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1 Abstract10

Long-read sequencing (LRS) enables variant calling of high-quality structural variants (SVs). Genotypers of SVs11

utilize these precise call sets to increase the recall and precision of genotyping in short-read sequencing (SRS) samples.12

With the extensive growth in availabilty of SRS datasets in recent years, we should be able to calculate accurate13

population allele frequencies of SV. However, reprocessing hundreds of terabytes of raw SRS data to genotype new14

variants is impractical for population-scale studies, a computational challenge known as the N+1 problem. Solving15

this computational bottleneck is necessary to analyze new SVs from the growing number of pangenomes in many16

species, public genomic databases, and pathogenic variant discovery studies.17

To address the N+1 problem, we propose The Great Genotyper, a population genotyping workflow. Applied to a18

human dataset, the workflow begins by preprocessing 4.2K short-read samples of a total of 183TB raw data to create19

an 867GB Counting Colored De Bruijn Graph (CCDG). The Great Genotyper uses this CCDG to genotype a list20

of phased or unphased variants, leveraging the CCDG population information to increase both precision and recall.21

The Great Genotyper offers the same accuracy as the state-of-the-art genotypers with the addition of unprecedented22

performance. It took 100 hours to genotype 4.5M variants in the 4.2K samples using one server with 32 cores and23

145GB of memory. A similar task would take months or even years using single-sample genotypers.24

The Great Genotyper opens the door to new ways to study SVs. We demonstrate its application in finding25

pathogenic variants by calculating accurate allele frequency for novel SVs. Also, a premade index is used to create26

a 4K reference panel by genotyping variants from the Human Pangenome Reference Consortium (HPRC). The new27

reference panel allows for SV imputation from genotyping microarrays. Moreover, we genotype the GWAS catalog28

and merge its variants with the 4K reference panel. We show 6.2K events of high linkage between the HPRC’s SVs29

and nearby GWAS SNPs, which can help in interpreting the effect of these SVs on gene functions. This analysis30

uncovers the detailed haplotype structure of the human fibrinogen locus and revives the pathogenic association of a31

28 bp insertion in the FGA gene with thromboembolic disorders.32

2 Introduction33

Maya Angelou eloquently stated, ”In diversity, there is beauty and there is strength.” This principle is particularly34

relevant to genomics studies, emphasizing the importance of exploring genetic diversity across large cohorts and35
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populations. Such research is crucial for advancing our understanding of evolution [1, 2], genetic adaptations [3],36

and gene-disease associations [4, 5]. Genetic diversity originates from various mutations, including single nucleotide37

variants (SNVs), small insertions and deletions (less than 50 base pairs), and structural variants (greater than38

50 base pairs). Notably, structural variants (SVs) enhance genomic diversity fifteen times more than SNVs [6]39

and significantly affect gene function [7]. However, SVs are understudied compared to smaller variants due to the40

limitations of short-read sequencing (SRS), which often yields high false positive rates and inconsistent recall, varying41

from 10% to 70% [8]. In contrast, long-read sequencing (LRS) provides more reliable precision and recall rates [8] and42

is used in both mapping [9, 10, 11] and assembly-based approaches [12], the latter of which helps mitigate mapping43

biases to a linear genome reference. Despite its advantages, LRS remains prohibitively expensive for comprehensive44

population-scale analysis, and the volume of LRS data available still pales in comparison to that of SRS. As a result,45

there is a pressing need to develop computational techniques that utilize the precise variant discovery capabilities of46

LRS while maximizing the extensive data produced by SRS.47

To address the shortcomings of SV callers from short-read sequencing, specialized genotypers analyze the presence48

and genotype of SVs, whether identified through variant calling from SRS or LRS, in SRS samples [13, 14, 15, 16, 17].49

Tools such as Paragraph [14] and Graphtyper2 [16] realign reads to a variation-aware graph, minimizing mapping50

bias and determining genotypes from this realignment. Pangenie [17] uses k-mers specific to all potential alleles to51

genotype phased variants from pangenomes, minimizing mapping bias. Furthermore, Pangenie integrates genotyping52

and imputation, utilizing the phasing information from the pangenome to infer genotypes in regions lacking coverage,53

thereby achieving superior performance compared to other SV genotypers. Unlike these single-sample genotypers,54

muCNV utilizes population data to refine genotyping by modeling read mapping statistics across multiple samples,55

enhancing genotyping accuracy [15].56

SV genotypers generally achieve higher recall and precision compared to direct variant calling in SRS samples.57

For instance, Huddleston et al. [18] used LRS to analyze SVs in two human genomes and found that 90% of these58

