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Abstract 

The genetic determinants of low-density lipoprotein cholesterol (LDL-C) levels in blood have been 

predominantly explored in European populations and remain poorly understood in Middle Eastern 

populations. We investigated the genetic architecture of LDL-C variation in the Middle Eastern 

population of Qatar. Whole genome sequencing data of 13,701 individuals (discovery; n=5939, 

replication; n=7762) from the population-based Qatar Biobank (QBB) cohort was used to conduct 

a genome-wide association study (GWAS) on serum LDL-C levels. We replicated 168 previously 

reported loci from the largest LDL-C GWAS conducted by the Global Lipids Genetics Consortium 

(GLGC), with high correlation in allele frequencies (R2=0.77) and moderate correlation in effect 

sizes (Beta; R2=0.53). We also performed a multi-ancestry meta-analysis with the GLGC study 

using MR-MEGA (Meta-Regression of Multi-Ethnic Genetic Association). The multi-ancestry 

meta-analysis identified one novel LDL-C-associated locus; rs10939663 (SLC2A9; genomic 

control-corrected P=1.25×10-8). Lastly, we developed Qatari-specific polygenic score (PGS) 

panels from our discovery dataset and tested their performance in the replication dataset against 

PGS derived from other ancestries. The multi-ancestry derived PGS (PGS000889) performed best 

at predicting LDL-C levels, whilst the Qatari-derived PGS panels also showed comparable 

performance. Overall, we report one novel gene variant associated with LDL-C levels, which may 

be explored further to decipher its potential role in the etiopathogenesis of cardiovascular diseases. 

Our findings also highlight the importance of population-based genetics in developing PGS panels 

for clinical utilization. 
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Introduction 

Cardiovascular diseases (CVD) remain the leading cause of global mortality. Elevated low-density 

lipoprotein cholesterol (LDL-C) concentration in blood, which is a known heritable and modifiable 

risk factor for the development of atherosclerotic CVD, presents as an increasingly prevalent 

global health burden (1, 2). Notably, the incidence of CVD is on the rise in the Middle Eastern 

region (3). The incidence of death per 100,000 individuals attributed to CVD is also higher in the 

Middle East compared to Europe and USA, and predominantly affects males aged 58–59 years, 

which is a younger age band compared to the rest of the world (4).  

An elevated level of low-density lipoprotein cholesterol (LDL-C) is identified as one of the main 

risk factors for the development of CVD, and lowering LDL-C concentration leads to a significant 

reduction in major vascular and coronary complications and stroke (5, 6). Deciphering the genetic 

determinants of variation in LDL-C levels has merits of improving the understanding of LDL-C 

regulation. Additionally, it has the potential for identifying novel molecular targets and for 

resolving the paradigm around the development and progression of atherosclerotic CVD. 

Pathogenic variants in genes involved in LDL-C uptake and catabolism such as LDLR, APOB, 

APOE, LDLRAP1 and PCSK9 are recognized as the principal causative factors for monogenic 

Familial Hypercholesterolemia (FH), one of the most common inherited autosomal condition in 

the world (7). A recent study showed that the prevalence of FH was estimated at 1 in 125 

individuals in the Middle eastern population of Qatar which is higher than the global prevalence 

(26). However, variation in LDL-C concentration is a quantitative trait that is broadly dictated by 

a polygenic cause due to common alleles with small/moderate effect, which influence multiple 

LDL-C modulating genes that can lead to raised LDL-C levels. 
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Genome-wide association studies (GWAS) have enabled the identification of several genetic risk 

loci that are associated with blood lipid concentrations (8). The GWAS catalog currently lists over 

1,850 genomic risk loci associated with blood lipids (9).  Notably, a recent comprehensive GWAS 

conducted by the Global Lipids Genetics Consortium (GLGC), which represents the largest 

published GWAS and meta-analysis on LDL-C levels (Graham et. al.,) was performed on a cohort 

of around 1.65 million individuals (10). The study is an aggregate of 201 studies from 5 ancestries: 

African (6.0%), East Asian (8.9%), European (79.8%), South Asian (2.5%) and Hispanic (2.9%), 

with little representation of Middle Eastern populations. This large-scale multi-ancestry meta-

analysis revealed more than 900 lipid-related genetic loci (10). 

The inclusion of additional underrepresented ancestries, such as those of Arab descent, can 

improve the understanding of lipid level genetic determinants, reveal novel drug targets, advance 

fine mapping of variants associated with lipid levels and progress polygenic disease prediction 

(10). Associations of genetic variants with lipid traits and increased susceptibility to CVD are 

recurrently explored for the development of polygenic scores (PGS) (11-13). The earliest LDL-C 

PGS developed is a 12-SNP scoring panel from the GLGC, in 2013 (14). This scoring panel was 

later refined in another study by the same group, developing a 6-SNP score which performed 

equally well at discriminating between hypercholesterolemia patients with no confirmed mutation 

and healthy controls (15). This score has not been published on the Polygenic Score Catalog (PGS 

catalog) (16) but the PGS panel is available in the publication (15).  

