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Key Points 

Question: What are the predisposing characteristics among individuals who develop treatment-resistant 

depression (TRD)? 

Findings: Analysis of data from 292,663 participants in the All of Us Research Program revealed that 

polygenic scores (PGS) for traits including neuroticism, cognitive function, and sleep patterns were 

significantly associated with major depressive disorder (MDD) and, particularly, with TRD. Among the 

61 traits studied, 11 showed stronger associations with TRD compared to treatment responsive MDD, 

including traits linked to higher education and intelligence which appeared protective, and neuroticism 

and insomnia which increased risk. 

Meaning: The findings underscore the importance of considering predisposing factors when managing 

and treating TRD. They suggest potential intervening pathways through tailored approach with the 

identified predisposing characteristics, reducing the risk of progression to treatment resistance in 

depression. Personalized genetic information that measures the underlying predispositions could 

eventually enhance therapeutic strategies. 
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Abstract 

Background: Treatment-resistant depression (TRD) is a major challenge in mental health, affecting a 

significant number of patients and leading to considerable economic and social burdens. The etiological 

factors contributing to TRD are complex and not fully understood. 

Objective: To investigate the genetic factors associated with TRD using polygenic scores (PGS) across 

various traits, and to explore their potential role in the etiology of TRD using large-scale genomic data 

from the All of Us Research Program (AoU). 

Methods: Data from 292,663 participants in the AoU were analyzed using a case-cohort design. 

Treatment resistant depression (TRD), treatment responsive Major Depressive Disorder (trMDD), and 

all others who have no formal diagnosis of Major Depressive Disorder (non-MDD) were identified 

through diagnostic codes and prescription patterns. Polygenic scores (PGS) for 61 unique traits from 

seven domains were used and logistic regressions were conducted to assess associations between PGS 

and TRD.  Finally, Cox proportional hazard models were used to explore the predictive value of PGS for 

progression rate from the diagnostic event of Major Depressive Disorder (MDD) to TRD. 

Results: In the discovery set (104128 non-MDD, 16640 trMDD, and 4177 TRD), 44 of 61 selected PGS 

were found to be significantly associated with MDD, regardless of treatment responsiveness. Eleven of 

them were found to have stronger associations with TRD than with trMDD, encompassing PGS from 

domains in education, cognition, personality, sleep, and temperament. Genetic predisposition for 

insomnia and specific neuroticism traits were associated with increased TRD risk (OR range from 1.05 

to 1.15), while higher education and intelligence scores were protective (ORs 0.88 and 0.91, 

respectively). These associations are consistent across two other independent sets within AoU (n = 

104,388 and 63,330). Among 28,964 individuals tracked over time, 3,854 developed TRD within an 
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average of 944 days (95% CI: 883 ~ 992 days) after MDD diagnosis. All eleven previously identified 

and replicated PGS were found to be modulating the conversion rate from MDD to TRD. Thus, those 

having higher education PGS would experiencing slower conversion rates than those who have lower 

education PGS with hazard ratios in 0.79 (80th versus 20th percentile, 95% CI: 0.74 ~ 0.85). Those who 

had higher insomnia PGS experience faster conversion rates than those who had lower insomnia PGS, 

with hazard ratios in 1.21 (80th versus 20th percentile, 95% CI: 1.13 ~ 1.30).  

Conclusions: Our results indicate that genetic predisposition related to neuroticism, cognitive function, 

and sleep patterns play a significant role in the development of TRD. These findings underscore the 

importance of considering genetic and psychosocial factors in managing and treating TRD. Future 

research should focus on integrating genetic data with clinical outcomes to enhance our understanding of 

pathways leading to treatment resistance. 

Keywords: Treatment-resistant depression, polygenic scores, genetic predisposition, All of Us Research 

Program, major depressive disorder. 
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Introduction 

Treatment Resistant Depression (TRD) is generally operationally defined as a major depressive 

disorder (MDD) with poor response to two trials of different classes of antidepressants 1. It exerts an 

enormous burden on quality of life 2 and healthcare resource utilization 3. Out of 8.9 million treated 

MDD patients in the US, about 2.8 million are estimated to have TRD, which amounts to an overall cost 

of almost $44 billion in treating these patients 4. Compared to treatment responsive individuals, those 

with TRD are 20% 5 to 30% 6 more expensive to treat, account for as much as 70% 7 more emergency 

department visits, outpatient visits, and prescriptions 8, and are 40% more likely to be hospitalized  9. 

