128 
preparation pipeline for qPCR studies is described in the supplementary methods. We included 80 129 
single-genes that were present in the RNAseq dataset and at least one qPCR study (CORTIS-130 
01/HR26,27 or REPORT-Brazil28). We calculated scores for eight existing RNA signatures that were 131 
included in our previous analysis (supplementary methods)29. We standardised signatures and single-132 
gene transcripts within each RNAseq and qPCR dataset by converting to z-scores (supplementary 133 
methods), before combining the z-score transformed datasets into a pooled dataset.  134 

Outcome definitions 135 

We used the original study definitions as a reference standard for TB in each cohort. We sought to align 136 
our terminology with the ICE-TB consensus classification3. Clinical TB was defined as symptomatic 137 
prevalent TB cases. Subclinical TB was defined as asymptomatic prevalent TB cases (approximates to 138 
‘subclinical TB, infectious’) or incident TB cases (approximates to ‘subclinical TB, non-infectious’). The 139 
‘subclinical, non-infectious’ state is based on the presence of “macroscopic pathology”, for which there 140 
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is no gold standard. We therefore used progression to incident TB as a reference standard to 141 
approximate this, based on the assumption that macroscopic pathology would have been detectable at 142 
the time of blood RNA sampling if investigated with sufficient resolution. Prevalent TB was defined as 143 
a TB diagnosis made less than 21 days after RNA sampling whereas incident TB was defined as a TB 144 
diagnosis ≥21 days. Non-progressors were defined as individuals who remained TB-free during follow-145 
up.  146 

Analysis 147 

All analyses were done using R (version 4.4.0). We performed a one-stage IPD-MA to calculate the 148 
accuracy of candidate signatures and transcripts to discriminate subclinical TB from non-progressors, 149 
stratified by interval from sampling to disease. Since our initial analyses demonstrated similar accuracy 150 
of RNA biomarkers for each study, our primary analysis assumed common accuracy across studies, as 151 
previously25. The primary analysis was over a 12-month interval from sampling, with further stratified 152 
analyses over 0-3, 0-6, 0-15, 6-12, and 12-15 months. For the primary analysis, non-progressor 153 
samples with less than 12 months of follow-up from sampling were excluded. We excluded individuals 154 
who received TPT from the primary analysis since this affects progression risk and may be differential 155 
among those with higher, compared to lower, RNA biomarker scores. Where datasets included serial 156 
samples from the same individuals, we considered serial samples as independent since intra-individual 157 
variance was similar to inter-individual variance (supplementary figure 7). Where candidate signatures 158 
were originally derived from included datasets, we excluded these datasets when evaluating the 159 
accuracy of that signature. 160 

Accuracy of candidate signatures and transcripts was quantified by the area under the receiver 161 
operating curve (AUROC) with 95% confidence intervals (CIs). Sensitivity and specificity were 162 
calculated at the maximum Youden index, giving equal weighting to sensitivity and specificity, and 163 
benchmarked against the WHO minimum Target Product Profile (TPP) parameters for predicting 164 
progression to TB over 2 years (≥75% sensitivity and ≥75% specificity)04/07/2024 14:57:00. AUROCs 165 
of single-gene transcripts were compared to the best performing multi-gene signature using the pairwise 166 
Delong test, with multiple testing correction using the Benjamini-Hochberg approach. Signatures and 167 
transcripts with adjusted p values >0.05 were considered equivalent. Correlation of equivalent 168 
transcripts was assessed using Spearman rank correlation. We also evaluated expression and 169 
AUROCs of the best-performing single gene transcript across different disease states; clinical TB, 170 
‘subclinical TB, infectious’, and ‘subclinical TB, non-infectious’. 171 

We then compared the diagnostic performance and clinical utility of the single-gene transcript with the 172 
highest AUROC point estimate to IGRA, in a head-to-head analysis among participants for whom results 173 
of both tests were available, over a 12-month interval from sampling. These analyses were stratified by 174 
setting, defined as low TB burden where incidence was <50 per 100,000, and high TB burden above 175 
this. Among individuals with serial IGRA samples, low intra-individual variance indicated high correlation 176 
between serial samples (supplementary figure 7); we therefore included only one sample per individual, 177 
sampled at random. We used thresholds of the maximum Youden index for the transcript and the 178 
standard cut-off of 0.35 IU/ml for the QuantiFERON-TB assay. We also explored an approach using a 179 
combination of the transcript and IGRA, where only those positive for both tests are offered treatment. 180 
We compared the sensitivity, specificity and PPV of these approaches based on a 1% and 2% prior 181 
probability, with the latter based on 1-year incidence rates in high-risk close contacts30,31.  182 