SVs were missing in the 1000 Genomes call set, yet 61% could still be genotyped using SRS. Recent population-59

scale studies have therefore adopted a combined approach of variant calling and genotyping: initially, variants are60

identified from a few LRS samples or numerous SRS samples, and then the identified SVs are merged and genotyped61

in a larger SRS cohort [19]. For instance, Kirsche et al. [20] used Paragraph [14] to genotype variants from 3162

LRS samples in a cohort of 1.3k SRS samples from the 1000 Genome Project (1kGP) [21]. Similarly, Graphtyper263

was employed to build graphs from SVs detected in 50k Icelandic SRS samples [16] or 2k dog SRS samples [22],64

which were then re-genotyped using the same SRS samples to improve recall. With the same concept in mind, the65

Human Pangenome Reference Consortium (HPRC) [23] applied Pangenie to genotype the pangenome variants in66

3.2k SRS samples from 1kGP [21]. Similarly, Goo Jun et al. [59] used MuCNV to jointly genotype TopMed SVs67

in 139k SRS samples. These genotypers enable large-scale population genotyping of gene catalogs, pangenomes, and68

candidate disease-associating variants.69

The current SV genotypers, while fast and scalable, face significant challenges at the population level. These70

genotypers require downloading and reprocessing all the raw SRS data to genotype even a single new variant, a71

demand that is increasingly impractical. This issue exemplifies a computational challenge known as the N+1 problem72

[67]. In today’s era of extensive sequencing, new lists of variants emerge daily, and a reliable estimation of their allele73

frequencies is important for interpretation. For instance, the number of pangenomes for humans [23, 24] as well as74

numerous other species [25, 26, 27, 28] is increasing. Similarly, databases like dbVar [29], genomeAD [60], TopMed75

[30], and ClinVar [31] are constantly expanding their variant collections. The N+1 challenge also affects disease76

gene discovery studies in probands [32]. LRS can produce phased, high-quality SVs, and identifying pathogenic77

variants involves filtering out common variants and focusing on rare ones. However, matching these variants in78

public databases poses challenges, and the reliability of allele frequencies in SV catalogs is dubious when calculated79

in small or distinct subpopulations or when using methods with low recall. Therefore, solving this computational80

bottleneck is crucial to optimize the usage of genomic data for advancing precision medicine and enhancing our81

understanding of genetic diversity.82

We therefore introduce “The Great Genotyper,” an alignment-free population genotyping pipeline for both struc-83
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tural and small variants. This pipeline can accurately genotype four thousand human WGS samples in just hours,84

bypassing the need for 183TB of raw sequence data. Instead, it utilizes an 867GB Counting Colored Debruijn Graph85

(CCDG), which is constructed once from the population’s raw sequences by extracting k-mers and their counts. The86

CCDG provides a viable solution to the N+1 problem as it can be reused to genotype any new variant list for this87

population. In addition, it utilizes population-derived information to improve the quality of genotyping, creating an88

imputation panel for SVs using a pangenome, and annotating SVs by their linkage to nearby GWAS SNPs.89

3 Result90

3.1 The Great Genotyper: A Workflow for Genotyping Small and Structural Variants91

in Thousands of Short-Read Samples92

The Great Genotyper solves the N+1 problem by deploying two independent workflows. The first is an indexing93

workflow that creates a CCDG using SRS to represent the population (Figure 1A). Once created, the CCDG can be94

reused by a population genotyping workflow (Figure 1B) to genotype a pangenome, phased variants, or unphased95

variants in the cohort of SRS samples.96

For human populations, we download 4.2K high-coverage ( 30x) whole genome sequencing (WGS) samples from97

three projects: 1KGP [21], HGDP [33], and SGDP [34]. This data represents 140 populations worldwide (Figure98

1A and Supplementary Figure 1). While CCDGs are much smaller than raw sequences, creating a single CCDG for99

thousands of samples would result in a complex and memory-intensive structure. Therefore, the indexing workflow100

partitions closely related samples into separate groups, creating individual CCDGs for each (Figure 1A.2). This101

workflow starts by downsampling raw sequences into representative summaries (i.e. FracMinHash sketches calculated102

by sourmash [66]. These sketches are used for quality control including estimate calculation of sequencing depth,103

genome coverage, possible contamination, and sex prediction [61]. For example, this analysis reveals samples with104

unexpectedly low coverage of the human genome as well as four discrepancies from the sex provided in the metadata105

(Supplementary Figures 2 and 3). After that, a pairwise comparison of sourmash signatures enables the creation of a106

dendrogram (Figure 1A.2). Based on this dendrogram, 29 partitions of closely related samples are identified (Figure107