However, since GWAS have been predominantly conducted on individuals of European ancestry 

(17), the portability of genetic risk loci among different ancestries requires thorough 

investigations. This is due to differences in genetic architectures encompassing differences in allele 
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frequencies and linkage disequilibrium (LD) that can affect genetic associations (18). For instance, 

genetic risk scores for lipid traits developed in European populations did not perform well in Sub-

Saharan African populations (19, 20). Population-based GWAS of underrepresented regions can 

reveal both common and rare genetic variants related to inherited risk of elevated LDL-C 

concentration and increased susceptibility to CVD, while multi-ancestry meta-analyses may also 

be advantageous for uncovering novel variants. Increasing diversity in LDL-C GWAS as opposed 

to mitigating the limitations of currently devised PGS has merits for improving the overall 

utilization of PGS prediction.  

PGS development for predicting LDL-C levels or CVD within the wider Middle Eastern region 

based on local genomic variation has not been systematically explored. A recent study on a cohort 

of coronary heart disease (CHD) from Qatar showed that performance of PGS derived from 

European studies of CVD was comparable to the performance reported in Europeans (21). 

However, European-derived polygenic score for many quantitative traits performed lower when 

assessed in the Qatari population compared to European populations. This was revealed in a 

GWAS conducted in Qatar, which focused on 45 clinically relevant traits (22).  

In this current study, we conducted a comprehensive GWAS of LDL-C in the Middle Eastern 

population of Qatar based on whole genome sequencing (WGS) data of 13,701 individuals from 

the Qatar Biobank (QBB) cohort. We also performed a multi-ancestry meta-analysis of our GWAS 

data with the largest published data from GLGC consortium to broaden the spectrum of LDL-C 

associated loci. Importantly, we derived Qatari-specific PGS panels and assessed their 

performance to predict LDL-C levels against PGSs derived from African, European and multi-

ancestry populations. Overall, our findings contribute towards diversifying the current knowledge 
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of population genetics for LDL-C levels and aid the clinical application of PGS. This study 

represents the largest GWAS of Arab populations performed on LDL-C association and polygenic 

risk score panels derived from the largest discovery and replication cohort within Arab 

populations. 

 

Methods 

Participant recruitment and data collection 

Study participants were recruited from the Qatar Biobank (QBB), a national biorepository, which 

collects biological samples and clinicopathological data from Qatari citizens in coordination with 

the national public healthcare provider (Hamad Medical Corporation, Doha, Qatar). Our study 

cohort comprised of 13,808 subjects aged 18 to 89 years. The first data release of QBB was used 

as a discovery dataset containing 6,013 participants and the replication dataset was based on the 

second release comprising of 7,795 subjects.  All study participants provided written informed 

consent prior to inclusion in this study. This study was approved by the institutional review boards 

of QBB (Protocol no. E-2020-QF-QBB-RES-ACC-0154-0133) and Hamad Bin Khalifa 

University (HBKU), Doha, Qatar (Approval no. QBRI-IRB 2021-03-078).  

Biological samples (blood, urine and saliva) were collected from study participants. In addition, 

routine medical examination and biochemical tests (e.g. lipid profile, trace mineral concentrations, 

etc.) were also performed and clinical data retrieved. Participants also filled out medical 

questionnaires with questions pertaining to medical and family histories, medication, and 

supplement (23). Cholesterol treatment was determined based on self-reported data from 

questionnaires. 
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LDL-C measurement  

LDL-C levels were calculated from blood lipid profiles (Total cholesterol, High-density 

lipoprotein-cholesterol and Triglycerides) using the Friedewald formula (FF) and recorded in 

mg/dL.  Serum lipid profiles were determined using enzymatic colorimetric assays performed 

using Roche COBAS 6000 c analyzer (Roche, Switzerland).  