To evaluate the clinical utility of the RNA biomarker, IGRA and combined testing approaches, we 183 
performed decision curve analysis. Decision curve analysis quantifies the trade-off between correctly 184 
identifying true TB progressors and incorrectly identifying false-positives, as ‘net benefit’32. Net benefit 185 
is calculated across a range of weightings for the false-positives, defined as the threshold probability. 186 
Threshold probability is the risk of disease at which a clinician or patient would opt for an intervention 187 
such as treatment and relates to the number-willing-to-treat to prevent a single case of disease. We 188 
calculated net benefit using the best performing transcript or IGRA to guide preventative treatment 189 
compared to the default strategies of treating all individuals or no individuals, across a range of 190 
threshold probabilities. Since the contributing datasets included case-control analyses, we fixed the 191 
cumulative TB risk as 1% and 2% in our decision curve analyses. 192 
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Finally, we estimated the number-needed-to-treat with preventative therapy to prevent a single TB case 193 
for these testing approaches compared to a default strategy of treating all individuals. We assumed a 194 
constant treatment effect of 80% and fixed the cumulative TB risk as 1% and 2%. 195 

Sensitivity analyses 196 

We performed four sensitivity analyses. Firstly, we performed a two-stage IPD-MA where we calculated 197 
accuracy of signatures and transcripts for each contributing cohort, explored between study 198 
heterogeneity, and performed a random-effects meta-analysis to calculate pooled AUROCs (using the 199 
metafor package in R33). Secondly, we included participants commencing TPT in the analysis. Thirdly, 200 
we included only one sample per individual, sampled at random. Finally, we included datasets from 201 
which signatures were originally derived in the accuracy calculation for that signature.  202 

Role of the funding source 203 

The funder had no role in study design, data collection, data analysis, data interpretation, writing of the 204 
report, or decision to submit for publication. The corresponding authors had full access to all the data 205 
in the study and had final responsibility for the decision to submit for publication. 206 

Results 207 

Overview of contributing studies 208 

Four RNAseq datasets and three qPCR datasets were included (table 1). The RNAseq datasets 209 
included the Adolescent Cohort Study (ACS) of IGRA/TST positive individuals from South Africa21, the 210 
Grand Challenges 6-74 (GC6-74) study of household contacts of TB patients from South Africa, The 211 
Gambia, and Ethiopia22, and two UK close contact studies from London24 and Leicester34. The qPCR 212 
datasets included the Correlate of Risk Targeted Intervention Study (CORTIS-01) study of healthy 213 
volunteers from TB endemic communities in South Africa26, the CORTIS-HR study consisting of people 214 
living with HIV (PLHIV) from TB endemic communities in South Africa27, and the Regional Prospective 215 
Observational Research for Tuberculosis Brazil (REPORT-Brazil) study of close contacts of TB patients 216 
from Brazil28.  217 

ACS and GC6-74 studies were nested case-control studies within larger prospective cohort studies. 218 
CORTIS-01 was a randomised control trial where a cohort of healthy participants first underwent 219 
measurement of the RISK11 signature (Darboe11). RISK11-positive individuals were randomised to 220 
either receive TPT or not, whilst the RISK11-negative individuals did not receive TPT. Only a subset of 221 
randomly sampled RISK11-negative participants were included to enrich the study cohort for RISK11-222 
positive participants. All other studies were observational cohort studies. All studies performed RNA 223 
sampling at baseline; ACS, GC6-74, and REPORT-Brazil also performed serial, 6-monthly sampling. 224 
REPORT-Brazil, Leicester contacts, and London contacts were from countries with a low TB burden, 225 
whereas the remainder were from countries with a high TB burden. CORTIS-01 and CORTIS-HR 226 
performed 15 months of follow-up whereas the remaining studies performed 22.8-24 months of follow-227 
up. TB case definitions varied by study; all included microbiologically confirmed cases (culture +/- 228 
smear/PCR) while GC6-74, London contacts, and REPORT-Brazil also included clinically diagnosed 229 
cases. 230 