1A.3). Finally, Metagraph [62] is used to create a CCDG for each partition, resulting in individual files ranging108

from 16-68 GB with a total size of 867 GB.109

Building upon the CCDGs created in the indexing workflow, the genotyping workflow (Figure 1B) empowers the110

analysis of any variant list across all samples without requiring raw reads or mapping. It begins with three key111

inputs: a list of pre-generated CCDGs, a reference genome and a variant list (phased or unphased). Depending on112

needs, three different workflows can be chosen: A) k-mer-based workflow: Efficiently genotypes unphased variants.113

B) Hidden Markov model (HMM) workflow: Handles both genotyping and imputation for phased variants. C) Two-114

pass workflow: Genotypes and imputes unphased variants, leveraging population information to determine their115

phase and impute missing data.116

Both the k-mer-based and HMM workflows start by extracting k-mers unique to the variant regions and query-117

ing their count data for all samples within the CCDGs (Figure 1B). The k-mer-based workflow determines initial118

genotypes by comparing the counts of unique k-mers to the average sample coverage for each sample. This identifies119

variants present in each sample without relying on phasing information. In contrast, the HMM workflow tackles120

phased variants by genotyping and imputing them using the Hidden Markov Model (HMM) implemented in Pan-121

genie [17]. This enables the imputation of genotypes in regions with low coverage or complexity. Following initial122

genotyping, both workflows undergo a two-step refinement. The first step is to filter low-quality genotypes after123

comparing the genotype qualities for each variant across all samples. The second step utilizes Beagle [35, 36] to124

statistically impute low-confidence genotypes and phase the resulting variants.125

The third workflow is a pipeline to genotype and impute unphased variants. It starts by running the k-mer-based126

workflow to create a reference panel using the input variants and samples in the CCDGs. This reference panel is127
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then used to phase the input variants. After that, the HMM workflow is employed on the phased variants to obtain128

more precise genotypes in indexed population.129

3.2 Achieving Population Genotyping in a Matter of Hours with no Decrease in130

Accuracy131

The performance of the Great Genotyper was evaluated for the k-mer-based workflow (for unphased variants) and132

HMM workflow (for phased variants). The Great Genotyper could genotype 4.5 million variants across 4.2K WGS133

samples in approximately 100 hours, utilizing 32 cores and 145 GB of memory, as depicted in Figure 2A. To put134

this performance into context, Pangenie and GraphTyper2 required nearly an hour and 12 hours, respectively, to135

genotype the same 4.5 million variants in a single sample using the same machine. Extrapolating this duration,136

Pangenie would take approximately six months to complete genotyping of the same dataset, while GraphTyper2137

needs six years to finish. This underscores the efficiency of the Great Genotyper in both operational modes.138

For benchmarking of precision and recall of the Great Genotyper with other state-of-the-art genotypers, we139

genotyped SVs and small variants derived from the NA12878 haploid-resolved assemblies using the 30x SRS of140

HG00731 (See Methods and Supplementary Figure 4 for the design of benchmarking and Figure 2 for the detailed141

results).142

The Great Genotyper’s HMM and Pangenie exhibit superior F-scores for phased SVs, achieving 0.91 in non-143

repetitive regions. Paragraph and the k-mer-based workflow follow closely with F-scores of 0.88 and 0.87 for unphased144

SVs. Intriguingly, the two-pass workflow accurately predicts the phasing information, boosting the F-score back to145

0.91. In contrast, Graphtyper trails with an F-score of 0.80. The challenges increase in repetitive regions, where146

variability in results is more pronounced. Here, Pangenie and the HMM workflow score 0.63 and 0.61, respectively,147

followed by Paragraph and the k-mer-based workflow at 0.55. However, the two-pass workflow enhances the k-mer-148

based approach’s F-score to 0.6, while Graphtyper lags with an F-score of 0.48.149

For small variants, GATK leads, achieving F-scores of 0.97 and 0.70 in non-repetitive and repetitive regions,150

respectively. The Great Genotyper’s HMM and Pangenie are close behind with F-scores of 0.95 in non-repetitive151

areas. The k-mer-based workflow scores 0.93, improving slightly to 0.94 with the two-pass workflow. In repetitive152

regions, Pangenie matches GATK’s 0.70 F-score, while the HMM workflow slightly trails at 0.69. The k-mer-based153

workflow struggles in these regions and scores 0.6 but is improved to 0.65 by the two-pass workflow. Overall, the154

Great Genotyper consistently demonstrates competitive genotyping accuracy compared to Pangenie across most155

scenarios, and it represents the most accurate option for genotyping unphased SVs with the two-pass workflow.156

Sequencing depth impacts the genotyping accuracy, as depicted in Figure 2B2. Notably, all genotypers exhibit157

reduced accuracy at sequencing depths of 10x and 5x. Genotypers that incorporate phasing information, such as158