These individuals have greater lost productivity 10, higher rates of permanent disability 11, and higher 

levels of suicide attempts and completed suicide 12.  

Despite the clinical significance of TRD, the etiological factors remain elusive. TRD has been 

associated with higher prevalence of psychiatric comorbidities, including anxiety disorders10, stress 

disorders 13, and substance use disorder 14. Greater occurrences of ADHD, eating disorders, psychotic 

features, bipolarity, insomnia, and neuroticism are also reported 15,16. Histories of childhood 

maltreatment were found to be associated with the development of TRD 17,18, particularly among those 

who have genetic predispositions to psychiatric disorders 19,20, In regards to medical comorbidities , 

indicated associations include diabetes, immune system disorders, cardiovascular disease, and physical 

pain 15,16. Social factors are also implicated, as many demographic variables have been shown to be 

associated with TRD status 15,16. While the abundant literature points out the complex clinical features of 

TRD, it is unclear if those observed co-occurrences are the causes of difficult-to-treat depression. Given 

that depression is a potential risk factor for cardiovascular disease and diabetes 21-23, it is possible that 

long-lasting depressive symptoms lead to inflammatory processes shared by physical comorbidities. 
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Misclassification of MDD may also lead to TRD. Furthermore, associated social factors may result from 

chronic debilitating effects of depression symptoms.  

Understanding the causal mechanisms of TRD is of great importance to derive mechanism-based 

treatment approaches, and recent studies have employed genetically derived variables, such as polygenic 

scores (PGS), as causal instruments. The utilization of these genetically derived variables helps mitigate 

confounding factors due to the randomization in gametes, thereby providing insights into shared 

biological processes or potential mediating directions 24. For instance, in UK cohorts, PGS for major 

depression, schizophrenia, bipolar disorder, subjective wellbeing, intelligence, and neuroticism have 

shown no significant associations with TRD status among participants with MDD 25. While PGS for 

psychosis showed an association with TRD status when subgrouped with clinical characteristics, these 

findings have not been replicated in other cohorts 25,26. Moreover, genome-wide association studies 

(GWAS) of TRD have neither identified significant loci nor replicated any implicated candidate genes 27. 

Thus, these findings underscore the complexity of TRD's genetic underpinnings and suggest the need for 

further research to clarify relationships. 

To address the critical gap in understanding the etiology of TRD, we utilized the All of Us 

Research Program (AoU), a cohort drawn from hospital systems across all 50 US states that includes 

electronic health records, whole genome sequencing, and health survey responses 28. For this analysis, 

we selected 61 PGS representing unique traits across seven domains, which were derived from summary 

statistics of GWAS on samples independent of AoU (see Methods). These PGS were applied to the 

whole genome sequencing and microarray data of participants to critically examine their association 

with TRD status. Further validation of our findings was pursued through replication studies using two 

independent and non-overlapping cohorts within AoU. 
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Methods 

All of Us 

The cohort consisted of participants in the v7 release of the AoU Research Program. The AoU dataset 

includes electronic health records (EHR), whole genome data, physical measurements, and health 

questionnaires.  The AoU data have been described previously 29. There are 413,457 participants in the 

v7 release. Participants were excluded if: (1) they indicated their sex at birth as other, (2) they live in a 

U.S. territory, (3) their state value was missing, (4) they had no EHR data, or (5) they did not have any 

genomic data. The final sample consisted of 292,663 participants in total.  

 We then separated the included samples into three independent and mutually exclusive cohorts, 

(1) participants who have short-read whole genome sequencing (WGS) and are genetically similar to 

persons of European ancestry (WGS European set, n = 124,945), (2) participants who have WGS and 

are genetically diverse (WGS Diverse set, n = 104,388), and (3) participants who did not have WGS but 

have been genotyped with the Illumina Infinium Global Diversity Array (Microarray set, n = 63,330). 