Overview of included samples 231 

In total, 6530 samples from 5185 individuals were included in the primary analysis, with a total of 283 232 
subclinical TB samples – 39 asymptomatic prevalent samples and 244 incident samples 233 
(supplementary figure 8). Baseline characteristics and risk of TB disease for each study are shown in 234 
supplementary table 1.  235 

Three of the included eight signatures were derived from included datasets – Darboe11 and Penn-236 
Nicholson6 from ACS, and Suliman4 from GC6-74 – so the original datasets were excluded from the 237 
evaluation of signature performance in the primary analysis. Distributions of gene z-scores after 238 
standardization were similar between datasets and there was little heterogeneity in AUROCs of 239 
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transcripts between datasets (supplementary figures 4B & 10). We therefore proceeded to a one-stage 240 
IPD-MA as the primary analysis. 241 

Accuracy of signatures and single transcripts for subclinical TB 242 

The multi-gene signature with the highest AUROC for discrimination of subclinical TB from non-243 
progressors over 12 months from sampling was Roe3 (AUC 0.77 [95% CI 0.73-0.81]), which was then 244 
used for pairwise comparison with the single-gene transcripts. Five single-gene transcripts had 245 
equivalent AUROCs to Roe3; BATF2 (0.77 [0.73-0.81]), FCGR1A/B (0.77 [0.73-0.81]), ANKRD22 (0.77 246 
[0.72-0.81]), GBP2 (0.75 [0.71-0.79]), and SERPING1 (0.75 [0.71-0.79]) (table 2). These transcripts 247 
demonstrated moderate-strong correlation (0.54-0.81) using Spearman rank (supplementary figure 9). 248 
Using maximum Youden index thresholds, none of the transcripts met the WHO minimum TPP 249 
parameters for progression tests over 12 months. Discriminative performance of single-gene transcripts 250 
diminished gradually over increasing time intervals from sampling to disease, with poor discrimination 251 
over 12-15 months (supplementary table 2). BATF2 expression and discriminative performance 252 
compared to non-progressors across different disease states is shown in figure 1. Notably, 253 
discriminative performance of BAFT2 was highest for clinical TB (AUROC 0.93 [0.87-0.99]).  254 

Comparison of accuracy to IGRA 255 

Comparison of the diagnostic performance of BATF2, IGRA, and a combined approach of BATF2 and 256 
IGRA, stratified by setting and benchmarked against the WHO minimum TPP performance criteria 257 
(figure 2A) showed that whilst the sensitivity of IGRA was similar across settings (87-88%), specificity 258 
was markedly lower in high burden settings (32% [95% CI 30-35%]) compared to low burden settings 259 
(74% [72-76%]) resulting in PPVs of 1.3% (1.1-1.4%) and 3.3% (2.4-3.9%) respectively (supplementary 260 
table 4). In contrast, BATF2 performance was consistent across settings, with PPVs of 2.3% (1.8-2.7%) 261 
and 2.4% (1.6-3.1%) in high and low burden settings respectively. In high burden settings, the combined 262 
approach resulted in a slight increase in specificity compared to BATF2 alone (77% [54-76%] versus 263 
67% [64-69%]) but similar PPVs (2.8% [2.1-3.5%] versus 2.3% [1.8-2.7%]). In contrast, a large increase 264 
in specificity (92% [CI 90-93%] versus 72% [70-74%]) and PPV (6.8% [3.8-9.9%] versus 2.4% [1.6-265 
3.1%]) was achieved in the low burden settings when using the combined approach compared to BATF2 266 
alone, albeit with some loss of sensitivity (58% [39-76%] versus 67% [47-82%]). None of the testing 267 
approaches met WHO minimum TPP parameters over 12 months, although IGRA accuracy approached 268 
the benchmarks in the low burden settings. Using a 2% prior probability, PPVs approximately doubled 269 
without changing the overall pattern of results (supplementary figure 12).  270 

