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Abstract 34 

Although thousands of genetic variants are linked to human traits and diseases, the underlying 35 

mechanisms influencing these traits remain largely unexplored. One important aspect is to 36 

understand how proteins are regulated by the genome by identifying protein quantitative trait loci 37 

(pQTLs). Beyond this, there is a need to understand the role of complex genetics effects such as 38 

dominance and epistasis that regulate plasma proteins and protein biomarkers. Therefore, we 39 

developed EIR-auto-GP, a deep learning-based approach, to identify such effects. Our results 40 

complement the additive genetic regulation identified in previous pQTLs screens by adding a 41 

nuanced view of the complex genetic regulation of plasma proteins. Applying this method to the 42 

UK Biobank proteomics cohort of 48,594 individuals, we identified 138 proteins that were 43 

regulated by non-linear effects, including non-linear covariates (123) as well as genetic dominance 44 

and epistasis (15). We uncovered a novel epistatic interaction between the ABO and FUT3 loci, 45 

and demonstrated dominance effects of the ABO locus on plasma levels of pathogen recognition 46 

receptors CD209 and CLEC4M. Furthermore, we replicated these findings and the methodology 47 

across Olink and mass spectrometry-based cohorts and concluded that large sample sizes are 48 

needed to discover more complex genetic effects. Our approach presents a systematic, large-scale 49 

attempt to identify complex effects of plasma protein levels and can be applied to study other 50 

tissues or molecular QTLs.  51 

  52 
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Introduction 53 

 54 

Genome-wide association studies (GWAS) have identified thousands of associations between 55 

genetic variants and phenotypic traits1. Despite these discoveries, it remains a significant challenge 56 

to understand how these genetic variants contribute to the phenotypic traits. This is mainly because 57 

the functional impact of many variants is still unknown. This area of focus in modern genetic 58 

research is known as Variant-2-Function (V2F). Addressing the V2F challenge is crucial for 59 

identifying how genetic variants influence biological pathways, which can improve our 60 

understanding of disease mechanisms and allow for more precise drug development2.  61 

 62 

In response to this challenge, multi-omics approaches have been applied to population-based 63 

cohorts, typically including transcriptomics, proteomics, metabolomics, or microbiomics3–8. Blood 64 

plasma, in particular, serves as an easily accessible and minimally invasive sample for diagnostics 65 

and biomarker discovery. Large-scale blood metabolomics are now available from resources like 66 

the UK Biobank, further enriching our understanding of the genomic basis of complex traits7. 67 

Moreover, proteomics-based analyses using either aptamer-based (SomaScan), antibody-based 68 

(Olink) or mass spectrometry (MS)-based assays of individual-level biobank samples have 69 

revealed thousands of protein quantitative trait loci (pQTLs)5,6,9–14. These can bridge the gap 70 

between genetic variants and phenotypes and allow for deeper functional understanding of 71 

diseases, improving drug target discovery and contributing to our understanding of genetic effects 72 

on disease15–17. Currently, GWAS has been the most widely applied methodology for discovery of 73 

pQTLs. However, GWAS often assumes an additive model and might not fully recapitulate 74 

complex, non-additive effects among the variants and relevant covariates. Despite its robustness, 75 

it has been shown that deviations from the additive model exist in a number of human loci, for 76 

example in the form of dominance effects18. Additionally, interactions of two or more variants can 77 

result in a larger effect on a phenotype than the effect of each single variant, a concept known as 78 

epistasis, which can also contribute to non-linear genetic architecture of complex traits19–21.  79 

 80 

DL models can capture non-linear effects, which has motivated recent work in applying DL and 81 

other non-linear models for both genetic prediction and variant-phenotype association, providing 82 

new insights into the genetic architecture of complex traits22–26. For example, in previous studies, 83 
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we developed and applied DL frameworks for disease prediction in the UK Biobank27, and found 84 

potential dominance and epistatic effects, specifically for immunological diseases such as type 1 85 

diabetes (T1D), involving the insulin gene and HLA-DQB128–30. These complex effects also 86 

transfer to molecular quantitative trait loci, as indicated by our previous analysis of 34 common 87 

biomarkers in the UK Biobank31. Additionally, targeted discovery of epistatic effects between 88 

genetic variants uncovered the presence of interactions between the ABO blood group and the 89 

FUT2 secretor status that influence blood plasma abundance of gastrointestinal (GI) proteins6. 90 

Unbiased approaches have been used to identify numerous epistatic and dominance effects that 91 

influence the plasma levels of lipids and their effects on cardiovascular diseases32. However, by 92 

now, there have not been attempts to systematically characterize non-linear effects that influence 93 

blood plasma protein levels. 94 

 95 

Here, we present a systematic, DL-based workflow that allows us to identify non-linear effects 96 

like non-linear covariate effects, dominance, and epistasis that influence plasma protein levels. To 97 

demonstrate the use of our approach, we examined data from 2,922 blood plasma protein levels 98 

measured in 48,594 individuals from the UK Biobank Pharma Proteomics Project (UKB-PPP). 99 

Our study presents a nuanced view of non-additive effects that influence plasma proteomics in the 100 

UK Biobank. We could illustrate the quantitative and qualitative non-linear regulation of the blood 101 

plasma proteome and reveal novel non-linear effects that are highly likely to influence plasma 102 

protein abundance. Using our approach, we identified 138 proteins, among which 123 were 103 

potentially regulated by non-linear covariate effects and 15 by dominance or epistasis effects. This 104 

highlights DL as a useful tool to uncover complex effects that influence molecular quantitative 105 

traits, which can contribute to our understanding of the genetic architecture of complex traits.  106 
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Results 107 

 108 

Modeling blood plasma protein levels using deep learning 109 

To investigate the scale of non-linearity of genetic control of protein abundances in the blood 110 

plasma, we modeled the abundance of 2,922 proteins in the blood plasma proteome in the UKB 111 

cohort. Based on our deep learning framework, EIR, and the genome-local net deep learning 112 

architecture (GLN)27, we developed an automated framework, EIR-auto-GP, to predict the 113 

abundance of a protein from genotypes and covariates (age, sex, UKB center, UKB genetic array, 114 

whether an individual was consortium selected and genetic principal components 1-20 (Figure 115 

1a). We used grouped, self-reported ethnicities (Methods) that resembled the distribution of the 116 

genetic population structure in the UKB to subset individuals of UK-white self-reported ethnicity 117 

as the largest group of individuals with similar ancestral background for model training and testing 118 

(Supplementary Figure 1a). Subsequently, after quality control (QC) of the proteomics data, the 119 

remaining 48,594 individuals were split into a train (n=34,947), validation (n=2,000) and test split 120 

(n=1,771) (Figure 1a). As input to EIR-auto-GP, we used 424,097 measured QC-passed 121 

genotypes, which reduced computational complexity compared to the more extensive imputed 122 

data. Furthermore, we limited the amount of input variants by using the training dataset to conduct 123 

GWAS for each protein and selecting associated variants (Supplementary Note 1). When 124 

analyzing the results of the per-protein GWAS we found them to be consistent overall with 125 

previous work6, and overlapping variants showed high correlation (Figure 1b). To determine input 126 

variants for the DL modeling, we used a less stringent p-value threshold than usually applied to 127 

GWAS (P<0.001), resulting in most DL models being trained on ≤1,000 variants (Figure 1c). 128 

Taken together, the variants identified through our GWAS and subsequently used as inputs for the 129 

DL models were likely pQTL candidates. 130 

 131 
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 132 

Figure 1. Overview of the study and protein pre-GWAS results. a) Overview of study design and workflow. 133 