We deliberately chose these grouping factors because they were predefined without us preforming the 

random selection, enabling external replications. Details on the demographics for the three cohorts can 

be found in the Table 1.  

Determining Status 

We operationalized TRD based on a participant's engagement with three or more distinct antidepressant 

drugs within a single drug trial period 30.  Participants might experience multiple distinct drug trial 

periods throughout their medical history, thus, each of these periods were evaluated independently based 

on the criteria set forth for the index drug and subsequent treatment within a one-year frame. This 

definition was consistent with the approach used in the UK 25,27, Sweden 31, and Taiwan 32. This 
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definition took into account the dynamic nature of antidepressant treatment strategies over time, 

allowing us to systematically assess treatment patterns and the incidence of TRD across the participant 

cohort.  

The characterizations of treatment-responsive MDD (trMDD), TRD, and MDD negative (non-

MDD) were determined by diagnostic codes recorded in the EHR and the medication record. The 

average length of EHR was 11.89 years (SD = 8.98 years, Median = 8.95 years, Range = [0.003, 93.07] 

years). MDD status was determined based on presence of a diagnostic entry from a list of diagnostic 

codes in the International Classification of Diseases (ICD v9 and v10, see Supplementary eTable 1). 

Subsequently, we identified the drug trial period for everyone with MDD, defined as a continuous 

treatment period that begins with the first prescription or refill entry and ends with a gap of more than 6 

months without record of a subsequent prescription. We standardized the prescription records to focus 

the analysis on the occurrence and continuity of antidepressant use rather than the specifics of each 

prescription, such as dosage or formulation.   

Polygenic Scores 

We selected 61 summary statistics from seven domains to generate the corresponding PGS: (a) 

Education and cognition (2 PGS)33, (b) Metabolic, somatic complaints, and inflammation traits (17 

PGS)34-38, (c) Personality (19 PGS)39-43, (d) Psychiatric disorders (9 PGS)40,43-49, (e) Sleep patterns (2 

PGS)43, (f) Substance use (6 PGS)43,50, (g) Temperament 40 (6 PGS). Details of each selected PGS, 

including publication records, can be found in the Supplementary eTable 2. We selected these PGS 

based on previous studies reporting that their corresponding observed traits were associated with TRD 

15,16.  
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 We used PRS-CS, a continuous prior based shrinkage method 51, to generate the posterior 

weights given the GWAS summary statistics. To avoid directly using AoU for calibrating weights, we 

utilized a smaller, locally available genomic dataset, the Tulsa 1000 study (T1000) 52.  T1000 is a 

longitudinal study including 1000 individuals with mood/anxiety, substance use, or eating disorders, and 

healthy controls. The genotyping was done with the Illumina Infinium Global Screening Array-24 (v.2.0) 

and imputation was performed via the Michigan Imputation Sever Pipeline (Minimac4, version 1.2.4), 

using the HRC reference panel 53. PRS-CS estimates global and local scaling parameters by 

simultaneously evaluating the association strengths of a group of SNPs in a linkage disequilibrium block 

and their correlation patterns in the reference genotype data (in this case, the T1000). Those estimated 

parameters were later used as shrinkage factors to determine the posterior effect sizes, which we used for 

calculating PGS in AoU.   

 To calculate the PGS of each trait in AoU accordingly, we applied the posterior effect sizes to the 

Allele Count/Allele Frequency (ACAF)-thresholded short-read sequencing data provided by AoU. This 

data was filtered based on a preset ACAF threshold, which required that either the population-specific 

allele frequency (AF) exceeded 1% or the population-specific allele count (AC) was greater than 100 in 

any of the ancestry subpopulations. We then excluded sites based on four criteria: (a) excess 

heterozygosity, (b) overall AF of 0.5% or less, (c) multi-nucleic alleles, or (d) a call rate under 99%. We 

ended with 10,222,713 SNPs after applying these filters. We applied the calculated posterior effect sizes 

to the WGS of AoU, generating the PGS of each trait accordingly.  

