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Epidemiologists are careful to describe their findings as “associations”, and to avoid any
causal language or claims. Arguably, this attempt to avoid reference to causal processes has
become counterproductive. Explicitly stated or not, assumptions about causal processes are
inherent in the formulation and interpretation of any statistical study. This article offers
a bridge between established, extensively developed proportional hazard methods that are
used to study longitudinal observational cohort data, and results for causal inference. In
particular, it considers the burden of disease that would not have occurred, but for an ex-
posure such as smoking. It shows how this “probability of necessity”, relates to population
attributable fractions, and how these quantities along with their confidence intervals, can be
estimated using conventional proportional hazard estimates. The example may often apply
to cohort studies that consider disease-risk in the absence of prior disease. More generally,
equivalent estimates can often be constructed when there is sufficient understanding to pos-
tulate a model for the causal relationship between exposures, confounders, and disease-risk,
as summarised in a directed acyclic graph (DAG).

1 Causal assumptions are necessary for designing and interpreting an analysis

Concerns about reporting epidemiological data without clearly stated causal assumptions have
been raised before [1, 2], with authors emphasising that results risk being misinterpreted. This has
been referred to as the “Table 2” fallacy [1], because statistical associations are typically reported in
table 2 of most epidemiological articles. Associations are often reported without a clear distinction
between estimates that are intended to describe causal associations, and those that are used for
adjustment, whose causal interpretations are often unclear. A clear statement of causal assumptions
has several important advantages. Most obviously it helps the reader, who can assess and interpret
studies from the perspective of the author. But there is another benefit, that a causal diagram allows
a far broader range of inferences to be made using new results for causal inference [3, 4].

In contrast to observational epidemiology, it is standard practice for Mendelian Randomisation
studies to report the assumed causal structure as a directed acyclic graph (DAG) [5]. It is helpful
to compare the two approaches. For observational studies, epidemiologists delve into the litera-
ture and try to ascertain a picture of risk-modifying factors and the relationships between them.
This informs their statistical analysis and its interpretation, but much of that is done implicitly
without stating any assumed causal relationships needed for causal interpretation of the results.
In Mendelian Randomisation studies (MR), epidemiologists search for biological reasons to select
genetic variants that are likely to modify disease risk solely through the exposure that they are
interested in (“instrumental variables” [5]). However, in MR studies epidemiologists state their
assumed causal diagram for the relationships between genetic variants, exposures, confounders,
and disease. This makes the assumptions clear, making it easier to identify when they fail, and
helping to clarify how results should be interpreted.
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2 Causal assumptions, allow causal inferences

The process of formulating a causal hypothesis such as a DAG, is familiar to a theoretical physicist
- you state the assumptions in your physical model and then make your deductions. If the assump-
tions need modifying then the model is changed, and your deductions are updated. Whether stated
explicitly or not, observational epidemiology relies on causal relationships to plan and interpret
statistical analyses. Once these working hypotheses are stated then deductions can be made us-
ing mathematical methods, in a similar way to Mendelian Randomisation or theoretical physics. A
DAG then allows methods for causal inference to tackle questions that would otherwise be inacces-
sible. For example, you can ask the following questions regarding risks associated with smoking
[3, 4]:

1. If everyone in the population stops smoking, how much will disease incidence change?

This question is associated with population health, and involves measures such as population
attributable fraction (PAF), excess fraction, and average causal effect (ACE).

2. If you stopped smoking, how much will your disease risk change?

This question is related to your individual health, and involves measures such as the effect of
treatment on the treated (ETT).

3. Given that you died from lung cancer, how likely would this have been if you had not
smoked?

This question is familiar in legal contexts, where it translates as the probability an event would
not occur, but for the defendant’s actions, and is often referred to as the probability of necessity
(PN).

Although these questions can often be precisely defined, and their analysis usually leads to
distinctly different quantities, there are relationships between them [3, 4]. In particular, this ar-
ticle considers the relationship between probability of necessity (PN), and a recently developed
population attributable fraction (Af ) that was intended to account for confounding with measured
confounding factors [6]. It is shown that when studying exposures that can solely increase disease
risk, an assumption known as “monotonicity” [3], then PN is proportional to Af . Furthermore,
it was previously shown how Af can be evaluated for a conventional longitudinal study with a
proportional hazard estimate of relative risks, making Af comparatively easy to evaluate. The next
section considers PN, attributable fractions, and the relationship between them.

3 Probability of necessity and attributable fractions

The probability of necessity is intended to estimate the probability that a disease would not have
occurred, but for the exposure (such as smoking), having occurred. For completeness, the formal
definition in terms of counterfactual notation is given below,

PN = P (Yx = ȳx̄|X = x, Y = y) (1)

where X is a binary risk factor such as smoking status, that can take values X = 1 or X = 0, Y
is the disease status that with y true corresponds to disease having occurred by age t and Y = ȳ

2

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.24309898doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309898


X Y

Z
𝑒𝛽𝑧

𝑒𝛽𝑥

𝑝𝑥|𝑧

𝑝𝑥| ҧ𝑧

Figure 1: A simple DAG is considered, that may often be a reasonable or implicit assumption for
an observational study. Relative risks are indicated by eβz and eβx respectively, and we also specify
the relative risk of exposure X = 1 given Z = 1, compared with Z = 0. Simulated data are created
using px, pz, and the relative risks px|z/px|z̄, eβz , and eβx , (as detailed in Appendices A and B).