UKB genotypes underwent quality control (QC), resulting in 424,097 QC-passed SNVs. The data were split into 134 

training and validation sets of self-reported UK-white ethnicity, OLINK batch 0-6 (n=34,947 for training; n=2000 for 135 

validation), and test sets stratified by ethnicity and batch: UK white self-reported ethnicity (n=1,771) and mixed 136 

ethnicities (n=9,876), all from OLINK batches 0-6 and 0-7 respectively. The training and validation data were used 137 

to develop DL and linear models, with a per-target GWAS on the training set used to pre-filter input variants for 138 

training the DL model. Finally, predictions and analyses were performed on the test data, and proteins that had 139 

discordant performance between the DL and linear models were investigated for non-linear covariate, non-additive 140 

(e.g., dominance), and interaction (e.g., epistasis) effects. b) Correlation of GWAS P-values between the current study 141 

and Sun et al.6. Variants with p-values exactly 0, likely due to being below the numerical precision threshold 142 

(underflow), were omitted from the plot. The scatter plot represents the -log10(p-values) correlation of 1,780 143 

overlapping genetic variants with significant associations (p<1.7e-11) between our analysis and Sun et al.6. The strong 144 

correlation (R=0.96, P<2e-308) between p-values demonstrates consistency in identifying significant associations. c) 145 

Histogram of the number of input SNVs used for DL model training following per target GWAS pre-filtering, where 146 

only SNVs with p-values < 0.001 (computed on the training set) were considered. For the majority of proteins, fewer 147 

than 1,000 SNVs passed the threshold.  148 

 149 

Non-linear effects that influence blood plasma protein abundance 150 

The performance (R2) of the DL and linear models reached up to 0.95 and 0.86 with a median 151 

performance of 0.04 and 0.03, respectively (Figure 2a, Supplementary Figure 2a-b). We found 152 
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an association between proteins with low modeling performance (R2<0.1) and the correlation of 153 

their measurements with SomaScan measurements in an Icelandic cohort14 (Supplementary Note 154 

2). To investigate how many blood plasma proteins could be influenced by non-linear covariates 155 

and genetic effects, we compared the performance of the DL models (EIR-auto-GP) to a penalized 156 

linear model (bigstatsr)33. We calculated the difference in model performance on the UK-white 157 

test set (n=1,771) for each protein (Supplementary Table 1). For 1,503 of 2,922 proteins (51.4%), 158 

the DL model performed better, resulting in a significant difference when modeling plasma protein 159 

abundance from genotypes and covariates (paired T-test, two-sided, t=11.281, P=6.4e-29). To 160 

identify specific proteins for which the DL model was significantly better, we bootstrapped the 161 

predictions of each protein (Methods) and identified 171 proteins (5.8%) with a significant 162 

performance increase (non-overlapping 95% confidence intervals) (Figure 2a, Supplementary 163 

Figure 2b). These proteins showed a median increase in R2 of 0.038 (mean 0.05). To examine 164 

whether these results transferred to other metrics, we additionally used Root Mean Squared Error 165 

(RMSE) to assess model performance. Among the 171 proteins showing better performance with 166 

the DL model as measured by R2, the RMSE analysis also found the DL model outperforming on 167 

all of these. Specifically, 28 of these proteins also showed significant improvement (non-168 

overlapping confidence intervals). In summary, we replicate that linear models are robust in 169 

modeling plasma abundance of measured proteins6,18 and that our DL approach can identify 170 

candidate proteins with potential non-linear effects that influence their plasma levels.  171 

 172 

EIR-auto-GP can identify non-linear effects using NPX and INT protein abundance data 173 

To preserve most of the protein level variance, we modeled the Olink protein expression values 174 

(NPX); however, these are non-normal distributed and on a log2-like scale6. This could favor the 175 

DL model over the linear model without biological non-linear effects because a log2 transformation 176 

can make a fundamentally linear relationship appear non-linear. Therefore, we re-ran our models 177 

for the 171 proteins using Inverse-rank Normal Transformed (INT) protein levels and found 178 

reduced R2 for both DL and linear models, suggesting that information was lost when rank-179 

transforming the protein levels (Figure 2b, Supplementary Table 2). Despite this reduction in 180 

performance, we found that for 138 (81%) of the 171 proteins, a significant gap in performance 181 

between the DL and linear models remained (Figure 2c). Conversely, for 33 of the 171 proteins 182 

the difference between the DL and linear models was not significant anymore (Figure 2c). Where 183 
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indicated, these 33 proteins were excluded from downstream analyses. The performance gap of 184 

most of the remaining proteins correlated well between NPX and INT normalized values, 185 

indicating that the DL model also identified non-linear effects on INT normalized protein values 186 

(Figure 2c).  187 

 188 

 189 

Figure 2. Deep learning reveals non-linear genetic and covariate effects. a) DL (EIR) and linear (bigstatsr) model 190 

performance (R2) for all 2,922 proteins (Supplementary Table 1). The error bars indicate the 95% confidence 191 

intervals (CI) from 1,000 bootstraps, and proteins with non-overlapping confidence intervalsbetween DL and linear 192 

models are called significant and labeled in red. b) DL (top) and linear (bottom) model performance of 171 significant 193 

proteins modeled on raw protein expression values (NPX) or INT normalized protein values (Supplementary Table 194 

2). c) Performance gap (R2-R2) for the 171 significant proteins between DL and linear models (DL-linear) on NPX or 195 

INT normalized protein values. Proteins labeled in red indicate that no significant performance gap (overlapping CIs) 196 
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was found when modeling on INT normalized protein values d) DL and linear model performance for the top 20 197 

significant proteins with the largest absolute performance gap in R2 between the DL and linear models are shown. 198 

Additionally, performance of linear and non-linear (XGBoost) models trained only on covariates are shown 199 

(Supplementary Table 3). The covariates include demographic information (age and sex), the genetic array, genetic 200 

principal components (GPC1-GPC20), whether individuals were consortium selected, and the research center location 201 

for participant measurement. On the right, the fraction of the performance gap that remains when modeling on INT 202 

values instead of NPX protein levels is shown. e) Aggregated DL attribution of 487 SNVs across the genome that was 203 

used as input to model PAEP protein levels. Variants located within the PAEP gene are labeled in red. f) Performance 204 

gap (R2-R2) between DL and linear models on genotype and covariates against the performance gap between non-205 

linear (XGBoost) and linear models on covariates only. Orange and green areas indicate if protein levels underlie non-206 

linear covariate effects or other non-linear effects in the input data.  207 

 208 

Genetics was the main driver of model performance for a subset of proteins 209 

We then investigated the proteins with the largest absolute increase in performance by either 210 

method (top 20) (Figure 2d). For these proteins, the DL model reached an R2 between 0.21 211 

(ERBB3) to 0.95 (PSCA) on the test set (Figure 2d). Among these 20 proteins, 11 showed a 212 

maintained significant performance gap with the INT normalization. To investigate the 213 

contribution of covariates on the performance, we trained and evaluated linear and non-linear 214 

(XGBoost34) models using only the covariates (Supplementary Table 3). We found that for 8 of 215 

these 11 proteins, the genotype data was the main driver of model performance (Figure 2d). For 216 

example, the DL performance of PSCA and FAM3D was mainly driven by known cis- and trans-217 

pQTL (Supplementary Figure 2e), which was expected due to their high association in previous 218 

studies6. For some proteins, for instance, MICB/A and LILRA3, where genetics primarily 219 

contributed to the DL model performance, there was no difference in performance between the DL 220 

and linear model when modeling on INT normalized values (Figure 2d, right panel). However, 221 

other proteins showed sustained performance gaps when modeling on INT normalized values, 222 

providing additional confidence that the increased DL performance might be caused by non-linear 223 

genetic effects (e.g., CEACAM21, ALPI, FAM3D, or MUC2).  224 

 225 

Non-linear covariate effects influence protein levels 226 

For 3 of the 11 significant proteins, we found that non-linearities in the covariates could account 227 

for the entire gain in performance (FSHB, CGA & PAEP) (Figure 2e). For instance, the gain in 228 

R2 for follicle stimulating hormone subunit beta (FSHB) could be entirely explained by the 229 
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covariates sex and age, related to the age of menopause (Figure 2e, Supplementary Figure 2f)6. 230 