Clinical utility analysis 271 

Decision curve analysis of these testing approaches varied by setting (figure 2B). In high burden 272 
settings, IGRA offered minimal additional net benefit over a treat all strategy. BATF2 offered greater net 273 
benefit than IGRA and, using prior probability of 1%, had the highest net benefit across threshold 274 
probabilities between 0.4% and 2.2%, equating to a number-willing-to-treat to prevent a single case 275 
(NWT) of 45-250. Above this threshold, where NWT was less than 45, treating none was best. The 276 
combined approach (where only those positive for both tests are offered treatment) achieved only 277 
slightly greater net benefit than BATF2 alone at threshold probabilities of 1-3%, equating to a NWT of 278 
33-100. In contrast, in low burden settings, IGRA outperformed BATF2 across all threshold probabilities. 279 
IGRA offered the highest net benefit at threshold probabilities under 2%, equating to a NWT of over 50, 280 
whereas the combined approach offered the highest net benefit at threshold probabilities of 2-7%, 281 
equating to a NWT of 14-50. Using a higher prior probability of 2%, findings were similar, but net benefit 282 
for all strategies was shifted to the right on the threshold probability scale. For example, in higher burden 283 
settings, BATF2 offered greater net benefit over IGRA and a treat all strategy at threshold probabilities 284 
of 0.7-4.5%, equating to a NWT 22-143 (supplementary figure 12). 285 

Number-needed-to-treat (NNT) estimates to prevent a single TB case for the testing approaches, 286 
compared to a treat all strategy, are shown in figure 3A. In high burden settings, performing IGRA testing 287 
resulted in slightly lower NNT estimates than treating all (98 [88-114] versus 125). Compared to IGRA, 288 
NNTs were significantly lower using BATF2 (54 [46-68]) or a combined approach (44 [34-59]). In low 289 
burden settings, NNTs of IGRA and BATF2 were similar (38 [32-51] and 53 [40-80] respectively). Using 290 
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the combined approach resulted in a lower NNT of 18 (13-33). Due to superior specificity, lower NNT 291 
estimates were achieved by IGRA (either alone or in combination with BATF2) in low burden versus 292 
high burden settings. Using a 2% prior probability roughly halved the NNT with a similar pattern (figure 293 
3B). 294 

Sensitivity analyses 295 

A two-stage meta-analysis to calculate pooled AUROCs resulted in similar findings to the primary 296 
analysis (supplementary table 5). Similarly, we observed similar AUROCs when including recipients of 297 
TPT (excluding the Darboe-11 positive participants randomised to systematically receive TPT in 298 
CORTIS-01), including only one RNA sample per individual, or when including datasets from which 299 
signatures were originally derived in the accuracy calculation for that signature (supplementary table 300 
6).  301 

Discussion 302 

To the best of our knowledge, we report the largest pooled RNA biomarker analysis in subclinical TB to 303 
date, including over 6500 RNA samples, and the first comprehensive head-to-head analysis comparing 304 
single-gene transcripts to multi-gene signatures. This is also the first evaluation of RNA biomarkers to 305 
align with the ICE-TB classification. We showed that five single-gene transcripts perform equivalently 306 
to the best multi-gene signature for discrimination of subclinical TB from non-progressors over 12 307 
months. RNA biomarker performance was consistent across settings. In contrast, IGRA performance 308 
varied markedly, with poor performance in higher burden settings. In decision curve analysis we 309 
demonstrate that, in high burden settings, RNA biomarker testing offers clinical utility over IGRA, which 310 
has minimal benefit over treating all with preventative therapy. In low burden settings, IGRA was the 311 
best single test and approximated the WHO TPP, with greater net benefit than RNA biomarker testing. 312 
However, for services aiming to treat fewer than 50 people to prevent a TB case, a two-step combined 313 
testing approach improves specificity and is superior. 314 