 

Whole Genome Sequencing 

Whole genome sequencing (WGS) was conducted by the Qatar Genome Program (QGP) (24), as 

previously described (22). Briefly, genomic DNA was isolated from whole blood using the 

QIAamp DNA Blood MIDI kit (Qiagen, Germany) and QIASymphony SP automated instrument 

(Qiagen, Hilden, North Rhine-Westphalia, Germany) as per the manufacturer’s instructions. DNA 

quality was evaluated by the Caliper Labchip GXII (Perkin Elmer, Waltham, MA, USA) Genomic 

DNA assay and concentrations were measured using the Quant-iT dsDNA Assay (Invitrogen, 

Waltham, MA, USA). Libraries for WGS were prepared using the Illumina TruSeq DNA Nano kit 

(Illumina, San Diego, CA, USA). The genomic libraries were sequenced using the HiSeq X Ten 

(Illumina) at 30X coverage at the Clinical Genomic Facilities at Sidra (Sidra Medicine, Doha, 

Qatar) 

 

Quality control and data preprocessing 

FastQC (v0.11.2) was used to perform quality control measures on the genomic data files and read 

alignment was performed against the GRCh38 genome reference. Picard (v1.117; 

(CollectWgsMetrics) was used to control the quality of mapped reads and the variants were joint 
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called in a combined variant call file (gVCF) for the entire cohort. Downstream quality control 

and data preprocessing for GWAS analysis preparation were performed using the PLINK tool 

(v1.9) (25). Genetic variants with call rates < 90%, minor allele frequency (MAF) < 0.01, mean 

depth coverage <10X, those with a Hardy-Weinberg equilibrium P<1.0×10-6 were excluded from 

the analysis. All samples with missing LDL-C level data, excess heterozygosity, mismatched 

gender, population outliers determined by multi-dimensional scaling were excluded from the 

dataset. After quality control, the total number of subjects used in downstream analysis was 13,701 

comprising 5,939 in the discovery set and 7,762 in the replication set.  

 

GWAS analysis 

LDL-C values were adjusted for age, age2, the first ten genetic principal components (PC1 to 

PC10) and cholesterol treatment separately by gender and residuals were calculated. GWAS was 

performed using SAIGE (26), applying inverse normalization of the LDL-C residuals and default 

adjustment for relatedness in the data. To assess replication of known loci, a list of variants from 

the largest published GWAS of LDL-C by Graham et. al., (10) was downloaded from the 

University of Michigan Center for Statistic Genetics (http://csg.sph.umich.edu/willer/public/glgc-

lipids2021/results/trans_ancestry/). This list was filtered to only include variants meeting the 

genome-wide significance threshold (P<5.0×10-8) and then compared with the variants from the 

GWAS of QBB discovery dataset with nominal significance (P<0.05) to identify replicated 

variants. The R intersect function was used to compare data frames and output common SNP 

entries. The effect allele frequency and effect size (beta) from the multi-ancestry data of Graham 

et. al., study was compared to that from our GWAS results using Spearman’s correlation. Effect 
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values and allele frequencies were then plotted using GraphPad PRISM (v9.0; GraphPad software, 

San Diego, CA, USA). 

 

Multi-Ancestry Meta analysis 

We first performed a fixed effect meta-analysis of QBB discovery and replication GWAS using 

the METAL (27) tool. Then a multi-ancestry meta-analysis was performed using the results from 

METAL and with summary statistics from each of the single-ancestry LDL-C GWAS; African 

(AFR), East Asian (EAS), European (EUR), Hispanic (HIS) , South Asian (SAS) from the GLGC 

study (10). Multi-ancestry Meta-analysis was performed using the Meta-Regression of Multi-

AncEstry Genetic Association tool (MR-MEGA (v0.2)) (28) using 3 PCs and genome control 

correction (GC) correction.  Novel variants were identified based on attaining genome-wide 

significance (GC corrected P≤5.0×10-8) post-meta-analysis, being beyond 500kb of any 

previously reported genome-wide significant SNPs from the GLGC study and not in LD with any 

previously reported genome-wide significant loci within 500kB in the Common Metabolic Disease 

(CMD) Knowledge Portal (29) or in the GWAS Catalog (9). Beta effect values were calculated by 

running multi-ancestry meta-analysis using METAL. Regional association plots were generated 

using the LocusZoom(v1.4) tool (30). 

 

Analysis of polygenic scores 

Polygenic score panels for LDL-C were all derived based on the QBB discovery dataset (training 

cohort) using three different methods; thresholding-only, clumping and thresholding (C+T) or 

Bayesian shrinkage implemented in LDpred2 (31). For thresholding, eight different P-value 
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thresholds were used, ranging from 5.0×10-4 to 5.0×10-16. For C+T, GWAS results from the 

training set were pruned using the --clump option in PLINK (v1.9) at two linkage disequilibrium 

(LD) clumping r2 cutoff values; 0.2 and 0.8, clumping distance of 500 kb and the same P-values 

cut off used in the thresholding method. Only index SNPs from the output of clumping were 

selected for the scoring panels. The effect size values were obtained from the beta-effect weights 

from the GWAS of the discovery cohort. 