Furthermore, for progestogen-associated endometrial protein (PAEP), we found that a 231 

combination of covariates and genetics could account for the increased model performance 232 

(Figure 2d). Besides age and sex related non-linear effects (Supplementary Figure 2f), PAEP 233 

levels were influenced by cis-pQTLs which contributed to model performance (Figure 2e). When 234 

expanding the analysis to all 138 proteins with significant differences, we found that for 123 the 235 

performance gap between DL and linear models could be explained by non-linear covariate effects 236 

(Figure 2f). These results indicate that we could robustly identify proteins with plasma levels that 237 

underlie non-linear covariate effects, which was in line with the non-linear modeling of covariates 238 

in other studies25. However, it also revealed that for a substantial fraction of the 138 proteins 239 

(10.9%, 15 proteins) effects in the covariates could not account for the increased performance of 240 

the DL model to the linear model (Figure 2f). This suggests that the improved predictive accuracy 241 

obtained with the DL model was not solely due to non-linear covariate effects. 242 

 243 

Dominance in the ABO locus influences plasma levels of CD209 and CLEC4M 244 

Next, we investigated the contribution of dominant genetic effects in modeling plasma protein 245 

levels. Because dominance effects can be modeled by a linear model when using non-additive 246 

encoded genotypes, such as one-hot encoding, we compared non-linear (XGBoost) and linear 247 

models on genotype data using additive and non-additive encoding (Supplementary Table 4). To 248 

focus on key genetic variants, we utilized the DL model feature importance computed on the 249 

validation set to select the top 128 SNVs (Methods). This reduced set allowed us to use XGBoost, 250 

which is known for its robust performance on structured data35,36 but might not scale as efficiently 251 

to the high-dimensional datasets. Comparing the non-linear XGBoost with linear models served 252 

as an additional verification of non-linear effects beyond the original models trained on the full set 253 

of features. We found that for a group of proteins (CD209, CLEC4M, ABO, PSCA) using a linear 254 

model with non-additive encoding of genotypes improved the performance of the linear model to 255 

be almost equal to the non-linear model (Figure 3a). This indicated that the non-linear effects 256 

underlying their plasma levels were likely due to genetic dominance. Furthermore, we identified 257 

multiple proteins where the non-additive model could partly improve the performance of the linear 258 

model (e.g., KLK1, FAM3D, MUC2, ALPI, CEACAM21 and more) (Figure 3a). This indicated 259 

that for these proteins, both dominance effects but also other non-linear genetic effects influenced 260 
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their plasma levels. We found that two variants in the ABO locus (rs505922, rs8176719, chr 9) 261 

showed dominance effects on protein levels for CD209, CLEC4M, FAM3D, ALPI, ABO and 262 

MUC2 (Supplementary Figure 3a). CD209 is part of the C-type lectin family and is involved in 263 

cell adhesion and pathogen recognition37. It is highly similar to CLEC4M in function and 264 

sequence. The two genes are located nearby on chr 1937,38 and are referred to as DC-SIGN and DC-265 

SIGNR, respectively. Notably, the two variants, rs505922 and rs8176719, were used to impute the 266 

blood-types of the ABO blood group system in the UKB39–42, which is known to have co-267 

dominance effects of its A and B alleles. Consistent with this, and the non-additive analyses above 268 

(Figure 3a), we found dominant blood group effects on the plasma levels of CD209 and CLEC4M 269 

(Figure 3b-c, Supplementary Figure 3b). We assessed the influence of the dominance effect on 270 

model performance by training linear models for CD209 and CLEC4M using genotype and 271 

covariate data and one-hot encoded either rs8176719, rs505922 or both. We found that by one-hot 272 

encoding these variants the model performance improved by R2 0.03 (7%), 0.0396 (9.21%) and 273 

0.0399 (9.28%) (Supplementary Figure 3c). Taken together, using our approach, we could 274 

identify varying levels of dominance within loci that regulate plasma protein levels. 275 

 276 

Non-linear interactions between genetic variants affect protein levels 277 

Following the previous results, we further investigated proteins where the increased R2 could not 278 

be explained by non-linear covariate effects to identify potential epistatic SNV-SNV interactions. 279 

For each of these 15 proteins, we analyzed the 128 SNVs with the highest feature importance  in 280 

the DL models on the validation set. To achieve this, we applied pairwise Ordinary Least-Squares 281 

(OLS) models to the training set (n=34,947) to identify epistatic interactions. Restricting our 282 

analysis to SNV pairs on different chromosomes, we identified at least one significant (p-value 283 

<4.46e-08) interaction for 8 of the 15 proteins and a total of 784 interactions between 67 unique 284 

SNVs on 5 chromosomes (Figure 3d-e, Supplementary Table 5). The majority of these 285 

interactions (753, 96%) were between variants on chr 9 and chr 19 and most of the interacting 286 

variants were located near the ABO and FUT2 loci on chr 9 and 19, respectively (Figure 3e, 287 

Supplementary Figure 3d-e). For instance, we identified most interactions for ALPI, MUC2, 288 

FAM3D and CDH17 with 230, 216, 172 and 72 interactions, of which 31, 31, 40 and 9 were 289 

between variants within the ABO and the FUT2 locus (+/- 10kb) (Figure 3f). We found an epistatic 290 

interaction between the ABO variant rs507666 and rs2307019, a variant in the IZUMO1 gene, 40kb 291 
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downstream of the FUT2 locus, that influenced plasma levels of these proteins (Figure 3g). The 292 

variant rs2307019 was in moderate linkage disequilibrium (R2=0.35) with rs601338 (Trp154Ter), 293 

a variant that determines FUT2 secretor status used in Sun et al., and Snaebjarnarson et al.6,32 294 

(Supplementary Figure 3f). We thus expected that the interaction between rs507666 and 295 

rs2307019 resembled an interaction between the ABO and FUT2 locus. In line with our studies, 296 

Sun et al. found that epistatic interactions between the ABO and FUT2 locus have a strong 297 

influence on the blood plasma levels of ALPI, MUC2, and FAM3D6. To assess if the interaction 298 

between rs507666 and rs2307019 influenced modeling performance when predicting plasma 299 

proteins levels, we trained linear models using one-hot encoded genotypes and covariates and 300 

added an interaction term for rs507666-rs2307019 to predict levels of ALPI, FAM3D, MUC2 and 301 

CDH17. We found that, when adding the single interaction term, the linear models improved by 302 

R2 0.021 (5.1%), 0.024 (5.3%), 0.017 (4.5%) and 0.007 (2.3%) respectively, indicating that this 303 

epistatic interaction accounts for a substantial fraction of model performance (Figure 3h). In 304 

summary, these results demonstrate that EIR-auto-GP could identify proteins with epistatic 305 

interactions between genetic variants, which we could subsequently validate using targeted OLS 306 

models.  307 

 308 
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 309 

Figure 3. Identification of dominance effects and epistatic interactions between genetic variants on separate 310 

chromosomes that influence protein levels. a) Performance gap (R2-R2) between non-linear (XGBoost) and linear 311 

models trained and tested on additive or non-additive encoded genotype data for 15 candidate proteins with potential 312 

non-linear genetic effects. b) NPX protein levels of CD209 (n=51,214) in individuals in the UK Biobank, stratified 313 

by their imputed ABO blood group (field p23165)39–42. c) NPX protein levels CLEC4M (n=44,040) in individuals in 314 

the UK Biobank, stratified by their imputed ABO blood group. d) Number of identified SNV-SNV interactions 315 
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(p<3.6e-08) per protein. 171 proteins with significant gap in performance between DL and linear model were tested 316 

in an Ordinary least-squares (OLS) model, of which 14 had at least one significant interaction and of which 6 were 317 

excluded due to potential false positive non-linear effect (Figure 2b, c). Interactions were limited to interactions 318 

between SNVs on two different chromosomes. e) Number of unique interacting SNVs per chromosome. f) Number 319 

of interactions between SNVs on ABO and FUT2 loci (+/- 10kb) as a fraction of the total number of interactions for 320 

each protein. g) Protein expression levels (NPX) of ALPI, MUC2, FAM3D and CDH17 for individuals of the training 321 

dataset (n=34,947) with all combinations of genotypes of the interacting variants rs507666 (ABO) and rs2307019 322 