 For the Microarray set, we calculated the PGS based on all available SNPs from the Illumina 

Infinium Global Diversity Array. The total number of available SNPs was 1,739,268. To serve as a 

replicating analysis, we directly apply the posterior effect sizes to the intersecting SNP sets to generate 

the PGS of each trait.   
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Statistical Methods 

First, we used logistic regression to determine the associations between each PGS and each binary 

diagnostic status, amounting to three outcome comparisons conducted for each PGS. Diagnostic 

comparisons included trMDD versus non-MDD, TRD versus non-MDD, and TRD versus trMDD. In 

each regression, we include 16 genetic principal components, biological sex, and age as the covariates. 

For discovery, significance threshold was determined at 0.0001, the Bonferroni correction for two-tail 

tests on 61 PGS with three different outcome contrasts. Effect measures (odds ratios, OR) and the 

corresponding 95% confidence intervals are also reported. For replication, we examined if the point 

estimates of the all the associations were consistent across pre-selected independent cohorts.  

To determine whether PGS were associated with progression from MDD to TRD, time-to-event 

analyses were performed on the PGS that significantly predicted diagnostic category. We selected a 

subset of patients with major depressive disorders according to the three previously described cohorts, 

and included only those who have more than two diagnostic time points on record (n = 19124, 9840, 

6967 for WGS European set, WGS Diverse set, and Microarray set, respectively). We applied a Cox 

proportional hazard model to estimate the progression rate given the PGS while controlling for age at 

MDD diagnosis, sex, and 16 principal components of genetic ancestry. Hazard ratios and their 

corresponding 95% confidence intervals were estimated. The proportional hazard assumptions were 

examined via both a graphic method and a Schoenfeld test.  

 

Results 

PGS-associated risk of developing TRD  
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Figure 1a summarizes the associations between each PGS and disease status. In the WGS European set, 

44 of our selected 61 PGS show significant associations with the likelihood of being trMDD versus non-

MDD (all Pbonferroni < 0.05). The validated list includes 2 PGS from Education and Cognition, 10 PGS 

from Metabolic, somatic complaints, and inflammations, 17 PGS from Personality, 5 PGS from 

Psychiatric disorders, 1 PGS from Sleep, 3 PGS from Substance use, and 6 PGS from Temperament 

(Supplementary eTable 3). On average, the point estimates of the OR have larger magnitude in TRD-

vs-non-MDD than in trMDD-vs-non-MDD. However, TRD-vs-non-MDD have larger confidence 

intervals than trMDD-vs-non-MDD due to the reduced number of defined cases. To see if the overall 

association patterns hold in the replication set while reduce the impact of limited sample sizes, we 

performed meta-analytic correlations to compare the effect size estimates across sets. We found that the 

association patterns are highly consistent. Meta-analytic correlations between the WGS Diverse set and 

European set are 0.89 and 0.83 for trMDD-vs-non-MDD and TRD-vs-non-MDD, respectively 

(Supplementary eFigure 1 and Supplementary eFigure 2).  

 Despite a high degree of similarity in the association patterns, 11 PGS showed stronger 

associations with TRD than with trMDD in both European and Diversity cohorts (Pbonferroni < 0.05, 

Figure 1a and 1b). Those 11 PGS belong to four different domains: Education/Cognition, Sleep, 

Personality, and Temperament. Some of the significant PGS in Temperament stand for trans-diagnostic 

psychiatric symptoms, such as lethargy, depressed mood, and tenseness in the past two weeks. However, 

none of the PGS for psychiatric disorders, including PGS for Major Depressive Disorder, were shown to 

be significantly associated with TRD status among patients with MDD, neither did PGS for Substance 

Use and PGS for Metabolic, Somatic Complaints, and Inflammation. Figure 1b shows the distribution of 

the OR and the corresponding 95% confidence intervals for TRD vs trMDD for every one standard 

deviation (SD) difference in the PGS in the combined European and Diversity cohorts. Genetic 
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propensity for depressive affect, including tenseness, unenthusiasm, depressed mood, and lethargy, 

increase the likelihood of being TRD by 28% (95%CI: 1.16 ~ 1.41), 23% (95%CI: 1/14 ~ 1.30), 21% 