LDpred-2 is a Bayesian shrinkage algorithm from the bigsnpr package on R (32), which was  used 

to derive polygenic scores from the discovery cohort. The LDpred2 ‘grid’ method was used for 

beta effect size estimation and prediction using the default parameters. A total of 168 different 

panels were tested by Ldpred-2 and the 3 best performing panels were extracted for assessment in 

the QBB replication cohort. 

PGS scoring for all panels were performed using “--score” and “sum” option in PLINK (v1.9). 

PGS panels obtained from other studies, derived from European (PGS000892, PGS000893 (10), 

EUR_6SNP (15), PGS000814 (14), PGS000875 (33), PGS000749 (34)), Multi-ethnic 

(PGS000888, PGS000889 (10), African (PGS000886, PGS000887) (10) were downloaded from 

the Polygenic Score catalog (PGS catalog) or associated publication, and used to score the 

replication cohort.  

The performance of PGS panels in predicting LDL-C was assessed using linear regression models 

with PGS, age, gender, cholesterol treatment, and the first four principal components (PCs) as 

predictors. Linear regression was performed using R software (v4.3.1) and the resulting adjusted 

R2 values were used as performance metrics. 
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Results 

Characteristics of study cohorts 

An overview of the overall study design is depicted in Figure 1. After quality control measures, 

the study cohort comprised 5,939 subjects in the discovery set and 7,762 subjects in the replication 

set (Total n=13,701). Characteristic features of study cohorts are listed in Supplementary Table 1.  

 

LDL-C GWAS  

Manhattan and QQ-plots derived from the GWAS performed for the discovery dataset are shown 

in Figure 2. The Manhattan plot illustrates 5 genome-wide significant loci located in chromosome 

bands 1p13.3, 2p24.1, 19q13.32, 19p13.2 and 19p13.11 (Figure 2A). No widespread genomic 

inflation was observed as represented by the genomic inflation factor (λGC = 1.05), shown in the 

QQ-plot (Figure 2B).  

GWAS for the discovery dataset consisted of 8,399,151 variants, of which 5 loci (242 variants) 

reached genome wide significance (P<5.0×10-8). Meta-analysis of the discovery and replication 

cohort did not identify any novel LDL-C associated variants (data not shown).  

Next, we compared our findings from the GWAS of the discovery dataset with summary statistics 

of 86,870 genome-wide significant LDL-C associated variants obtained from the Graham et. al., 

study (10) to assess the level of replication in our cohort. We replicated 8,043 variants (168 loci) 

at nominal significance (P<0.05) in the QBB dataset (Supplementary Table 2). Comparing the 

allele frequencies and effect sizes (Beta) of replicated variants to data from the Graham et. al., 

study showed high correlation of allele frequencies between the two datasets (R2= 0.77, Figure 
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3A) and an overall consistent direction of effect, showing a significant trend for higher effect sizes 

in QBB cohort (Regression slope = 0.375; P<0.0001; R2 = 0.53, Figure 3B). 

 

Multi-ancestry meta-analysis of LDL-C 

Next, we performed a MR-MEGA multi-ancestry meta-analysis using the QBB cohort alongside 

the summary statistics from each single-ancestry GWAS (AFR, EAS, EUR, HIS, SAS) from the 

Graham et. al. study (10). The multi-ancestry meta-analysis yielded 52,621 variants with GC 

corrected genome-wide significance.  Notably, 2,472 of these variants (259 loci) only attained 

genome-wide significance after the meta-analysis. However, only one of these loci was novel, with 

no previously reported proxy SNPS in association with LDL-C reported in other studies/databases. 

The lead variant of our novel locus was rs10939663 (GC corrected P=1.25×10-8) from the 4p16.1 

locus, mapped within the Solute carrier family 2 member 9 SLC2A9 (Table 1). The regional 

association plot for the novel locus is shown in Figure 4.  

 

Derivation of Qatari-specific PGS panels 

The clumping and thresholding methods were used to derive several PGS based on results from 

LDL-C GWAS of the discovery cohort followed by assessment of their performance in the 

replication cohort using linear regression models. The PGS panels tested during the optimization 

stage derived from different clumping LD r2 and P-values thresholds are listed in Supplementary 

Table 3.  Figure 5 shows the performance values for these PGS panels tested in the replication 

cohort by adjusting for age, gender, cholesterol treatment and PC1-PC4 in the regression models. 