The Great Genotyper’s HMM and two-pass workflows, as well as Pangenie, show the smallest decrease in accuracy.159

For instance, the accuracy of SV genotyping by The Great Genotyper’s HMM and Pangenie at 5x coverage drops by160

8% and 9% in non-repetitive regions, and 7% and 5% in repetitive regions, respectively. The k-mer-based workflow161

experiences a decrease of 14% and 9%, which the two-pass model returns to 7% and 5% in non-repetitive and162

repetitive regions, respectively. Last, Graphtyper’s accuracy diminishes by 12% and 22% in non-repetitive and163

repetitive regions, respectively.164

The reduction in sequencing depth from 30x to 5x similarly affects the accuracy of small variant genotyping in165

both non-repetitive and repetitive regions. Pangenie exhibits the smallest accuracy decline, by 7% and 5%, followed166

by The Great Genotyper’s HMM with 11% and 7%, and GATK with 8% and 17%. The k-mer-only model suffers a167

significant drop of 22% and 11%, but this is mitigated by the two-pass model to 10% and 7% in non-repetitive and168

repetitive regions, respectively.169
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3.3 Facilitating Population Studies for Small and Structural Variants170

3.3.1 The Great Genotyper can help to find pathogenic variants171

Filtering common variants is a widely used strategy in disease association studies. ClinVar, a public database,172

catalogs genomic variations in humans and their impact on health [31]. As a proof of concept, the k-mer-based173

workflow is applied to genotype the ClinVar database variants in the 4k samples of the CCDG index. Consistent with174

expectations, almost all pathogenic variants exhibit zero allele frequency in this healthy population, whereas benign175

variants display a broader range of frequencies (Figure 3A). This demonstrates that calculating allele frequencies for176

a list of suspected variants in this indexed cohort is a reliable metric for prioritizing rare variants in studies of their177

pathogenic potential.178

3.3.2 Generation of 4k reference panel by Genotyping HPRC Variants in 4K Samples179

The current HPRC pangenome comprises 88 haplotypes (Citation). As previously described [23], decomposing the180

pangenome yields a phased VCF containing 26.8 M variants (See Supplementary Table 1 for the summary count per181

variant type). The HMM workflow is used to genotype these variants in the prebuilt CCDG. The resulting output182

is a phased VCF of the HPRC variants in the indexed 4K samples, creating a new 4K reference panel. Principal183

Component Analysis (PCA) on the genetic variation within this 4k reference panel confirms the expected distribution184

of populations studied in the 1kGP, paving the way to generate cost-efficient similar panels for several other species185

(Figure 3B). Subsequent sections will explore how this panel can facilitate various genomic applications.186

3.3.3 Impute SV by using the 4k reference panel187

Genotype imputation is a statistical method that predicts unobserved genotypes using reference sequences, thereby188

enhancing the density and scope of genetic analyses at reduced costs. This technique is especially valuable in189

increasing the power and consistency of genetic studies, including genome-wide association studies (GWAS) and190

fine-mapping efforts [37]. The 4k reference panel may replace the panel generated by the 1kGP project [21] while191

enabling the imputation of structural variants (SVs). In this section, we demonstrate the precision and recall of192

imputing both small and structural variants using the 4k reference panel. Initially, pseudo-microarray variant calls193

are generated using the HG002 sample from the Genome in a Bottle (GIAB) project [38] by extracting variants194

at sites used in the Illumina Infinium OmniExpress-24, simulating microarray genotyping. The 4k reference panel195

is then employed to impute both small and structural variants. For benchmarking purposes, the 1kGP reference196

panel is used exclusively for imputing small variants, with no similar panel available for SVs. Instead, SV calling197

from 30x SRS using Manta serves as an alternative. The output VCFs are compared against gold standard GIAB198

datasets using hap.py (v0.3.12) [39] for small variants, and truvari (v3.5.0) [63] for SVs. The 4k reference panel199

exhibits commendable precision and recall for the imputation of both types of variants, as depicted in figure 3D.200

When compared to the 1kG reference panel, it displayed some reduced precision compensated by an increase in recall201

for SNPs and indel imputation. Conversely, the 4k reference panel shows remarkable results in imputing common202

SVs, achieving an impressive recall of 86%. This imputation recall surpasses the recall of SV calling from 30x SRS203

using Manta. These results highlight how the 4k reference panel can be leveraged to augment microarray genotypes204

with common SVs.205

3.3.4 Fine Mapping of GWAS SNPS using SVs from the 4k reference panel206

The 4k reference panel provides detailed insights into the structure of common haplotypes composed of small and207

structural variants. In particular, it allows the exploration of linkage disequilibrium (LD) between SVs and neigh-208

boring variants known to be associated with phenotypic changes. We initiate our investigation by annotating the209