(95%CI: 1.11 ~ 1.31), and 15% (95%CI: 1.10 ~ 1.209), respectively. Insomnia increases TRD risk by 

11% (95%CI: 1.06 ~ 1.15). Neuroticism and its item-level sub-scores (depressive affect cluster score, 

fed-up, mood swing, and loneliness) all increase the likelihood of being TRD, with neuroticism 

indicating a 11% increase in risk and ORs of the sub-scores ranging from 1.06 to 1.08. PGS predicting 

higher educational attainment and intelligence are associated with lower prevalence of TRD, with OR in 

0.88 (95%CI: 0.84 ~ 0.91) and 0.91 (95%CI: 0.89 ~ 0.95), respectively. Estimates derived independently 

for the European and Diversity cohorts were consistent (see Supplementary eFigure 3).  

These results are replicated in the Microarray set, despite fewer SNPs and fewer individuals 

compared to the WGS dataset (Supplementary eFigure 4). The meta-analytic correlations for TRD-vs-

trMDD for all 61 PGS is 0.78. PGS of intelligence, education attainment, and insomnia remain 

significantly associated with TRD status despite greatly reduced sample sizes and input SNPs (Pbonferroni 

< 0.05).  

 

Predicting the progression from MDD to TRD 

Among 28,964 individuals from the WGS set who had at least two time points, 3854 converged to TRD, 

on average, within 944 days after receiving MDD diagnosis (95% CI: 883 ~ 992 days). We first 

examined whether those 11 PGS identified in the previous step could differentiate the time-to-TRD 

onset among patients with MDD. As showcased in Figure 2a, when individuals are stratified by the PGS 

of educational attainment (PGSedu), higher level of PGSedu is associated with a slower progression rate to 

TRD than those who have lower level of PGSedu (Kaplan-Meier curves for each PGS strata and 
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corresponding 95% CI). We formally tested the time-modulating effects of those PGS using Cox 

proportional hazard models. Figure 2b shows the hazard ratios (HR) estimated from the time-to-TRD-

onset analyses in the longitudinal WGS sets. After controlling for age-at-MDD diagnosis, sex, and first 

16 genetic PCs, all 11 PGS show significant associations with time-to-TRD-onset. After Bonferroni 

correction, all except two sub-items of neuroticism retain significance. For instance, higher PGSedu (80 

percentile) is associated with slower progression rate compared to lower PGSedu (20 percentile) (HR = 

0.79 | 95% CI: 0.74 ~ 0.85). Higher PGS for insomnia (80 percentile) is associated with a faster 

progression rate compared to lower PGS for insomnia (20 percentile) (HR = 1.21 | 95% CI: 1.13 ~ 1.30). 

These results suggest that genetic propensity of those traits is not only associated with whether or not the 

individuals would have TRD but also with when to expect the TRD would occur. We repeated the 

analyses on the Microarray subset (n = 6967) and found virtually identical results (Supplementary 

eFigure 5).  

 

Discussion 

This investigation aimed to elucidate the etiology of TRD by leveraging the extensive AoU 

cohort and analyzing 61 polygenic scores from unique traits across seven domains. These PGS were 

derived from summary statistics of GWAS on samples independent of AoU and applied to the genotype 

data from three naturally occurring, mutually exclusive, independent cohorts in AoU. Our findings 

showed that increased likelihood (OR) of TRD is genetically correlated with traits such as depressive 

affect, neuroticism, and insomnia. Moreover, these genetic predictors were associated with progression 

from MDD to TRD (HR). These findings support that these traits are etiological factors for TRD 15,16. 

Conversely, traits related to intelligence and education showed opposite effects in both OR and HR, 

indicating a protective effect against TRD. The replication of these analyses in two independent AoU 
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data sets confirmed the consistency of these associations, underscoring the robustness of our results. 

This study not only highlights the genetic predispositions linked to TRD—it also demonstrates the 

complex interplay of traits affecting the development of TRD, emphasizing the need for tailored 

intervention strategies to manage TRD effectively. 

Our study found that genetic propensity for psychiatric conditions had no discriminative power 

to differentiate between individuals resistant to treatment and those responsive to treatment for MDD. 