Correlation charts for these panels are presented in Supplementary Figures 1-4. The clumping and 

thresholding method performed better compared to using the thresholding-only method (Figure 5). 
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The highest performing PGSs (PGS5_QBB_6SNP, PGS6_QBB_6SNP) were derived from the 

clumping and thresholding method (LD r2=0.2) using a threshold of P<5.0×10-10 and P<5.0×10-12 

(Table 2). The LDL-C prediction assessment of these best-performing 6-SNP panels resulted in a 

higher adjusted R2 value of 0.14 compared to an 83-SNP PGS derived without clumping using the 

same P-value threshold (adjusted R2 value = 0.11; Supplementary Table 4). Moreover, lower LD 

clumping r2 threshold of 0.2 showed a superior performance compared to a higher r2 value of 0.8. 

For example, thresholding at P< 5.0×10-12 and clumping at r2=0.8 resulted in adjusted R2 value of 

0.13 compared with 0.14 at LD r2=0.2 (Figure 5). The top three performing PGS panels were 

selected for additional assessment and comparison with other previously derived PGS. 

PGS5_QBB_6SNP and PGS6_QBB_6SNP showed best performance (adj-R2 = 0.139) and were 

found to contain the same SNPs. PGS5_QBB_6SNP was selected and two additional PGS panels 

(PGS4_QBB_9SNP; Adj-R2 = 0.135 and PGS14_QBB_14SNP; Adj-R2 = 0.134) were selected for 

downstream comparisons (Supplementary Table 4). The 3 best performing panels derived from 

the LDpred-2 were PGS25_QBB_269K_SNP (adj-R2= 0.10), PGS26_QBB_282K_SNP (adj-R2= 

0.11) and PGS27_QBB_244K_SNP (adj-R2= 0.10). 

 

Assessment of PGS panel performance 

We compared the best performing Qatari-derived LDL-C PGS panels against 9 previously 

developed LDL-C PGS panels from other ancestries (Supplementary Table 5). These include the 

first LDL-C derived PGS from European ancestry that included 12 SNPs (EUR_12SNP; 

PGS000814) (14), a revised version of this PGS that included 6 SNPs (EUR_6SNP) (15), a 36-

SNP panel derived from European ancestry (EUR_36SNP; PGS000875) (33), in addition to the 
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best performing LDL-C PGS panels derived from the largest GWAS of European 

(EUR_1MNSNP; PGS000892, EUR_5427SNP: PGS000893), African (AFR_1MNSNP: 

PGS000886, AFR_295SNP; PGS000887,) and Multi-ancestry (MULTI_1MNSNP; PGS000888, 

MULTI_9009SNP; PGS000889) (10).  Notably, while all PGS panels included some common 

SNPs, the total number of SNPs/valid predictors in each PGS panel varied greatly. For instance, 5 

of the 6 SNPs from the PGS5_QBB_6SNP occur in common genes as in the EUR_6SNP.  The 

additional variant from the PGS5_QBB_6SNP occurs in MAU2 (rs111234557), which is not 

represented in the EUR_6SNP nor the EUR_12SNP panels.  

To assess the performance of LDL-C derived PGS panels, we used linear regression models for 

LDL-C values and included the PGS, age, gender, cholesterol treatment and PCs1-4 as predictors, 

and as described in Graham et., al. (10). Results showed that the best performing panel was the 

multiethnic panels (MULTI_1MNSNP; adj- R2=0.161 and MULTI_9009SNP panel; adj- 

R2=0.160), followed by the largest European panels (EUR_1MNSNP; adj-R2=0.156 and 

EUR_5427SNP; adj- R2=0.141), and the Qatari-derived PGS5_QBB_6SNP (adj-R2= 0.139), 

PGS4_QBB_9SNP (adj-R2=0.135) and PGS14_QBB_14SNP (adj-R2= 0.134) panels (Figure 6A, 

Supplementary Table 6 & Supplementary Figure 4).  The 3 PGS panels derived using the LDpred-

2 method showed lower performance compared to PGS5_QBB_6SNP. Moreover, the 

AFR_295SNP (adj-R2 =0.126) performed better than the 3 European based SNP panels; 

EUR_6SNP, EUR_12SNP and EUR_36SNP panel. Interestingly, the top performing PGSs 

showed similar performance when applied to the QBB cohort compared to previously derived PGS 

applied on their respective ancestries in the associated studies (Figure 6B). 
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Discussion 

The present study represents the largest population-based GWAS to investigate the genomic 

determinants of LDL-C variation in Middle Eastern and Arab populations. Our GWAS replicated 

8,043 variants located in 168 loci in the QBB dataset showing an overall consistent direction of 

effect indicating a significant trend for higher effect sizes in QBB cohort. The observed variations 

in effect size estimates of individual variants based on pairwise comparisons between ancestries 

could indicate diverse patterns of linkage disequilibrium (LD); with the underlying causal variant, 

or a potential interaction with an environmental risk factor that exhibits varying prevalence across 

different ancestral backgrounds and/or geographical regions. 