SVs in the 4k reference panel using AnnotSV (v3.3.6) [40]. This reveals that approximately 463K SVs affect gene210

structures. Proceeding further, we compute the pairwise LD for each of these variants with all the variants located211
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within a 1MB window surrounding them. Our analysis indicates that 91K SVs exhibit a strong association with a212

neighboring variant, having an r2 value greater than 0.8.213

We utilize the identified associations to illuminate potential causal variants in GWAS studies. Among the 91K214

SVs, 3,744 are found in strong linkage with GWAS SNPs. We compiled a table that includes these SVs, their215

annotations, associated GWAS SNPs, and other relevant metadata (see the ’Data and Code Availability’ section).216

This table should be a valuable resource elucidating the phenotypic effects of common SVs and help pinpoint some217

causal variants of the traits examined in these GWAS studies. Figure 3E summarizes of the associations found in218

the table. Notably, 722 of these SVs impact the coding regions of genes, with 415 causing frameshift mutations.219

We explore a specific example from our list in figure 3C, focusing on the Human fibrinogen locus on chromosome220

4. This 50-kilobase region includes three fibrinogen genes: the central FGA gene encodes the alpha chain, flanked by221

FGB and FGG encoding the beta and gamma chains, respectively [41]. Our reference panel shows an insertion of 28222

bp at chr4:154584089 (dbSNP: rs148317511; ClinVar: RCV000247066) in a high linkage (r2=0.98) with rs6050-C; a223

missense mutation in FGA associating with venous thromboembolism [42, 43, 44, 45, 44] and chronic thromboembolic224

pulmonary hypertension [45, 46]. The insertion is reported in ClinVar as a benign variant. Surprisingly, further225

digging in the literature shows that the variant was once known as the Taq I polymorphism because it created an226

additional restriction site for Taq I [47]. The allele was found to enhance the stability of FGA mRNA in vitro [43].227

This was explained by the ability of the insertion to oppose the suppressive effect of has-miR-759 on the 3 UTR of228

FGA [46]. These findings suggest that the ClinVar information on the variant should be revised.229

Interestingly, our panel is able to capture the haplotype structure of the fibrinogen locus and shows how the 28bp230

insertion fits in. For example, rs6050 is known to be in high linkage with rs7681423; SNP upstream to FGG and a231

peak of association with γ′ Fibrinogen. Both SNPs are known to have no significant association with total fibrinogen232

levels and no linkage with rs1800789; SNP in FGB shows the strongest association with total fibrinogen level, but not233

with γ′ fibrinogen [48]. The panel confirms these relationships between the three SNPs and shows that the insertion234

allele has some linkages (r2=76) to rs7681423 and no linkage to rs1800789. Also, the panel shows a unique haplotype235

(r2=96) of the insertion and rs2070011-A; an allele of CFA’s promoter causing higher expression of the gene. This236

haplotype is different from the haplotype of rs6050 and rs7681423.237

4 Discussion238

The Great Genotyper serves as a practical solution for population genotyping at massive scales. It provides the239

ability to genotype a new set of variants, whether small or structural, in thousands of SRS samples in just a matter240

of hours. More importantly, it provides a novel solution for the chronic N+l problem by eliminating the need to241

download and process terabytes of raw sequencing data. Instead, the Great Genotyper operates using a prebuilt242

CCDG, effectively decoupling intensive data preprocessing from the actual genotyping process. In terms of input,243

the Great Genotyper is versatile; it accepts any set of phased or unphased variants, along with the reference genome.244

The outcome is the phased genotypes of all input variants in the indexed samples. In this manuscript, 183 TB of245

SRA files for 4K human SRS samples are indexed to generate an 867 GB CCDG to enable unprecedented efficiency246

in calculating allele frequencies of any list variants in the human population. As a proof of concept, the index is used247

to genotype the HPRC pangenome variants as an example for phased variants as well as genotyping all unphased248

ClinVar variants.249

The Great Genotyper does not sacrifice quality for scalability. On the contrary, the scalability empowers the250