This finding echo results from a similar study conducted with UK samples, where—despite a substantial 

sample size—no significant associations were found between TRD and PGS of psychiatric traits 25. This 

suggests that the higher levels of comorbidities observed in conditions like anxiety, stress, and psychotic 

disorders among treatment-resistant patients are not simply due to misclassification or shared etiological 

factors across different diagnoses. Rather, these comorbidities likely reflect the greater severity of 

depressive symptoms in patients who develop treatment resistance, underscoring the complexity of 

diagnosing and treating these severe forms of depression. 

We found associations between metrics of neuroticism and TRD. Neuroticism is a personality 

trait that reflects a tendency to experience negative emotions 54, such as anxiety, depression, anger, and 

fear, in response to stressors or challenges 55. Neuroticism is approximately 40% 56 heritable, and high 

levels of neuroticism have been associated with many poor mental health outcomes 57. While 

neuroticism has been reported to be associated with TRD, the associations at the phenotypic level are not 

universally observed and mostly attributed to the diagnosis of MDD 15,16. Our results highlight the 

significant role neuroticism plays in both the onset and treatment resistance of MDD. Notably, strong 

associations with TRD in our result support that specific subtypes of neuroticism, such as the depressive 

affect cluster, have been linked to more severe progression of MDD 25,58-65. This underscores the shared 

genetic components between the depressive tendencies as a personality trait and the severity of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.24309914doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309914
http://creativecommons.org/licenses/by-nc-nd/4.0/


depressive symptoms as a treatment outcome. The genetic overlap between neuroticism and other 

psychiatric conditions41,64-66 highlights the need for a transdiagnostic approach to understanding and 

treating TRD.  

In addition to the genetic pleiotropy on the depressed affects and depressive symptoms, it is also 

possible that high neuroticism scores correlate with poorer treatment response and greater treatment 

resistance are mediated by cognitive impairments such as reduced cognitive flexibility. Neuroticism, 

characterized by a higher sensitivity to negative stimuli 67, a propensity for rumination 68, and a reduced 

ability to regulate emotions 69, is deeply intertwined with cognitive and social processes that exacerbate 

depressive disorders. Neuroticism could be a key factor in not only the manifestation of MDD but also 

in its resistance to conventional treatments, making it a critical target for intervention strategies. 

Furthermore, we also found PGS for educational attainment exhibits the strongest association with TRD 

status compared to other traits analyzed, with a weaker but consistent association in PGS for cognitive 

function. Such findings align with previous studies 15,16,70,71  that have noted phenotypic associations 

between higher education levels and reduced TRD risk, suggesting that these associations may have a 

shared genetic foundation potentially influenced by limited options in decision-making processes. This 

could explain why individuals with lower educational levels and reduced cognitive functions might 

experience poorer adherence to medication regimens 72,73, potentially leading to more frequent changes 

in antidepressant treatments. The evidence highlights the importance of considering cognitive factors in 

the management and understanding of TRD, emphasizing the need for further investigation into how 

these genetic predispositions impact treatment outcomes and resistance. 

Our findings show that insomnia, rather than sleep chronotype, is significantly associated with 

the risk of TRD. Sleep disturbances are deeply intertwined with the depressive symptoms and have been 

a key feature among patients with TRD 31,74,75. While there are evidence supporting the notion that 
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treating insomnia could alleviate depressive symptoms 75, pharmacological intervention with 

benzodiazepine is deemed to be inadequate or even harmful to patients with TRD 74,76. The association 

between PGS for insomnia and TRD in our results may be driven by a shared etiological mechanism 

between those two. This might explain why direct pharmacological boost to the sleep itself did not 

benefit patients whereas psychotropic agent, such as ketamine, can ameliorate both the depressive 

symptoms and sleep disturbance among patients with TRD simultaneously 77. Nonetheless, given that 

genetic propensities toward insomnia is associated with accelerated progression rate from MDD to TRD, 

we should still consider incorporating comprehensive insomnia management into the therapeutic 

strategies for MDD. Addressing insomnia may not only target a key symptom of depression but also 

enhances overall treatment efficacy, preventing the emergence of treatment resistance. 