(IZUMO1/FUT2). Error bars indicate the 95% confidence interval and the number of individuals with the respective 323 

interaction are shown below each data point. h) Linear model performance to predict ALPI, FAM3D, MUC2 and 324 

CDH17 plasma levels trained on one-hot encoded genotypes and covariates. Interaction between rs507666 and 325 

rs2307019 was added as a single term to assess performance improvement. Error bars indicate 95% confidence interval 326 

of 1000 bootstraps. i) Protein levels of FAM3D for all genotype combinations of the interacting variants rs507666 327 

(ABO) and rs812936 (FUT3) for individuals from the training dataset (n=34,947). Error bars indicate the 95% 328 

confidence interval and the number of individuals with the respective interaction are shown below each data point. 329 

 330 

FAM3D protein levels depend on interactions between ABO and FUT3 loci 331 

In addition to the previously reported interactions between ABO and FUT2 above, we identified 332 

an interaction between ABO (rs507666) and the FUT3 locus (rs812936) that influenced the blood 333 

plasma levels of FAM3D, which is expressed in the gastrointestinal tract (Figure 3i). The FUT3 334 

locus is also known as the Lewis gene, and encodes an alpha(1,3/4)-fucosyltransferase as part of 335 

the Lewis antigen system43. rs812936-A, was associated with increased levels of FUT3 plasma 336 

levels44 and led to decreased FAM3D plasma levels when interacting with rs507666-G in the ABO 337 

locus (Figure 3i). This suggested that the protein level of FAM3D was not only regulated by 338 

epistatic interactions between ABO and FUT2, but also dependent on interactions between ABO 339 

and FUT3 variants. As FUT2 and FUT3 are located 45 Mbp apart on chr 19 this was likely not 340 

caused by LD between the two genes (Supplementary Figure 3e). Other proteins influenced by 341 

ABO-FUT2 interactions were enriched for gastrointestinal (GI) expression and may be perturbed 342 

in GI disease6. We identified ABO-FUT3 interactions for FAM3D, a GI expressed protein, and 343 

thus speculated that FUT3 could also be involved in regulating plasma abundance of GI expressed 344 

proteins. However, when we added this interaction term to a linear model predicting FAM3D 345 

levels, the performance did not improve (Supplementary Figure 3g). Notably, this interaction 346 

was relatively rare in the UKB-PPP with 763 individuals in the training set, 47 in the valid set and 347 

37 in the test set that carried this interaction. This indicates that rare interactions might be relevant 348 

in regulating plasma protein levels, but that they were difficult for our DL model to detect because 349 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.04.24309942doi: medRxiv preprint 

https://paperpile.com/c/Ijg80G/qAsA
https://paperpile.com/c/Ijg80G/HKG8
https://paperpile.com/c/Ijg80G/TbPg
https://doi.org/10.1101/2024.07.04.24309942


 

14 

improvements for only a few individuals in the validation set are not likely to be prioritized by the 350 

model. 351 

 352 

Variable non-linear improvements across self-reported ethnicities 353 

Given the importance of understanding model performance across diverse ethnic groups45–49, we 354 

investigated how the performance of the linear and DL models trained and evaluated on self-355 

reported UK white ethnic background transferred to other self-reported ethnic backgrounds 356 

(“South Asian”, “East Asian”, “African” and “Caribbean”) in the UKB (Methods). We generally 357 

observed a decline in performance for both DL and linear models across the non-UK white ethnic 358 

groups, accompanied by larger confidence intervals for the 138 proteins with non-linear effects 359 

(Supplementary Figure 4a-b, Supplementary Table 6). Overall, the linear model transferred 360 

better to the ‘East Asian’ and ‘South Asian’ test set than the DL models, while the DL models 361 

transferred better to ‘African’ and ‘Caribbean’ test sets than the linear models (Supplementary 362 

Figure 4a-b). One contributing factor could be the breakdown and formation of LD patterns across 363 

populations, as models trained on the UK white group may select tagging variants that do not 364 

replicate in the other ethnic groups48,50. Additionally, the larger confidence intervals could also be 365 

partly due to the smaller number of samples available in ethnicity test sets. We observed correlation 366 

of performance gaps (mean bootstrapped R2 DL-linear) between all ethnicity groups, except 367 

between ‘East Asian’ and ‘African’ and ‘Caribbean’ (Figure 4a). For instance, the DL model 368 

outperformed the linear model for CD209 on the ‘South Asian’ and ‘African’ test set, while it 369 

showed similar or worse performance on ‘East Asian’ and ‘Caribbean’ test sets (Figure 4b). 370 

Despite this, CD209 levels showed similar trends when stratified by ABO blood type between the 371 

different ethnicity groups in the whole UKB-PPP (n=52,700) (Figure 4c). Notably, the distribution 372 

of ABO blood types was different between the ethnic groups in the UKB-PPP, which could 373 

influence the performance on the different test sets (Supplementary Figure 4c). Above, we found 374 

that the DL model could identify non-linear relationships between age and sex for FSHB (Figure 375 

2d, Supplementary Figure 2f) and we found that this could be replicated in the ‘South Asian’, 376 

but not in the ‘East Asian’, ‘Caribbean’ or ‘African’ test sets (Figure 4d). Despite that, we 377 

observed non-linear relationships between age and sex for FSHB in the test sets of non-white self-378 

reported ethnicities (Supplementary Figure 4). This might be due to the penalized linear model 379 

being less affected by the higher genetic diversity found in African and Caribbean populations51,52. 380 
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Finally, the non-linear effects for FAM3D, likely caused by epistatic interactions (Figure 3d-e) 381 

could not be fully replicated across the ethnicity test sets (Figure 4e). The DL model only 382 

outperformed the linear models slightly on ‘South Asian’, ‘East Asian’ and ‘Caribbean’ tests set 383 

with a much smaller extent. As above, this could be due to different LD patterns or variants not 384 

replicating across the ethnic test sets. In summary, these results suggest that cross ethnicity training 385 

is likely needed for the non-linear patterns of the DL model to transfer to individuals from diverse 386 

ethnicities that the model was not trained on. 387 

 388 

 389 

Figure 4. Examples of deep learning and linear model performance across self-reported ethnicities. a) Pearson 390 

correlation between the performance gap (mean bootstrapped R2 DL-linear) of models between different self-reported 391 

ethnicities for 138 proteins with potential non-linear effects in the UK Biobank. The models were trained on 392 

individuals of self-reported ‘white’ ethnicity and tested on individuals of ‘White’, ‘South Asian’, ‘East Asian’, 393 

‘Caribbean’ or ‘African’ self-reported ethnicities. If the R2 was negative for both models, the performance gap was 394 

set to 0. b) Mean bootstrapped performance of DL and linear models for CD209. The models were trained on 395 

individuals of self-reported ‘white’ ethnicity and tested on individuals of the respective self-reported ethnicities. The 396 

error bars indicate the 95% confidence intervals. c) INT normalized CD209 levels stratified by ABO blood type among 397 

the different self-reported ethnicities. AO and AA blood type correspond to A blood group, and BO and BB blood 398 

type correspond to B blood group. d) Mean bootstrapped performance of DL and linear models for FSHB. The models 399 

were trained on individuals of self-reported ‘white’ ethnicity and tested on individuals of the respective self-reported 400 

ethnicities. The error bars indicate the 95% confidence intervals. e) Mean bootstrapped performance of DL and linear 401 
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models for FAM3D. The models were trained on individuals of self-reported ‘white’ ethnicity and tested on 402 

individuals of the respective self-reported ethnicities. The error bars indicate the 95% confidence intervals. 403 