Great Genotyper to jointly genotype thousands of samples, which, in turn, enhances the genotyping quality even251

more. K-mer-based genotypers such as Nebula and Pangenie have previously demonstrated the potential of k-mers252

for precise genotyping. They leverage the specificity of variant-specific k-mers, using shifts in the counts of these253

k-mers as indicators to genotype the variants. The Great Genotyper reinforces this approach, considering the counts254

of these k-mers across an entire population of samples. This innovation facilitates the calculation of a confidence255

measure for each genotype based on the collective population data. Furthermore, the tool is equipped to impute256
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missed genotypes through a two-tiered approach. Initially, imputation is rooted in the phasing information of the257

variants, either provided as input or derived from the large cohort genotypes. Subsequently, the Great Genotyper258

integrates Beagle, leveraging the high-confidence genotypes within the population to further impute genotypes. This259

dual-phase imputation process ensures that the Great Genotyper can deliver performance on par with Pangenie, even260

if some data is compromised during the k-mer count preprocessing while indexing to enable better data compression261

as described in Supplementary Figure 7.262

The enhanced accuracy and scalability of the Great Genotyper paves the way for valuable downstream applications263

in genomics. For instance, accurate allele frequencies can now be directly derived from sequences rather than merging264

information from sparse studies or variation databases that rely on variant calling in SRS studies. Such accurate265

determination of allele frequencies can play a pivotal role in pinpointing causal variants in disease-gene discovery266

studies. Furthermore, simultaneous genotyping and phasing of common variants enables dramatically improved267

resolution for understanding the haplotype structure within and across populations. As an example, genotyping the268

HPRC pangenome variants in 4k samples produces what we call “the 4k reference panel (4kRP)”. We show how the269

4kRP can be used to impute common SVs with a recall rate that surpasses some short-read callers like Manta.270

Taking our analysis further, we explore the 4kRP for SVs in high LD with known GWAS SNPs. We limit our271

focus to 91K SV variants impacting gene structures. Intriguingly, we discover that approximately half of these SVs272

exhibit strong associations with at least one GWAS SNP. We are optimistic that our findings will contribute to a273

deeper comprehension of the relationship between genotype and phenotype concerning these structural variants.274

Although the Great Genotyper is effective in generating high-quality genotypes for both small and structural275

variants, it does have certain limitations. First, some variants cannot produce specific k-mers because the k-mers276

from the alternate sequences may also be present in other parts of the genome. Such variants cannot be genotyped277

precisely by k-mer-based approaches. This limitation, however, is partially offset through imputation. Furthermore,278

genotyping copy number variants is beyond the capabilities of the current version of the Great Genotyper. While it279

is not an insurmountable challenge, it requires development of a dedicated genotyping model. Another constraint is280

that the Great Genotyper utilizes two separate imputation models, as they are implemented in two distinct tools,281

Pangenie and Beagle. A unified model tailored specifically for imputing genotypes using the k-mers in the CCDG282

could both enhance the accuracy as well as boost performance.283

The Great Genotyper opens many doors for future genomic applications. Creating more CCDGs to represent284

specific subpopulations or individuals exhibiting specific traits, like autism, is crucial for understanding the role of285

genomics in these cohorts. Moreover, while most population studies have been conducted on humans [49], this286

approach is applicable to man y other organisms. The Sequence Read Archive (SRA) [50] is a vast reservoir of287

short-read samples for non-human organisms. Generating CCDGs for these samples will facilitate population-scale288

studies for other species.289

The current CCDG for the human population, and the additional CCDGs to be created for other cohorts, are290

invaluable resources with potential applications that extend beyond genotyping. For instance, variants can be directly291

called from the graph using methods such as Corticall [51]. Additionally, it can aid in subsetting pangenomes by292

selecting segments of the pangenome that have k-mers present in a specific population, thereby creating a more293

streamlined pangenome tailored to that population. We encourage the community to explore and uncover more ways294

to harness the extensive genomic diversity revealed by the CCDG.295

5 Conclusion296

The Great Genotyper can transform population genotyping into a routine task using a flexible CCDG representation297

of populations. Its scalability allows the improvement of genotyping quality by using population information. The298

tool’s practicality aids in expanding variant lists into broader dimensions, revealing complex genomic details. We299

demonstrate its potential in applications such as creating SV imputation panels, finding SV associations with variants300

from databases like the GWAS catalog, and accurately calculating population allele frequencies. The CCDG, com-301
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prising 4,000 human samples, contains a vast genomic variation spectrum, accessible through The Great Genotyper302

or other methods, leading to enhanced genomic insights. Producing more CCDGs for additional cohorts or species303

will further optimize the use of existing SRS samples.304

6 Data and Code Availability305

The code for The Great Genotyper is publicly available on GitHub at the following URL: https://github.com/306

dib-lab/TheGreatGenotyper. The benchmarking code used in our study can also be found on GitHub at this URL:307

https://github.com/dib-lab/TheGreatGenotyper_benchmark. The indexes used in our project are hosted on308

our server and can be accessed at this URL: https://farm.cse.ucdavis.edu/~tahmed/GG_index/. We have also309

provided several use cases which can be found at this URL: https://github.com/dib-lab/TheGreatGenotyper_310

usecases. The genotyped pangenomes are available at this URL: https://farm.cse.ucdavis.edu/~mshokrof/4k_311