Moreover, the multi-ancestry meta-analysis with the largest GWAS of LDL-C disclosed a novel 

locus in a gene that has not been previously associated with LDL-C concentration in blood. Our 

findings reflect the importance of inclusion of Middle eastern ancestral populations in GWAS 

since this novel locus exclusively reached genome-wide significance following the multi-ancestry 

meta-analysis. The identified LDL-C-associated novel locus was located in the intronic region of 

SLC2A9. This variant was initially below the threshold for genome-wide significance in its original 

7 cohorts (i.e., QBB discovery, QBB replication and 5 Graham et al. single ancestry cohorts) but 

when combined, it showed genome-wide significant association with LDL-C after genomic control 

correction. This gene has not been previously associated with LDL-C levels in the GWAS catalog 

(9), Phenoscanner (35)  or the Common Metabolic Disease (CMD) Knowledge Portal (29).  

The Solute Carrier Family 2 Member 9 (SLC2A9) gene encodes a member of the SLC2A 

facilitative glucose transporter family (GLUT9), which is involved in the transportation of glucose 

and uric acid (36). Variants of SLC2A9 are strongly associated with serum uric acid levels and 
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gout (37, 38) in multiple ancestry individuals (39, 40). Importantly, while previous GWAS have 

predominantly associated variants in SLC2A9 with metabolite levels, hypouricemia is also 

associated with serum lipid profiles (41, 42). Our findings present a variant in SLC2A9 as a novel 

LDL-C-associated gene and its involvement in molecular pathways involved in cardiovascular 

disease progression and outcomes may be explored further.  

Combined, while our identified novel LDL-C-associated gene has been previously implicated with 

different pathological conditions, the impact of its genetic deviation on gene regulatory network 

or molecular basis of LDL-C regulation, associated risk of CVD development & progression 

warrant further investigations.     

LDL-C levels can serve as early risk predictors of CVD and associated complications. PGS for 

LDL-C have been extensively explored in other populations to assess the genomic risk of 

hypercholesteremia and associated CVD risk, with varying performance and limited clinical 

utilization (43). While the genes included in our QBB PGS panels have also been previously 

associated with LDL-C levels, the specific set of variants has not been previously identified as the 

optimal representative panel to accurately predict LDL-C levels in other ancestries. For instance, 

the PGS5_QBB_6SNP panel, 4 out of the 6 variants were specific to the Qatari population 

compared to the EUR_6/12SNP panel demonstrating the variation in genetic architecture between 

the two populations. Additionally, our identified variants occurred in genes similar to the 

EUR_6/12SNP panels (LDLR, CELSR2, APOB, and APOE) (14, 15) however, one variant in 

MAU2 was only present in the Qatari PGS panel.   

In concordance with the Graham et. al., study, which reported that the MULTI_9009SNP PGS 

panel showed equivalent or better performance across most ancestry groups compared to the 
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ancestry-specific PRS (10), this multi-ancestry derived panel also showed the best performance 

for LDL-C prediction in our Qatari cohort. Polygenic scores derived from multiethnic ancestries 

can capture a wider range of genetic variations related to LDL-C and provide more accurate 

predictions for LDL-C trait. However, the performance metrics of the 3 Qatari-specific PRS were 

slightly lower (0.021 to 0.026 lower adj-R2 value) than the MULTI-9009SNP PGS. Importantly, 

our QBB PGS panels comprised of considerably fewer variants than the PGS panels from other 

ethnicities (6 variants in the Qatari panel compared to >1 million or 9,009 variants in the multi-

ancestry PGS panels), indicating the potent association of these sets of variants in LDL-C 

prediction within the Qatari population. Moreover, fewer SNPs in our PGS panels also support 

more feasible potential clinical utilization. Additionally, our PGS panel was derived from whole 

genome sequence data providing more comprehensive coverage of genetic variations compared to 

genotyping arrays and imputation methods used in most previous GWAS. Of note, the 

EUR_12SNP and EUR_36SNP PGS showed stronger performances in predicting LDL-C variance 

in our study compared to their original studies.  However, the analysis models used in the 

EUR_12SNP and EUR_36SNP studies were different from the model parameters used in our 

study, hindering accurate comparisons of performance metrics between the studies. The LDpred-

2 models from our dataset did not perform as strongly as our C+T models possibly because of our 

small cohort size or because they need to be further optimized for our dataset (e.g. using a larger 

set of variants rather than restricting to common variants with HapMap). The benefits of this 

method are more obvious when dealing with larger sample sizes (44).  