 404 

Replication of non-linear effects and validation of the EIR-auto-GP workflow in FinnGen 405 

We replicated our findings of non-linear genetic effects in a cohort of 1,757 individuals from the 406 

FinnGen project8. Olink protein levels were available for 170 of the 171 proteins with significant 407 

performance gap in the UKB. We were able to replicate the dominance effect of the ABO blood 408 

group tagging variants rs505922 and rs8176719 on plasma levels of CD209 and CLEC4M (Figure 409 

5a-b, Supplementary Figure 3a). Furthermore, we investigated protein levels of FAM3D in 410 

individuals with different genotype combinations of ABO variant rs507666 and FUT3 variant 411 

rs812936 and found higher levels in individuals with the GG-GG combination (Figure 5c). This 412 

replicated the discovery of this rare interaction in the UKB (Figure 3i), despite the much lower 413 

sample size and interaction allele counts (AC=43) in FinnGen. For ALPI, MUC2 and FAM3D we 414 

replicated the epistatic effect of rs507666 and the IZUMO1 variant rs2307019, resembling ABO 415 

and FUT2 secretor status interaction, on protein levels similar to the UKB (Supplementary 416 

Figure 5a). Next, we sought to replicate the ability of our EIR-auto-GP workflow to identify non-417 

linear effects using the FinnGen cohort8. Using 1,231 and 263 individuals for training and test, 418 

respectively, we could replicate the discovery of potential non-linear covariate effects for FSHB 419 

and PAEP and potential non-linear genetic effects for MUC2, FAM3D and CD209 420 

(Supplementary Figure 5b). We noticed that 94 of the 170 proteins had a higher DL performance 421 

in FinnGen compared to the UKB (Supplementary Figure 5c). We speculate that this was due to 422 

the different age distribution of the FinnGen cohort compared to the UKB (Median age FinnGen: 423 

53 years, UKB: 58 years) (Supplementary Figure 5d). These results demonstrated that our DL 424 

model can predict protein levels from genotype and covariate data across cohorts. In summary, we 425 

were able to both directly replicate the dominance and interaction effects we discovered in UKB 426 

and, despite the significantly lower sample size, replicate the EIR-auto-GP workflow by re-427 

discovery of non-linear effects of several proteins in FinnGen.  428 

 429 

 430 

 431 

 432 
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Validating discovery of non-linear effects using mass spectrometry-based proteomics 433 

Finally, we aimed to replicate our analyses by training models using data generated by a different 434 

proteomics technology. We therefore, as above, retrained models using a Danish cohort of obese 435 

children measured using mass spectrometry based (MS) proteomics (The HOLBAEK Study)10. 436 

The cohort consisted of 1,924 children and adolescents between the age of 5–20 years (Methods), 437 

from which our group previously described the genetic regulation of its plasma proteome10. Similar 438 

to the approach in the UKB and FinnGen, we trained models for 411 MS protein levels in 1,533 439 

individuals and tested their performance in 190 individuals (Supplementary Table 8). Despite 440 

the significantly lower sample size, we observed a similar trend in performance gaps, where the 441 

DL model outperformed the linear model on the majority of proteins (246 of 411; 69%) 442 

(Supplementary Figure 5e). Additionally, with a similar stringent cutoff as in the UKB, we 443 

identified 6 (1.6%) proteins that showed a significant (non-overlapping confidence intervals) 444 

increase when using the DL model (Figure 5d). When modeling protein levels only from 445 

covariates using non-linear (XGBoost) and linear models, we found that the DL performance of 446 

the significant proteins was likely driven by non-linear covariate effects (Figure 5e). Consistently, 447 

we found that COL1A1 levels were influenced by non-linear effects between age and sex 448 

(Supplementary Figure 5f). Taken together, these results demonstrate that our approach can be 449 

applied to proteomics data acquired by different assays including both mass spectrometry-based 450 

and affinity-based approaches. 451 

 452 
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 453 

Figure 5. Replication of non-linear effects across cohorts and platforms. a) Protein levels (NPX) of CD209 in 454 

individuals with different genotypes of rs505922 and rs8176719 in the FinnGen project. Error bars indicate standard 455 

deviation. b) Protein levels (NPX) of CLEC4M in individuals with different genotypes of rs505922 and rs8176719 in 456 

the FinnGen project. Error bars indicate standard deviation. c) Protein levels (NPX)  of FAM3D in individuals with 457 

different genotype combinations of rs507666 and rs812936. The numbers indicate the number of individuals with 458 

respective combinations. Error bars indicate standard deviation. Data points with < 5 individuals were removed. d) 459 

DL (EIR) and linear (bigstatsr) model performance (R2) for all 411 proteins measured by MS in The HOLBAEK 460 

Study. The error bars indicate the 95% confidence interval from 1000 bootstraps, and proteins with non-overlapping 461 

confidence intervals between DL and linear models are called significant and labeled in red. e) Performance gap 462 

between DL and linear models on genotype and covariates against the performance gap between non-linear (XGBoost) 463 

and linear models on covariates only. Results for all 411 proteins are shown, and proteins with significant performance 464 

gaps between DL and linear model are labeled in red.  465 

 466 

Discussion 467 

Here, we present a large-scale, systematic attempt to study non-linear genetic and covariate 468 

interactions that affect blood plasma protein levels. We used DL on genetics and plasma 469 

proteomics data of 48,594 individuals from the UK Biobank to identify proteins with underlying 470 

complex effects. While replicating the effect of many pQTLs from Sun et al., our results indicate 471 
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that many non-linear effects are present, illustrated by the increased performance of the deep 472 

learning models compared to linear models. Of the 2,922 measured proteins, we identified 138 473 

proteins potentially regulated by non-linear effects like non-linear covariate effects (n=123), or 474 

genetic dominance and epistatic interactions between variants (n=15). Our modeling of non-linear 475 

relationships between covariates that influence protein levels were in line with previous reports6,25. 476 

Many associations have previously been established between plasma proteomics and demographic 477 

factors such as age, sex and BMI, and health indications such as liver function6,10. We show that 478 

complex relationships between non-genetic factors are widespread, and we speculate that, if we 479 

included additional covariates in our analysis (i.e., BMI) we could uncover biologically relevant 480 

non-linear relationships. This was outside the scope of the current study but will likely be the 481 

subject of future research. We demonstrate that genetic dominance within loci that affect protein 482 

levels is rare. This is consistent with previous studies that highlight the robustness of additive 483 

models when modeling human traits18. However, we identified a small group of proteins that are 484 

likely influenced by dominance effects in the ABO locus. Additionally, we could replicate epistatic 485 

interactions between the ABO locus and the FUT2 secretor status that regulate plasma levels of 486 

intestinal proteins, as demonstrated before6. This shows that our approach can identify epistatic 487 

interactions in an unbiased fashion. We also uncovered novel interactions between the ABO and 488 

FUT3 loci that influence plasma levels of the intestinally expressed protein FAM3D. 489 

 490 

We uncovered complex effects that improve our understanding of biological pathways, which is a 491 

major focus in the V2F challenge. For example, we identified dominance effects of variants in the 492 

ABO locus on protein levels of CD209, CLEC4M and other proteins. The relationship between the 493 

ABO locus, specifically the ABO blood group system, and plasma abundance of proteins involved 494 

in the immune response, could advance our understanding of varying susceptibility to infectious 495 

diseases among individuals with different blood types53–55. Specifically, CD209 and CLEC4M act 496 

as attachment receptors for HIV-1 & 2, Ebola virus and other viral and bacterial pathogens56,57. 497 

Further, CD209 has been suggested to enhance ACE2-mediated SARS-CoV–2 infection58. 498 