reference_panel/. The LD list and the GWAS SV Associations can be found at this URL: https://farm.cse.312

ucdavis.edu/~mshokrof/GWAS_associations/. Lastly, the ClinVar genotyped data can be accessed at this URL:313

https://farm.cse.ucdavis.edu/~mshokrof/The_great_genotyper_clinvar/.314

7 Methods315

7.1 Short Read Samples Preprocessing and Clustering316

Upon the download of each sample, kmc [52] was used for k-mer counting with a minimum count of 3 to filter out317

singletons and doubletons, which are likely sequencing errors. In addition, Metagraph [62] was utilized to identify the318

unitigs and retain only the average k-mer count per unitig, thus smoothing k-mer counts. This smoothing reduced319

the size of the k-mer counts to one-tenth while maintaining high genotyping accuracy (see below). Subsequently,320

alignment-free quality control was done using Snipe [61]. In brief, a sourmash sketch was created for each sample321

using a k size of 51 and a subsampling scale of 10k, which entails keeping a single hash for every 10,000 k-mers.322

A similar sketch at the same scale was created for the GRCh38 reference genome. Intersection of both signatures323

enabled approximate estimation of the genome coverage and sequencing depth as well as sex confirmation (Supple-324

mentary Figures 2 and 3). Subsequently, kSpider [64] calculated pairwise similarities between all samples based on325

their sourmash sketches. To alleviate skew from the sex chromosomes, the sketch of chrY was subtracted from all326

samples. Hierarchical clustering was employed using the Scipy library [65] to construct a dendrogram visualized in327

Supplementary Figure 6 by iTOL [53]. From the dendrogram, twenty-nine clusters were extracted and subsequently328

refined manually to ensure each encompasses between 100-350 samples.329

7.2 Determining The Best Indexing Parameters330

We investigated the influence of sample preprocessing on genotyping accuracy to determine the best parameters for331

optimal results. Multiple CCDGs were generated from sub-samples of the HG00731 SRS at sequencing depths of332

5x, 10x, 20x, and 30x. Each CCDG was constructed using a different set of parameters, which are summarized333

in Supplementary Table 2, along with the final sizes of the CCDGs. Benchmarking was done as described in334

Supplementary Figure 4 and later in the methods.335

Results in Supplementary Figure 7 and Table 2 indicate that preprocessing methods do not impact samples336

with coverage exceeding 20x. For coverages of 10x and 5x, logging the counts is the most influential, significantly337

decreasing both the F-score and the final CCDG size. On the other hand, smoothing leads to a nominal drop in the338

F-score but notably reduces the CCDG size. Cleaning had a moderate impact on the F-score and caused a slight339

reduction in the CCDG size. These findings are instrumental in guiding our final decision to use smoothing of k-mer340

counts as the only preprocessing for input samples.341
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7.3 Genotyping Workflow342

The Great Genotyper adopts the genotyping model from Pangenie [17] to implement two genotyping workflows;343

one for genotyping unphased variants using k-mer counts, and another for genotyping and imputing phased variants344

using k-mer counts and phasing information. For the phased variants, the Great Genotyper employs the Pangenine345

HMM model, which is based on the Li-Stephen model [54]. For the unphased variants, we rely solely on emission346

probabilities to determine the most probable genotype for each variant. The genotyping models yield a confidence347

measure for the output genotypes, deducing the likelihoods of all possible genotypes and selecting the one with the348

highest probability. The confidence level is derived from the difference between the highest probability and the other349

probabilities. Therefore, a larger difference correlates to higher confidence.350

The components driving these confidence probabilities can primarily be distilled into two factors: the number of351

unique k-mers discovered for each variant haplotype and the count of these k-mers in the sample. The first factor is352

a constant across all samples since it is determined only from the reference genome and the variant to be genotyped.353

However, the second factor varies per sample. Some samples may present robust evidence for a particular genotype,354

while others may not due to either low coverage of the region in the sample or the exhibition of a different haplotype355

not present in the input haplotypes. The Great Genotyper leverages the power of having a large population in356

the CCDGS to filter low-quality genotypes. In this step, the median of genotype confidences is calculated for each357

genotype then the genotypes falling below this median are discarded. This approach allows the Great Genotyper358

to establish a variable threshold calculated using the results from all the samples, providing a balanced way to sift359

through the variants. For variants abundant in unique k-mers, this threshold will be high, while more challenging360

variants will have a lower threshold, accommodating the varying levels of confidence in different scenarios. The final361

output of this step is a reference panel comprised of the high-confidence genotypes.362

Finally, Beagle [35, 36] is employed to statistically impute the filtered, low confidence genotypes using this363

reference panel, simultaneously phasing the resultant variants, thereby yielding phased genotypes for all samples.364