Although the findings from this study provide new insights into the genetic architecture of LDL-

C, our study has some limitations. While the present study is the largest GWAS of LDL-C from a 
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Middle Eastern population, it is relatively modest compared to recent published GWAS studies of 

LDL-C from European ancestry. However, in agreement with the findings of Graham et. al., the 

inclusion of individuals from diverse ancestries, such as the underrepresented Middle Eastern 

population, in meta-analysis leads to enhanced discoveries of novel variants and genomic regions 

for LDL-C as we demonstrated herein. Further larger studies from Middle Eastern populations will 

be required to capture more genetic variations from this ancestry.  

 

Conclusion 

Our study utilized population-based GWAS using WGS to identify variants that are associated 

with LDL-C levels within the Qatari population. We also performed a multi-ancestry meta-analysis 

with the largest LDL-C meta-analysis previously reported by the GLGC consortium (10). We 

replicated 168 genetic loci between QBB and Graham et. al., datasets and their allele frequencies 

and beta-effect values were broadly concordant. Importantly, we identified 1 novel LDL-C-

associated locus in the multi-ancestry meta-analysis, indicating the importance of increasing 

ancestral diversity in GWAS. Additional investigations to decipher the molecular and 

pathophysiological roles of our identified variants in affecting LDL-C concentration in blood 

would facilitate identification of therapeutic targets. The multi-ancestry derived LDL-C PGS 

(MULTI_1MNSNP) performed best at predicting LDL-C in our cohort. In addition, we developed 

3 Qatari-based LDL-C PGS panels that performed reasonably well in predicting LDL-C levels. 

LDL-C level prediction has limited clinical utility since LDL-C levels are routinely tested in 

clinical practice. However, identification of genetic variations and their effects on molecular 

pathways leading to variation in LDL-C levels has potential for disclosing therapeutic targets. 
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Moreover, development of PGS to reflect genetic predisposition to elevated LDL-C levels can aid 

in mitigating risk via administration of medical or lifestyle interventions. 
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Figure 1. Study design and analysis workflow. LDL-C GWAS was performed on the 

Qatar Biobank (QBB) discovery (n=5,939) and replication (n=7,762) cohorts separately 

using inverse-normalized LDL-C residuals. GWAS summary statistics from the QBB 

cohorts were then combined in a single-ancestry, fixed-effect meta-analysis using METAL. 

The results were further meta-analyzed using (MR-MEGA-v0.2) with 5 single-ancestry 

cohort summary statistics data (African; AFR, East-Asian: EAS, European; EUR, 

Hispanic; HIS and South Asian; SAS) from the GLGC LDL-C study (10). GWAS results 

from the discovery cohort were then used to develop multiple PGS panels using different 

tools (refer to methods section). 27 QBB-derived PGS panels (QBB_PGS) were then tested 

on the QBB replication cohort. Previously derived PGS from other ancestries (AFR (10), 

EUR (10, 14, 15, 31, 32) and Multi-ancestry; MULTI (10,33)) were also tested in the QBB 

replication cohort. 
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Figure 2. Manhattan and Quantile-Quantile plots from QBB GWAS discovery cohort. 

(A) Manhattan plot represents genetic variants (dots) plotted on x-axis in accordance with 

chromosome position against their corresponding -log10(P). The horizontally marked red 

line indicates the genome-wide significance threshold (P=5.0x10
-8

). The horizontal blue 

line indicates the suggestive significance threshold (P=5.0x10
-5

). (B) Quantile-Quantile 

plot shows the expected versus observed -Log10 (P); λGC is the genomic inflation factor. 
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Figure 3. Comparison of allele frequency and effect size for replicated genetic variants. 

Scatter plots represent the (A) Allele frequency and (B) Effect size (Beta) comparisons between 

the QBB discovery cohort and data from the multi-ancestry GWAS study by Graham et. al., R
2
 

is the coefficient of determination from correlation analysis. The red dotted line represents the 

line of best fit from linear regression. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.04.24309936doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.04.24309936


27 

 

  

Figure 4. Regional Association plots for novel locus identified from the multi-ancestry 

meta-analysis for LDL-C. Variants are plotted using the GrCh38 build with x-axis 

representing the position in the chromosome and the y-axis representing the –log10(P-values). 

rs10939663 located in SLC2A9. The linkage disequilibrium (LD) reference from the local 

population was generated from the QBB data. The color of the plotted dots represents the LD 

r
2
 value with the lead variants depicted as diamond shaped markers. Recombination rates are 

also plotted with the corresponding value on the right y-axis. The red line represents -log10 

of the genome-wide significance threshold (P=5.0x10
-8

). 
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Figure 5. Performance assessment of polygenic score (PGS) panels derived from 

discovery cohort and tested on the replication cohort. Interleaved scatter plot shows 

the adjusted R
2
 values from the linear regression models for raw LDL-C values with PGS 

derived using different-P-value thresholds (x-axis) and clumping LD r
2
 threshold values 