Development of the Cepheid MTB-HR prototype has demonstrated that translation to a near-patient 315 
platform is feasible. Whilst the cost of such platforms is currently unknown, it is unlikely to exceed the 316 
WHO TPP maximum of $100 per test, based on the cost of an IGRA35. Our findings may facilitate 317 
translation of RNA biomarker technology to clinical practice by encouraging commercial competition 318 
using measurement of any one of best performing single genes at lower cost. Nonetheless, none of the 319 
transcripts met the WHO TPP minimum sensitivity and specificity, even over a 12-month interval, 320 
although this was almost achieved by IGRA in the low burden setting (74% specificity and 88% 321 
sensitivity). In the high burden setting, the WHO TPP seem an unrealistic aim that is unlikely to be 322 
achieved over two years with a biomarker targeting early disease, although serial testing may improve 323 
overall performance. Combining different modalities of tests may improve specificity, albeit at greater 324 
cost. A universal testing strategy may be challenging to achieve if test performance is heterogenous 325 
across settings; rather tailored strategies may be required based on TB burden. We demonstrate this 326 
by showing that in low burden settings IGRA remains a useful test; a combined approach using IGRA 327 
and blood RNA biomarkers shows additional promise and warrants further evaluation. However, in high 328 
burden settings, the high prevalence of Mtb sensitisation means that IGRA has poor specificity and thus 329 
minimal utility. Greater specificity may be achieved with better measures of recent Mtb infection, for 330 
example Mtb-specific T cell activation36. Alternatively, combining molecular approaches with 331 
radiological testing, such as digital chest radiographs37, as a method to detect macroscopic pathology, 332 
may also improve performance.  333 

Our findings may provide some insights into host immune responses in early TB. The co-correlation of 334 
best performing single-gene transcripts is consistent with previous findings of shared upstream 335 
interferon and tumour necrosis factor signalling pathways25. This explains why a single transcript is a 336 
sufficient measure of this immune response and combining these transcripts into multigene signatures 337 
does not offer orthogonal value. The consistent performance of RNA biomarkers across settings 338 
suggests that this a common host response across populations. Likewise, the similar performance in 339 
CORTIS-HR suggests that this pathway is preserved in PLHIV, though previous data have 340 
demonstrated likely upregulation of common type-I interferon responses in untreated HIV38. The fall in 341 
discriminative performance after 12 months may be reflective of de novo infection following signature 342 
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measurement in high burden settings, or that there is a minimal host response in earlier subclinical 343 
disease. The equivalent performance of multiple co-correlated RNA biomarkers, which has also been 344 
reported previously25,27,38, suggests that future discovery and validation of signatures using similar 345 
approaches is unlikely to yield a test with better performance. To date, discovery approaches have 346 
largely focused on identifying differentially expressed transcripts in TB, before combining these to form 347 
a discriminating multi-gene signature. Simplifying these to single gene biomarkers has the added benefit 348 
of facilitating their integration into panels of blood RNA biomarkers for multinomial classification39 that 349 
may overcome the specificity limitations of the current binomial approach, for example by combining 350 
with the best performing single gene biomarkers of viral infections40.  351 

An important strength of our analysis is that we have adopted ICE-TB terminology for subclinical TB, to 352 
facilitate comparisons across studies and biomarker domains. We included 6530 samples including 283 353 
samples from subclinical TB cases, making it the largest analysis of RNA biomarkers for subclinical TB 354 
to date. Our data processing pipeline ensured batch correction within studies and integrated RNAseq 355 
and qPCR data into a pooled dataset. We also performed the first decision curve analysis, to our 356 
knowledge, to quantify the clinical utility of RNA biomarkers for subclinical TB and compare to existing 357 
tests. We additionally stratified our decision curve analysis by TB burden, which allowed more granular 358 
assessment of clinical utility by setting. We also performed a number of sensitivity analyses, including 359 
a two-stage IPD-MA, to ensure our primary findings were robust. 360 