It is crucial to note that Beagle employs a different HMM model, albeit very similar to the one used in the HMM365

workflow. In Beagle, linkage disequilibrium is computed statistically from the high-confidence genotypes within the366

created reference panel. In contrast, the model in the HMM workflow utilizes the phasing information provided by367

the user in the input variants. The synergy between these two imputation methods does not only enhance the results368

of genotyping but also broadens the application scope for the higher quality HMM model, enabling its usage when369

phasing information is absent in the input VCF, as described in the two-pass workflow in Figure 1B.370

7.4 Benchmark Experiment Design371

This section outlines the experimental design for the benchmarking experiments conducted to compare the accuracy372

of The Great Genotyper with the state-of-the-art genotyping tools: Pangenie, GraphTyper2, Paragraph, and GATK373

as described previously [17]. This experiment is structured into two components. The first component involves374

creating a truth variant set and a query variant set.375

The truth set comprised of small and structural variants is created by aligning each haplotype-resolved assembly376

of HG00731 against the reference genome using minimap2 [55] and identifying the variants using PAV tools [56].377

The resulting two VCFs are merged using bcftools [57]. The analysis is confined to a confidence region on the378

reference genome, ensuring that only one segment from the assembly maps to it to avert the regions difficult to379

assemble. Variants within this confidence region are deemed suitable to represent the full truth in these regions.380

Similarly, the query VCF is created from the haplotype-resolved assemblies of NA12878 downloaded from GIAB381

[58]. The shared variants between the truth and query sets are categorized as true positives while those found only382

in the query set as true negatives.383

The second component is running the genotypers and benchmarking them. Subsequently, different genotypers384

are executed on the query variants obtained from NA12878 and the SRS from the HG00731 sample. The genotyping385

results are then compared against the truth set. The benchmarking outcomes are stratified based on whether the386
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variant is located in a repeat region or not and are also classified by type and size: SNP, Indel(< 50bp), Inser-387

tions/deletions( > 50bp), and complex Insertions/Deletions, where “complex” denotes that the variation generates388

more than one breakpoint.389
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Figure 1: The Great Genotyper workflows The indexing workflow (A) depicts the high-level pipeline for
creating Population CCDGs. The workflow downloads and computes the unitigs of each sample individually (A1). A
sourmash signature is calculated for each sample to be used for alignment-free quality control and sample partitioning
(A2). Lastly, a subgraph is created for each partition of samples (A3). The genotyping workflow (B) describes three
population genotyping workflows illustrated with a different color of arrows: The HMM workflow (red) genotypes
and imputes phased variants using a high-quality HMM model, the k-mer-based workflow (green) rapidly genotypes
unphased variants, and the two-pass workflow (blue) enhances the recall of the k-mer-based workflow by genotyping
its output phased variants using the HMM workflow.
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Figure 2: The Great Genotyper provides unparalleled performance compared to the state of the art,
with no compromise on accuracy. Panel A shows the running time and memory usage of different tools used
to genotype 4.5 million phased variants (including structural variants and small variants). The Great Genotyper is
currently genotyping 4,200 samples at 30x coverage, while the other genotypers are handling 10 to 100 samples. Panel
B1 illustrates the F-scores of different genotyping methods for different classes of variants. Panel B2 illustrates the
effect of coverage on the F-scores of different genotyping methods for small and structural variants. In both Panels
B1 and B2, the variants are categorized based on the complexity of the genomic loci into variants located in repeated
(shown as bars) and non-repeated regions (shown as circles)
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Figure 3: Applications of The Great Genotyper: We used the Great Genotyper to genotype all ClinVar and
HPRC pangenome variants in 4k human samples. Panel A is a box plot of the distinctive distributions of population
allele frequencies for ClinVar variants when stratified by the pathogenicity of the variants (outliers are not displayed).
Panel B is a plot of the first two principal components from a PCA for the genotypes of the HPRC pangenome
variants; the 4k samples are colored by their ancestry. Panel C is an LD heatmap that highlights the associations
of an insertion (dbSNP: rs148317511) and multiple GWAS SNPs including rs6050-C; a peak associating SNP in a
GWAS study of the circulating fibrinogen. Panel D shows the precision and recall of small and structural variant
imputation using the 4k reference panel in comparison to small variant imputation using the 1000 Genome panel and
calling SVs using Manta. Panel E presents a Sankey plot summarizing 6.2K linkage associations between SVs from
the HPRC pangenome and the GWAS catalog. The columns stratify linkages based on various traits of both SVs and
GWAS: SV size, GWAS SNP impact on coding regions, SV impact on coding regions, and SV-induced frameshifts.
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