(0.2 or 0.8). The regression model included the PGS, age, gender, PC1-PC4, and 

cholesterol treatment as predictors. Data points represent mean adjusted R2 with 95% 

Confidence Intervals (CI). Green diamond datapoints represent PGS derived based on 

thresholding only while PGS derived based on thresholding and clumping with r
2
 < 0.2 

are shown in blue and those with r
2
 <0.8 are shown in red. 
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Figure 6. Performance metrics for the polygenic score panels. (A) Bar plot shows the 

adjusted R
2
 values from the performance of the 13 different PGS panels tested on the QBB 

replication cohort (n=7,762). Performance was assessed using linear regression for raw 

LDL-C values using PGS, age, gender, PCs1-4, and cholesterol treatment as predictors in 

the model. (B) Bar plot shows the adjusted R2 from the LDL-C linear regression models 

for different PGS panels (n=5); EUR_36SNP (n=4,787) (30), EUR_12SNP (n=3,020) (14) 

and EUR_1MNSNP (n=389,158) (10) tested on European populations, AFR_295SNP 

tested on African ancestry (n=6,863) and MULTI_9009SNP tested on multi-ancestry 

populations (n=461,918) (10). Asterisks (*) represent statistical significance for PGS from 

regression analysis (P<0.05). 
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Table 1. Lead genetic variant from a novel locus identified from multi-ancestry meta-analysis of QBB cohorts with the multi-ancestry summary 

statistics from Graham et. al., (13). 

CHR; chromosome, BP; Base pairs, AFQBB; Allele Frequency from QBB discovery dataset, AF1KGP; Allele Frequency from 1KGP; 1000 Genomes 

Project (UK)- European subpopulation, A1; Other allele, A2; Effect allele, BetaMETAL; effect size value from fixed-effect METAL meta-analysis. 

 

  

CHR BP Locus 
Nearest 

Gene 
Variant AFQBB AF1KGP A1 A2 

P.value_ 

association 
BetaMETAL 

P.value_ 

ancestry_het 

P.value_ 

residual_het 

4 10,030,892 chr4p16.1 SLC2A9 rs10939663 0.746 0.724 G T 1.25×10-08 -0.0072 5.04×10-05 0.92 
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Table 2. QBB-derived Polygenic score panels for LDL-C. 

SNP: Single Nucleotide Polymorphism, QBB: Qatar Biobank, A1: other allele, A2: effect allele, BETA: beta effect, Freq: Allele frequency, 1KGP: 

1000 Genomes Project (version 30X where available), EUR: European population. *Same as PGS6_QBB_6SNP. **Variants previously reported in 

the EUR_12SNP and EUR_6SNP panels.  

 

PGS Panel SNP Locus Closest Gene A1 A2 Beta 
A2 Freq in 

QBB discovery 

A2 Freq in 

1KGP (EUR) 

PGS4_QBB_ 

9SNP 

 rs35239705 19q13.32 TRD15 A G 0.125 0.76 0.78 

rs12609356 19p13.2 SMARCA4 C T 0.109 0.63 0.64 

rs2738464 19p13.2 LDLR G C 0.143 0.82 0.89 

PGS5_QBB_ 

6SNP* 

PGS14_QBB_ 

14SNP 

rs12740374 1p13.3 CELSR2 T G 0.236 0.83 0.79 

rs1800481 2p24.1 APOB A G 0.208 0.84 0.81 

rs144826254 2p24.1 SMARCA4/LDLR G T 0.239 0.83 0.88 

rs111234557 19p13.2 MAU2 G C 0.264 0.93 0.89 

rs429358** 19p13.11 APOE C T -0.279 0.92 0.84 

rs7412** 19q13.32 APOE T C 0.615 0.97 0.94 

 rs4970834 1p13.3 CELSR2 T C 0.218 0.86 0.81 

rs611917 1p13.3 CELSR2 G A 0.201 0.77 0.69 

rs34722314 2p24.1 APOB A T 0.204 0.87 0.83 

rs562338 2p24.1 APOB A G 0.183 0.79 0.80 

rs9305019 19q13.32 LDLR T C 0.192 0.81 0.83 

rs10412048 19p13.2 SMARCA4/LDLR G A 0.201 0.8 0.89 

rs61679753 19p13.2 TOMM40/APOE A T 0.576 0.98 0.97 

rs141622900 19q13.32 APOC1/APOE A G 0.328 0.94 0.95 
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