A limitation of our study is that, whilst we included cohorts from high and low burden settings, there 361 
were few contributing countries (South Africa, UK, Brazil, The Gambia, and Ethiopia) with no 362 
representation from Asia, although large proportions of the UK studies were individuals of South Asian 363 
ethnicity. There were variations in case definitions and baseline screening between studies which may 364 
have resulted in misclassification, however this is reflective of real-world variations in clinical practice 365 
according to resource availability. Furthermore, with the exception of CORTIS-01/HR, evaluation of TB 366 
disease during follow-up was symptom-triggered so additional cases of subclinical TB may have been 367 
missed. There were low numbers of subclinical cases over a 12-month interval in some studies, with 368 
both Leicester Contacts and CORTIS-HR reporting 5 cases each, however this reflects the reality that 369 
TB is a relatively rare outcome in longitudinal cohort studies. We also acknowledge that there is no gold 370 
standard for the ‘subclinical, non-infectious’ state and high-resolution investigations for macroscopic 371 
pathology, such as PET-CT41, were not performed. We therefore assumed that participants who 372 
developed TB within 12 months would have had macroscopic pathology at baseline, had high-resolution 373 
investigation been performed. However ongoing Mtb exposure during follow-up, particularly in high 374 
transmission settings, may mean that disease cases within the primary 12-month interval may be 375 
attributable to new infection and may have led to underestimation of sensitivity for subclinical TB. Since 376 
subclinical TB may regress or undulate without treatment42, it is also possible that we underestimated 377 
specificity for ‘subclinical, non-infectious’ TB that did not progress to clinical disease within 12 months. 378 
Future studies will be required to further evaluate the accuracy of candidate biomarkers for the 379 
‘subclinical, non-infectious’ state, once a scalable and widely accepted reference standard is 380 
established. 381 

In summary, we have demonstrated that several single-gene transcripts perform equivalently to multi-382 
gene signatures to detect subclinical TB, which may simplify assays and encourage commercial 383 
competition. RNA biomarker performance is consistent across settings and exceeds performance of 384 
IGRA in high burden settings, but falls short of WHO benchmarks. A combination strategy with IGRA 385 
shows promise to enable more targeted preventative treatment in low incidence settings. 386 

  387 
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Inserts  

Table 1: Characteristics of studies included in meta-analysis 

 ACS CORTIS-01 CORTIS-
HR GC6-74 Leicester 

Contacts 
London 
Contacts 

REPORT-
Brazil 

Method of 
RNA 
profiling 

RNAseq RT-qPCR RT-qPCR RNAseq RNAseq RNAseq RT-qPCR 

Study 
design 

Nested 
case-
control 

Randomised 
controlled 
trial✱ 

Cohort 
Nested 
case-
control 

Cohort Cohort Cohort 

Population Positive 
IGRA/TST 

Endemic 
community 

PLHIV in 
endemic 
community 

Household 
contacts 

Close 
contacts 

Close 
contacts 

Close 
contacts 

Age 12-18 ≥18 ≥18 10-60 ≥16 ≥18 ≥18 

TB burden 
of setting 

High 
burden High burden High 

burden 
High 
burden 

Low 
burden 

Low 
burden 

Low 
burden 

Country South 
Africa South Africa South 

Africa 

South 
Africa, The 
Gambia, 
Ethiopia 

UK UK Brazil 

Baseline 
screening 

Clinical 
evaluation 2x sputum 2x sputum Clinical 

evaluation 
Clinical 
evaluation 
+ CXR 

Clinical 
evaluation 
+ CXR 

Clinical 
evaluation 

Study case 
definition 

2x positive 
smear or 
1x positive 
culture 

2x positive 
Xpert 
MTB/RIF or 
Xpert Ultra 
or culture 

2x positive 
Xpert 
MTB/RIF 
or Xpert 
Ultra or 
culture 

Positive 
culture or 
clinically 
diagnosed 

Positive 
culture or 
Xpert 
MTB/RIF 

Positive 
culture or 
clinically 
diagnosed 

Positive 
culture or 
clinically 
diagnosed 

Duration of 
follow-up 
(months) 

24 15 15 24 24 22.8 24 

RNA 
sample 
timing 

Baseline & 
6/12/18/24 
months 

Baseline Baseline 
Baseline & 
6/18 
months 

Baseline Baseline Baseline & 
6 months 

Total 
participants 144 2496 404 334 104 324 1379 

Total RNA 
samples 318 2496 404 412 104 324 2472 

✱The cohort was enriched for RISK11-positive individuals. The RISK11-positive individuals were randomised 
to TPT or no TPT. The RISK11-negative individuals did not receive TPT. 
Legend: CXR, chest x-ray; PLHIV, people living with HIV 
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Table 2: Performance metrics of equivalent single-gene transcripts for subclinical TB 

Performance metrics of single-gene transcripts with equivalent performance to the best performing 

multi-gene signature (Roe3) to discriminate subclinical TB cases from non-progressors at an interval of 
12 months from sampling to disease are shown. Equivalence to Roe3 was defined as an adjusted p 

value >0.05 in the pairwise Delong test. Performance metrics include estimates and 95% confidence 

intervals for the Area Under the Receiver Operating Curve (AUROC) as well as sensitivity and specificity 

at the maximum Youden index calculated from the one-stage meta-analysis. 