Previous studies have also linked variants in the ABO locus with plasma levels of CD2096,59. Here, 499 

we demonstrate that individuals with A, B or AB blood-type have higher plasma levels of CD209 500 

and CLEC4M. This suggests a mechanism where the ABO blood group system modulates 501 

pathogen recognition of dendritic cells through CD209 and CLEC4M, which could be an important 502 
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link between the ABO locus and its impact on susceptibility to infectious diseases. Detailed 503 

mechanisms of how either the ABO encoded alpha 1-3-Galactosyltransferase or the ABO blood 504 

group antigens regulate levels of CD209 and CLEC4M remain unclear.  505 

 506 

To conduct our analyses, we developed the EIR-auto-GP software toolkit, designed to enable other 507 

researchers to apply our DL approach to their studies. The toolkit consists of a fully automated 508 

pipeline, allowing for the integration of genetic and covariate data for modeling on quantitative 509 

and binary traits. We emphasize that the built-in variant pre-filtering approaches in EIR-auto-GP 510 

allow for training on large-scale genetic data directly on CPUs—demonstrated by our ability to 511 

train DL models across ten cross-validation (CV) runs in three hours for a single protein on a 16-512 

core computer on DNAnexus. This feature lowers the barrier for entry to research teams without 513 

access to high-cost hardware accelerators typically associated with DL. 514 

 515 

Given that some proteins showed a gap in performance between EIR-auto-GP and the linear 516 

benchmark models, we wanted to examine what exact factors, e.g., complex effects in the covariate 517 

data, dominance effects and interaction effects between SNVs were driving the performance gaps. 518 

Therefore, we integrated the ability to fit both linear and non-linear models on different 519 

transformations of the input data into EIR-auto-GP. This included the use of covariate only data, 520 

additive and one-hot encoded genotype data, allowing us to specifically analyze the impact of these 521 

factors. For a more detailed analysis into the exact genetic components that might be driving the 522 

performance gaps, we used ordinary least squares (OLS) models for examining SNV genotypes 523 

separately as well as SNV-SNV interaction effects. We hope that EIR-auto-GP will help advance 524 

genetic research by providing an accessible DL toolkit to model complex genetic effects that 525 

influence molecular and disease traits, thereby addressing important aspects of the V2F challenge.  526 

 527 

We initially trained and tested our models on individuals of self-reported white ethnicity, as this 528 

is the largest group of individuals with very similar ancestral backgrounds in the UK Biobank and 529 

the UKB-PPP3,6. When testing the models on sets of different self-reported ethnicity groups, we 530 

observed reduced performance for linear and DL models, which was potentially due to differences 531 

in population structure46,60. This study serves as a proof-of-concept of our approach to capture non-532 
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linear effects that influence protein abundances, and it should be applied to more diverse cohorts 533 

in the future. 534 

 535 

We replicated the effect of the identified epistatic ABO-FUT3 interaction on plasma levels of 536 

FAM3D, MUC2 and ALPI, as well as the dominance effect of the ABO locus on plasma levels of 537 

CD209 and CLEC4M in the FinnGen cohort. This demonstrates that our findings are transferable 538 

beyond the UK-white population of the UK Biobank to other populations. However, given the 20-539 

fold smaller sample size, the DL models might not effectively detect these effects (e.g., due to 540 

overfitting) adequately for it to be reflected in significantly better test set performance. 541 

Additionally, the increased uncertainty, as indicated by larger confidence intervals, when 542 

evaluating the models on a much smaller test set makes it challenging to identify significant results, 543 

despite better performance metrics. However, the increasing availability of larger proteomics 544 

cohorts will enable the identification of non-linear genetic and covariate effects on protein 545 

abundance in an unbiased, large-scale manner. 546 

 547 

Limitations 548 

A large fraction of the blood plasma proteins could not be accurately modeled from genotypes and 549 

the chosen covariates using either the linear or DL model. This may be due to missing causal 550 

SNVs, or unaccounted environmental factors, such as BMI and health and disease conditions, 551 

which are known to affect protein levels6. Interestingly, we found that many proteins that we could 552 

not model had a low correlation with SomaScan measurements14. The comparability between 553 

Olink and other protein quantification methods is highly debated in the field14,61. Our findings 554 

might indicate that plasma levels for some proteins measured by Olink may not be entirely 555 

accurate, which can affect the performance of our models in the UKB. Advances in MS-based 556 

proteomics could allow for higher specificity and quantitative accuracy of plasma proteomics in 557 

large sample sizes comparable to those of the UKB in the future10,62. 558 

 559 

Regarding modeling, we used a threshold on the pre-GWAS analysis to limit the number of 560 

variants used as input to the DL model. The choice is not guaranteed to be optimal for modeling 561 

purposes of all proteins, and this step might filter variants with purely complex effects not detected 562 

in GWAS. Furthermore, UKB array data were used to conduct the analysis, which might affect the 563 
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completeness of genetic variants analyzed. Additionally, we modeled using both the Olink 564 

provided NPX and INT transformed protein abundance values. Modeling using the NPX values 565 

was motivated by preserving effect sizes of the protein levels, while modeling on the INT values 566 

was done to identify potential false positives. These could be caused by the non-linear nature of 567 

the NPX values that could favor the DL models over the linear models, which we found to be the 568 

case for 33 of the proteins. However, performing the INT transformation removes the notion of 569 

scale in the data, effectively converting the data to ranks, which in itself impacts modeling. For 570 

instance, we found that both the DL and linear model had reduced R2 when modeling on INT 571 

compared to NPX values, indicating that there was a general loss of information. 572 

 573 

While our approach of using differences in performance gaps can identify protein levels modulated 574 

by interaction effects, it likely does not identify rare interactions. For example, using the OLS 575 

models we identified an interaction between variants in the ABO and FUT3 loci which has a low 576 

frequency in the present cohort (~2%). These rare effects are unlikely to be learned during model 577 

training, and even if captured, may not significantly impact test set performance. This indicates 578 

that even the ~50,000 samples of the UKB-PPP might be too small to discover rare variant 579 

interactions using our approach. 580 

 581 

Conclusions and future directions 582 

While the majority of pQTL studies are performed using additive linear models, we demonstrate 583 

that non-additive, complex genetic effects can influence plasma protein levels. Modeling complex 584 

traits requires models that can learn from complex relationships in the input data. DL makes it 585 

possible to do such analysis and is not, as in our case, restricted to modeling plasma proteomics 586 

but can additionally be applied to model other molecular traits and environmental effects. 587 

Furthermore, such approaches can model covariate and environmental effects without specifying 588 

interaction terms a priori and could be used for discovering interaction effects such as ExE and 589 

GxE effects. Overall, we conclude that DL has provided additional value in understanding the 590 

complex genetic regulation of molecular traits and that discoveries of complex effects will likely 591 

scale with larger sample sizes and more diverse cohorts. 592 

 593 

 594 
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Methods 595 

 596 

Experimental setup and processing of UK Biobank data 597 

In the genomic quality control (QC) process, we utilized PLINK v1.90b763 for data analysis and 598 

filtering. Our dataset initially consisted of 784,256 autosomal variants and 488,377 individuals. 599 

We removed individuals with a relatedness factor >= 0.0884 (second degree relatedness), resulting 600 

in 453,581 individuals kept for the analysis. We applied the following QC filters: individuals with 601 

more than 10% missing genotype data (--mind 0.10) were excluded, resulting in the removal of 6 602 

individuals, with 453,575 remaining. Variant level QC involved removing variants with more than 603 

1% missing data (--geno 0.01), leading to the exclusion of 143,713 variants. Additionally, variants 604 

failing the Hardy-Weinberg Equilibrium test at a threshold of 0.000001 (--hwe 0.000001) were 605 

removed, accounting for 153,825 variants. We also applied a minor allele frequency (MAF) 606 

threshold of 0.005 (--maf), resulting in the exclusion of 62,621 variants. After the application of 607 

these QC steps, the final dataset comprised 424,097 variants and 453,575 individuals. We divided 608 

the individuals into train, validation, and test sets for the modeling. In the training dataset, we 609 

included exclusively individuals with self-reported ‘UK-white’ ethnicity from Olink batches 0-6. 610 