Our study has limitations. The TRD status is determined by algorithm using EHR for drug events. 

We did not have dimensional measures on the depressive symptoms, treatment information other than 

drug prescriptions, and the actual adherence among patients. Those factors might lead to 

misclassifications between TRD and trMDD, blurring the diagnostic boundaries and reducing the 

statistical power to detect associations in TRD-vs-trMDD. Our estimates on the prevalence of TRD are 

consistent with the expected rates in national surveys 4 and we still found eleven PGS significantly 

associated with TRD status, indicating limited impact of the potential misclassifications. The statistical 

power of the PGS vary because of the differences in the sample size, training populations, and the 

genetic architecture of the phenotypic traits 24,78. The comparisons across PGS are not solely driven by 

the relationships between the traits of the PGS and TRD status. However, the PGS of psychiatric 

disorders that have higher heritability, and larger GWAS sample size do not show significant 

associations in our results, suggesting our results are not completely driven by the differences in the 

original GWAS. Finally, PGS captures genetic propensity, which does not fully determine the actual 
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exposure histories to the environment, such as early life adversity that is known to have a substantial, 

and often larger, contribution to mental health outcomes 17,18,20. This may explain why the PGS for CRP 

did not differentiate the treatment responsiveness in our result despite evidence on the role of stress in 

the etiology of depressive symptoms 20,79. Since we did not actually measure the stress or inflammatory 

markers, it is possible that the actual experience of the inflammatory inducing events is more important 

than the physical predispositions toward inflammation in the genesis of TRD. Our findings should be 

interpreted as, after mitigating the potential bias and confounds based on the genetic instruments, the 

cognitive functions, neuroticism, general affect, and sleep disturbance play a more salient role in the 

treatment efficacy than the other conditions we included, implicating a clinical path forward to obtaining 

treatment responses among patients with MDD. 

In conclusion, this comprehensive investigation into the etiology of TRD via the analysis of 

polygenic scores across diverse traits has brought to light several genetic factors that may influence the 

development and management of TRD. Our findings indicate strong genetic associations with traits such 

as tenseness, unenthusiasm, depressed mood, and lethargy—suggesting their potential as determinants 

for predicting TRD risk. Moreover, the negative associations observed with traits related to higher 

educational attainment and general intelligence point to potential protective factors, underscoring the 

complexity of TRD's genetic landscape. The consistency of these findings across independent data sets 

enhances the robustness of our conclusions.  Moreover, the correlation between high levels of 

neuroticism and TRD suggests that personality traits significantly contribute to the severity of 

depression. Importantly, the identification of insomnia as a treatable risk factor offers a viable pathway 

for clinical intervention. These insights not only advance our understanding of the genetic underpinnings 

of TRD, but also highlight critical areas for future research and potential therapeutic targets, ultimately 

aiming to improve treatment strategies and outcomes for those suffering from this challenging condition. 
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 Figure 1. Associations between PGS and diagnostic status. (a) The scatter plots show the overall 

effect sizes of every included PGS, with the corresponding 95% confidence intervals. X-axis represents 

the odds ratios (OR) in comparing trMDD to non-MDD groups, for every increase one standard 

deviation of PGS. Y-axis represents the OR in comparing TRD to non-MDD groups, for every increase 

one standard deviation of PGS. PGS that show significant odds ratios in being TRD-vs-trMDD, after 

Bonferroni correction, are highlighted in solid colors. (b) The distribution of the odds ratios in the 

domains where individual PGS show significant stronger associations with TRD status than with trMDD. 

Figure 2. Progression rates of TRD from the first MDD diagnosis. (a) Kaplan-Meier curve of 

progression from MDD to TRD, stratified by the PGS of education attainment (PGSedu). Individuals 

were grouped by their PGS, as 0 to 20 percentile, 20 to 80 percentile, and 80 to 100 percentile. (b). 

Hazard ratios and the corresponding 95% confidence interval given PGS strata, estimated by Cox 

regression model, controlling for sex, age at diagnosis, and first 16 genetic PCs. 
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Table 1. Demographic characteristics table. 