RNA 
biomarker AUROC Sensitivity Specificity N Cases Controls p 

Roe3 0.77 (0.73 - 
0.81) 

0.74 (0.67 - 
0.79) 

0.7 (0.69 - 
0.71) 5,171 189 4,982 Reference 

BATF2 0.77 (0.73 - 
0.81) 

0.74 (0.67 - 
0.8) 

0.69 (0.67 - 
0.7) 5,171 189 4,982 0.715 

FCGR1A/B 0.77 (0.73 - 
0.81) 

0.65 (0.58 - 
0.72) 

0.79 (0.78 - 
0.8) 5,170 189 4,981 0.867 

ANKRD22 0.77 (0.72 - 
0.81) 

0.57 (0.48 - 
0.65) 

0.86 (0.85 - 
0.87) 3,381 138 3,243 0.881 

GBP2 0.75 (0.71 - 
0.79) 

0.74 (0.67 - 
0.79) 

0.65 (0.64 - 
0.66) 5,171 189 4,982 0.064 

SERPING1 0.75 (0.71 - 
0.79) 

0.66 (0.59 - 
0.73) 

0.75 (0.73 - 
0.76) 5,168 189 4,979 0.069 
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Figure 1: BATF2 expression and diagnostic accuracy for different disease states 

Expression (Z-score transformed) of the best performing single-gene transcript, BATF2, is shown as a 

combined boxplot and scatterplot, stratified by disease state. Disease state is classified according to 
ICE-TB consensus definitions and descriptive terms are also shown. Boxes represent interquartile 

range and median values. Grey dots represent individual samples and black dots represent outliers. 

Area Under the Curve (AUC) with 95% confidence intervals of BATF2 to discriminate the disease state 

from non-progressors is also shown. 
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Figure 2: Diagnostic performance for subclinical TB of BATF2, IGRA and a combined approach 
shown in receiver operating space and in a decision curve analysis, by setting 

Figure 2A compares the diagnostic performance for subclinical TB over a 0-12 month interval of BATF2 

(threshold set at maximum Youden Index), IGRA (threshold set at standard cutoff of 0.35 IU/ml) and a 

combined approach of BATF2 and IGRA in the receiver operating space with sensitivity on the y axis 

and 1-specificity on the x axis, stratified by setting. Only participants with results for both tests were 

included in this analysis. Shown as point estimates with 95% confidence intervals (boxes). Dotted lines 

represent the 75% WHO minimum Target Product Profile sensitivity and specificity for a TB progression 

test. Dashed lines represent positive predictive values of 1%, 3% and 5%, based on a 1% prior 
probability. Underlying data are shown in supplementary table 4. 

Figure 2B is a decision curve analysis where each test is compared to default strategies of treating all 

or treating no persons, stratified by setting. Threshold probability is the risk of TB disease at which a 

clinician or patient would opt for preventative therapy and is the reciprocal of the number-willing-to-treat 

to prevent a single case. Net benefit is calculated at a range of threshold probabilities as the true positive 

rate minus a weighted false positive rate, where the weighting is the threshold probability. Since the 

contributing datasets included case-control analyses, the cumulative TB risk was fixed at 1%. 
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Figure 3: Number-needed-to-treat to prevent a single TB case using different testing strategies, 
by setting, using 1% and 2% prior probabilities 

Estimated number-needed-to-treat (NNT) with preventative therapy to prevent a single TB case is 

shown for the default strategy of treating all compared to test stratified treatment using BATF2 

(threshold set at maximum Youden Index), IGRA (threshold set at standard cutoff of 0.35 IU/ml) and a 

combined approach of BATF2 and IGRA. Shown as point estimates and 95% confidence intervals 

(bars). An estimated treatment effect of 80% was used. Since the contributing datasets included case-

control analyses, the cumulative TB risk was fixed at 1% (A) and 2% (B). 
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