Batch 7 contains consortium selected individuals and individuals from the COVID-19 imaging 611 

study and do not follow UKB baseline characteristics6. To this end, individuals from batch 7 and 612 

all individuals with non-UK-white ethnicity were excluded from the training dataset. Additionally, 613 

individuals from batch 7 were excluded in the UK-white test set (n=1,771) used throughout the 614 

study. Access to the UK Biobank data was obtained through application 1251 “The metabolically 615 

healthy obese and metabolically obese normal-weight in the UK Biobank: Prevalence, genes and 616 

lifestyle contributors, disease risk and mortality”. 617 

 618 

Deep learning model training 619 

The main deep learning models on the UKB were trained with the EIR-auto-GP toolkit 620 

(https://github.com/arnor-sigurdsson/EIR-auto-GP, commit fb41457). The ordinary least squares 621 

(OLS) estimation for allele effects and interaction effects was also done with the toolkit, as well 622 

as the direct estimation of protein levels as a function of genotype combinations (commit 623 

0d5d762). Besides the genotype input data, categorical covariate inputs were sex, UKB center, 624 

UKB genetic array and whether individuals were consortium selected. Continuous inputs were age 625 
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and genetic principal components 1-20 (UKB data field 22009). Each protein level run consisted 626 

of 10 holdout cross validation (CV) runs, using a pre-defined validation set for consistency across 627 

runs. Despite repeated use of the same training-validation split, the models differed in each run 628 

due to several factors: (a) random initialization of the models; (b) the order of data during mini-629 

batching during training was shuffled independently each run; and (c) while the first 3 CV runs 630 

shared a common set of SNVs, the subsequent 7 runs used a different set of SNVs as determined 631 

by a Bayesian optimization process (see below). For each protein level run, a GWAS pre-selection 632 

with a p-value of 0.001 was applied to the training set and used to reduce the number of variants 633 

input to the DL models. The first 3 CV runs used the full set of variants that passed the GWAS 634 

pre-selection step, and DL attributions were computed with integrated gradients64 on the validation 635 

set. After the first 3 CV runs, a Bayesian optimization (BO) loop was applied to optimize for the 636 

top variants to include in the following 7 CV runs. The BO was implemented with scikit-optimize 637 

(v.0.9.0)65, with the objective of optimizing the fraction of top SNVs regarding validation set 638 

performance. The top variants were defined by averaging the absolute DL attributions computed 639 

on the validation set across the first 3 CV runs. After training the DL models for all 10 CV runs, a 640 

final ensemble prediction was applied to the test set. 641 

 642 

Linear model benchmarking 643 

The training of linear benchmark models was done with bigsnpr (1.12.2)33 and bigstatsr (1.5.12)33. 644 

All 424,097 variants were used as input for the model, as well as the covariates sex, age, UKB 645 

center, UKB genetic array, whether individuals were consortium selected and genomic principal 646 

components 1-20. The modeling was conducted with a 10-fold cross-validation (CV) employing a 647 

grid search for the α mixing parameter in the elastic net, exploring values [0.0001, 0.001, 0.01, 648 

0.1, 1]. Additionally, the approach involves testing multiple values for the λ penalization parameter 649 

(default 200). Following this, an ensemble-like process across the CV runs was executed to 650 

generate the final model, which was subsequently assessed using the test set. 651 

 652 

Model performance 653 

The test set predictions of the trained DL and linear models were bootstrapped (n=1,000) and R2 654 

and RMSE calculated for each bootstrap generation using sklearn.metrics.r2_score and 655 

sklearn.metrics.mean_squared_error. From the resulting distribution, the 95% confidence intervals 656 
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were calculated using the 2.5% and 97.5% percentiles for each protein. Performance gaps were 657 

calculated for each protein by subtracting the mean bootstrapped R2 of the linear models from the 658 

mean bootstrapped R2 of the DL or non-linear models. 659 

 660 

Self reported ethnic grouping 661 

Individuals were stratified according to self-reported ethnic background in the UKB (data field 662 

21000). The individual groups were consolidated into 5 main groups for the purpose of the study. 663 

The groups were defined as “White”, “South Asian”, “East Asian”, “African”, and “Caribbean”. 664 

The “White” group included British, Irish, and other individuals with white backgrounds. The 665 

“South Asian” group comprised individuals of Indian, Pakistani, Bangladeshi. Those of Chinese 666 

self-reported ethnicities were categorized as “East Asian.” “African” and “Caribbean” groups were 667 

kept as indicated in data field 21000. 668 

 669 

Model Complexity Analysis 670 

To examine which factors might be contributing to performance differences between the linear 671 

and DL models, we systematically explored various data configurations for the covariate and 672 

genotype input data. Specifically, we generated 5 different sets of input data configurations: tabular 673 

(covariate) data alone, additively encoded genotype data exclusively, one-hot encoded genotype 674 

data exclusively, additively encoded genotype with tabular data, and one-hot encoded genotype 675 

data with tabular data. The one-hot encoding was used to examine whether a linear model allowed 676 

to fit on genotypes separately would close the performance gap (e.g., due to effects in the data 677 

resembling dominance). For each of these five data configurations, we trained a linear Elastic Net 678 

model as well as a non-linear XGBoost model, resulting in 10 different data-model combinations. 679 

To limit the computational complexity, we limited the genotypes to the top 128 SNVs. These were 680 

selected base on the absolute DL attribution scores, which were computed on the validation set in 681 

the first 3 CV runs in the main experiments, then averaged. The same training, validation and test 682 

set splits were used as in the main experiments.  683 

 684 

Genetic non-additivity analysis 685 

Beyond examining performance differences between linear models when using an additive or one-686 

hot encoding, we also fit Ordinary Least Squares (OLS)  models on each of the top 128 SNVs, 687 
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where the models were fit on each genotype separately (Target = β₀ + β₁ x SNV₁ + β₂ x SNV₂ + β₃ 688 

x SNV₃ + covariates + ϵ). By examining the p-values and effect sizes coefficients assigned to each 689 

genotype, we could explore for each SNV whether it deviated from an additive relationship 690 

towards a protein level. 691 

 692 

Genetic interaction analysis 693 

In addition to investigating performance disparities between the linear and non-linear XGBoost 694 

models, we explored potential pairwise interactions among the top 128 SNVs. This entailed fitting 695 

Ordinary Least Squares (OLS) models on all possible pairwise combinations of SNVs,  where each 696 

model utilized each SNV (one-hot encoded) as inputs along with the product interaction term 697 

between them (Target = β₀ + β₁₁ x SNV1₁ + β₁₂ x SNV1₂ + … + β₂₁ x SNV2₁ + β₂₂ x SNV2₂ + … 698 

+ β₃ x (SNV1 x SNV2) + covariates + ϵ). Across all traits, we tested a total of 1,389,888 pairs, and 699 

as such applied a p-value threshold of 0.05 / 1,389,888 = 3.6e-08. This approach allowed us to 700 

identify which SNV pairs might contribute most to any remaining performance gap between the 701 

linear model using one-hot encoded genotype data with tabular data and the XGBoost model 702 

trained on the same data.   703 

 704 

Replication in MS-based proteomics data from The HOLBAEK Study 705 

The HOLBAEK Study consisted of 2,147 children and adolescents (55% girls) between the age of 706 

5 and 20, recruited from the Children’s Obesity Clinic, accredited Centre for Obesity Management, 707 

Copenhagen University Hospital Holbæk, Denmark66, and a population-based cohort recruited from 708 

schools in 11 municipalities across Zealand, Denmark67. Besides age, an eligibility criteria of the 709 