  WGS, European set WGS, Diversity set Microarray 

 non-MDD trMDD TRD non-MDD trMDD  TRD non-MDD trMDD  TRD 

(N=104128) (N=16640) (N=4177) (N=93881) (N=8578) (N=1929) (N=55801) (N=6106) (N=1423) 

Sex          

Female 59921 (57.5%) 11554 (69.4%) 2975 (71.2%) 55820 (59.5%) 6386 (74.4%) 1492 (77.3%) 32633 (58.5%) 4207 (68.9%) 993 (69.8%) 

Male 44207 (42.5%) 5086 (30.6%) 1202 (28.8%) 38061 (40.5%) 2192 (25.6%) 437 (22.7%) 23168 (41.5%) 1899 (31.1%) 430 (30.2%) 

Birth Year          

Median (Min, Max) 1961  
(1905, 2004) 

1960  
(1918, 2003) 

1962  
(1926, 2003) 

1972  
(1915, 2004) 

1966  
(1923, 2003) 

1966  
(1930, 2002) 

1966  
(1901, 2004) 

1962  
(1921, 2004) 

1965 
 (1924, 2001) 

Self-report Race          

Asian 30 (0.0%) 6 (0.0%) 0 (0%) 6975 (7.4%) 338 (3.9%) 63 (3.3%) 2096 (3.8%) 64 (1.0%) 14 (1.0%) 

Black or African American 89 (0.1%) 17 (0.1%) 3 (0.1%) 43226 (46.0%) 3852 (44.9%) 961 (49.8%) 10599 (19.0%) 1058 (17.3%) 289 (20.3%) 

Middle Eastern or North African 451 (0.4%) 45 (0.3%) 10 (0.2%) 724 (0.8%) 65 (0.8%) 20 (1.0%) 395 (0.7%) 31 (0.5%) 7 (0.5%) 

Native Hawaiian or Other Pacific 
Islander 

22 (0.0%) 1 (0.0%) 0 (0%) 198 (0.2%) 18 (0.2%) 3 (0.2%) 88 (0.2%) 5 (0.1%) 0 (0%) 

Others 2188 (2.1%) 333 (2.0%) 82 (2.0%) 3320 (3.5%) 361 (4.2%) 87 (4.5%) 1593 (2.9%) 185 (3.0%) 54 (3.8%) 

White 98730 (94.8%) 15820 (95.1%) 3975 (95.2%) 3690 (3.9%) 389 (4.5%) 81 (4.2%) 30781 (55.2%) 3816 (62.5%) 877 (61.6%) 

Missing 2618 (2.5%) 418 (2.5%) 107 (2.6%) 35748 (38.1%) 3555 (41.4%) 714 (37.0%) 10249 (18.4%) 947 (15.5%) 182 (12.8%) 

Self-report Ethnicity          

Hispanic or Latino 1598 (1.5%) 181 (1.1%) 41 (1.0%) 37846 (40.3%) 3835 (44.7%) 751 (38.9%) 10584 (19.0%) 945 (15.5%) 179 (12.6%) 

Not Hispanic or Latino 99913 (96.0%) 15981 (96.0%) 4013 (96.1%) 53252 (56.7%) 4487 (52.3%) 1115 (57.8%) 43723 (78.4%) 4982 (81.6%) 1187 (83.4%) 

Others 884 (0.8%) 161 (1.0%) 37 (0.9%) 1108 (1.2%) 122 (1.4%) 27 (1.4%) 564 (1.0%) 61 (1.0%) 25 (1.8%) 

Missing 1733 (1.7%) 317 (1.9%) 86 (2.1%) 1675 (1.8%) 134 (1.6%) 36 (1.9%) 930 (1.7%) 118 (1.9%) 32 (2.2%) 

* non-MDD, individuals who did not have formal diagnosis of Major Depressive Disorder in record; trMDD, treatment responsive 

Major Depressive Disorder; TRD, treatment resistant depression.  

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted July 5, 2024. 

; 
https://doi.org/10.1101/2024.07.03.24309914

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.07.03.24309914
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.24309914doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309914
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.24309914doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309914
http://creativecommons.org/licenses/by-nc-nd/4.0/