Obesity Clinic was BMI above the 90th percentile (BMI SDS >= 1.28) according to Danish 710 

reference values. The study protocol for The HOLBAEK Study was approved by the ethics 711 

committee for the Region Zealand (protocol no. SJ-104) and is registered at the Danish Data 712 

Protection Agency (REG-043-2013). The HOLBAEK Study including the obesity clinic cohort 713 

and the population-based cohort are also registered at ClinicalTrials.gov (NCT00928473). The MS 714 

based proteomics data consisted of 411 protein levels measured across 2,130 of the 2,147 samples, 715 

with genotype data available for 1,924 individuals featuring 5,242,958 variants after quality 716 

control and filtering10. Due to the imbalance in the number of features compared to the number of 717 

samples, we used PLINK to perform LD pruning (--indep-pairwise 50 5 0.8), reducing the variant 718 
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count to 998,505. We then matched and retained only those samples for which both genotype and 719 

phenotype data were available, identifying 1,893 samples with complete data sets. Following the 720 

EIR-auto-GP data processing pipeline, data splits were defined as 1,533 training, 170 validation, 721 

and 190 test samples. Besides the genotype data, covariates included were sex, BMI, age, time to 722 

analysis, MS batch information. Due to the smaller sample size compared to the UKB, we used 723 

20-fold cross validation (CV) instead of the 10-fold applied in the UKB. EIR-auto-GP (commit 724 

2934974) was used for DL model training and additionally, we found that the default feature 725 

selection approach in EIR-auto-GP (i.e., a fixed GWAS threshold and DL attribution based 726 

Bayesian optimization (BO) of included SNVs) was susceptible to overfitting in this dataset, based 727 

on training and validation set performance. To address this, we devised an alternative, simpler 728 

approach focusing on dynamic SNV inclusion based on GWAS p-value rankings. The optimization 729 

process began with seeding the algorithm with manual fractions, reflecting SNV subsets from the 730 

most significant (p-value threshold of 1e-8) to the least (up to a p-value of 1e-4). After this, the 731 

BO process to find the optimal fraction of SNVs was allowed to proceed. We found that this 732 

approach guided more efficiently towards using fewer SNVs, which resulted in better validation 733 

performance. 734 

 735 

Replication in FinnGen Olink data 736 

The FinnGen quality controlled Olink data consisted of 2,925 measured protein levels across 1,990 737 

samples, with genotype data available for 520,210 individuals and 21,331,644 variants initially. 738 

The variants were filtered to match those used in the UKB experiments, resulting in a final set of 739 

416,802 variants. Retaining only samples where genotype and phenotype data were available, our 740 

final set consisted of 1,757 samples. Data splits were defined as 1,231 training, 263 validation and 741 

263 test samples. Besides the genotype data, covariates included blood sampling age, sex, genetic 742 

testing chip and batch, top 20 genetic PCs and protein examination batch. The DL model training 743 

was performed with EIR-auto-GP (commit c141b5a) and the training procedure was the same as 744 

described above for the data set from The HOLBAEK Study. 745 

 746 

FinnGen Ethics statement  747 

Study subjects in FinnGen provided informed consent for biobank research, based on the Finnish 748 

Biobank Act. Alternatively, separate research cohorts, collected prior the Finnish Biobank Act 749 
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came into effect (in September 2013) and start of FinnGen (August 2017), were collected based 750 

on study-specific consents and later transferred to the Finnish biobanks after approval by Fimea 751 

(Finnish Medicines Agency), the National Supervisory Authority for Welfare and Health. 752 

Recruitment protocols followed the biobank protocols approved by Fimea. The Coordinating 753 

Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) statement number for 754 

the FinnGen study is Nr HUS/990/2017. 755 

The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: 756 

THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 757 

THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and 758 

THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: 759 

VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution 760 

(permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 761 

98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 762 

16/522/2020), Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020, 763 

THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, 764 

THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/14.06.00/2021, 765 

THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, 766 

THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/2021, Statistics Finland 767 

(permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-20) 768 

TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases 769 

permission/extract from the meeting minutes on 4th July 2019. 770 

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 11  771 

include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, 772 

BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65, Finnish Red Cross 773 

Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, 774 

HUS/430/2021 §28, §29,  HUS/150/2022 §12, §13, §14, §15, §16, §17, §18, §23, §58, §59, 775 

HUS/128/2023 §18, Auria Biobank AB17-5154 and amendment #1 (August 17 2020) and 776 

amendments BB_2021-0140, BB_2021-0156 (August 26 2021, Feb 2 2022), BB_2021-0169, 777 

BB_2021-0179, BB_2021-0161,  AB20-5926 and amendment #1 (April 23 2020) and it´s 778 

modifications (Sep 22 2021), BB_2022-0262, BB_2022-0256, Biobank Borealis of Northern 779 

Finland_2017_1013, 2021_5010, 2021_5010 Amendment, 2021_5018, 2021_5018 Amendment, 780 
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2021_5015, 2021_5015 Amendment, 2021_5015 Amendment_2, 2021_5023, 2021_5023 781 

Amendment, 2021_5023 Amendment_2, 2021_5017, 2021_5017 Amendment, 2022_6001, 782 

2022_6001 Amendment, 2022_6006 Amendment, 2022_6006 Amendment, 2022_6006 783 

Amendment_2, BB22-0067, 2022_0262, 2022_0262 Amendment, Biobank of Eastern Finland 784 

1186/2018 and amendment 22§/2020, 53§/2021, 13§/2022, 14§/2022, 15§/2022, 27§/2022, 785 

28§/2022, 29§/2022, 33§/2022, 35§/2022, 36§/2022, 37§/2022, 39§/2022, 7§/2023, 32§/2023, 786 

33§/2023, 34§/2023, 35§/2023, 36§/2023, 37§/2023, 38§/2023, 39§/2023, 40§/2023, 41§/2023, 787 

Finnish Clinical Biobank Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), 788 

BB2021-0140 8§/2021, 9§/2021, §9/2022, §10/2022, §12/2022, 13§/2022, §20/2022, §21/2022, 789 

§22/2022, §23/2022, 28§/2022, 29§/2022, 30§/2022, 31§/2022, 32§/2022, 38§/2022, 40§/2022, 790 

42§/2022, 1§/2023, Central Finland Biobank 1-2017, BB_2021-0161, BB_2021-0169, BB_2021-791 

0179, BB_2021-0170, BB_2022-0256, BB_2022-0262, BB22-0067, Decision allowing to 792 

continue data processing until 31st Aug 2024 for projects: BB_2021-0179, BB22-0067,BB_2022-793 

0262, BB_2021-0170, BB_2021-0164, BB_2021-0161, and BB_2021-0169, and Terveystalo 794 

Biobank STB 2018001 and amendment 25th Aug 2020, Finnish Hematological Registry and 795 

Clinical Biobank decision 18th June 2021, Arctic biobank P0844: ARC_2021_1001. 796 
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Data availability 843 

UK Biobank genotype, proteomics and covariate data is available to approved researchers through 844 

the UK Biobank (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). All 845 

analyses using UK Biobank data were performed at the Research Analysis Platform at DNAnexus 846 

(https://ukbiobank.dnanexus.com/). Combined summary statistics of the per-protein GWAS 847 

performed in this study (Supplementary Data) are available through Zenodo 848 

(https://doi.org/10.5281/zenodo.12654966). Individual-level genotypes and register data from 849 

FinnGen participants can be accessed by approved researchers via the Fingenious portal 850 

(https://site.fingenious.fi/en/) hosted by the Finnish Biobank Cooperative FinBB 851 

(https://finbb.fi/en/). Data release to FinBB is timed to the biannual public release of FinnGen 852 

summary results, which occurs 12 months after FinnGen consortium members can start working 853 

with the data. Data from The HOLBAEK Study is not publicly available due to the need to 854 

maintain privacy of study participants but is available on reasonable request. Searchable results 855 

are available online at proteomevariation.org.  856 
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