(false) if it has not. The bar in e.g. ȳ is used to indicate its negation from true to false, or “not” y,
and the subscripted Yx indicates a “counterfactual” scenario where X is taking the specific value
X = x. The interpretation and analysis of these types of expressions takes some practice, but here
we can quote and use established results. In particular, if we consider diseases where an exposure
such as smoking can only increase risk (an assumption that is referred to as “monotonicity”), then
PN becomes [3, 4],

PN =
P (Y = y)− P (Yx̄ = yx̄)

P (X = x, Y = y)
(2)

where x̄ corresponds to X = 0 (false), and x to X = 1 (true). This may be written as,

PN =

(
P (Y = y)− P (Yx̄ = yx̄)

P (Y = y)

)
1

P (X = x|Y = y)
(3)

The first term on the right-side is identical to the population attributable fraction Af defined and
studied by Webster [6]. This makes sense. The attributable fraction Af was intended to describe
the proportion of disease that could be avoided in a population if the exposure did not occur, and
is important for prioritising public health initiatives. Rearranging terms in Eq. 3 we can write,

Af = P (X = x|Y = y)× PN (4)

meaning that Af will be small unless both PN and the proportion of people with the disease who
have been exposed P (X = x|Y = y), are both reasonably large. Arguably, from a public health
perspective, it is more important to identify exposures that have the greatest overall impact on the
population.

Despite the potential usefulness of PN and Af for characterising the avoidable diseases that are
caused by exposures such as smoking, they are rarely reported by analyses of observational cohort
studies. This may be because they are not yet widely known and understood, but is also because
there are no established methods to calculate them. However for a simple but widely assumed
DAG (figure 1), it was recently shown how Af can be estimated using conventional proportional
hazards analyses, leading to,

Af ≃ 1−
∑n

i=1 e
βT
z Zi∑n

i=1 e
βxXi+βT

z Zi
(5)

where x̄ was denoted by X = 0. Eq. 5 allows PN to be estimated from Af , provided that
P (X = x|Y = y) can be adequately estimated from the proportion of people with the disease
who have been exposed (e.g. to smoking). In Eq. 5, βz is a vector of parameters to adjust for all
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risk and confounding factors, other than X , and the sum over i includes all n individuals in the
cohort being studied. Note that correlations between the risk factors Xi and other parameters Zi,
are captured in the denominator of Eq. 5. The analysis assumes:

1. Causal model: Eq. 5 was calculated for the simple causal diagram in figure 1 with exposures
X , and confounders Z that modify the probability of both X and disease Y .

More generally, given a causal diagram, it is expected that established methods from the causal
inference literature [3, 4] can be combined with the approximations outlined here to calculate
analogous expressions.

2. Low disease risk: For most diseases in most people without pre-existing disease, disease risk
is very small for an average UK lifespan of approximately 81 years [6, 7].

This surprisingly little-known fact about disease risk [6, 7], allows cumulative density functions
and probability density functions to be approximated by the cumulative hazard [8] and hazard
function [8] respectively. This greatly simplifies the analysis by removing the age dependence
from the attributable fraction Af (and consequently also for PN). Alternately, Af can be regarded
as exact, but defined in the theoretical limit of small enough age [6].

3. Statistical model: The proportional hazards analysis must model the data sufficiently well,
and adjust for all relevant parameters.

4. There is a sufficiently large cohort size n, with sufficient numbers in each category to allow
integrals to be approximated by sums over individuals in the data [6].

The assumptions above are explored further later. In addition, Eq. 2 is limited to:

5. Binary exposures that increase risk (“monotonicity”).

For example, if assessing the influence of smoking on COPD, we would assume that if a non-
smoker developed COPD, then they would have also developed COPD if they had smoked. With
greater expertise a more general range of questions can be tackled, and results can be used that
allow some assumptions to be relaxed. However the examples above already allow estimates for a
substantial number of important diseases and exposures such as smoking [6].

4 Confidence intervals and estimate accuracy

The approximation of integrals with sums is justified by the law of large numbers [9], and will be
reasonable for large cohorts such as UK Biobank [10], provided categorical variables have reason-
ably balanced proportions of people in each category. Because of the central limit theorem, Eq. 5
for Af , involves a ratio of normally distributed variables whose variances tend to zero as n → ∞.
Because the means of the numerator and denominator are non-zero, and their variances tend to zero
with n → ∞, then as explained more fully in Appendix C, Eq. 5 will have a normal distribution for
sufficiently large n. This and the finite variance of the estimate allow the approximation’s accuracy
to be assessed with bootstrap sampling [9]. The procedure for a statistic S({Xi, Zi}) of the data, is
to sample with replacement n individuals from a dataset of size n, calculate the sum S({Xi, Zi}),
repeat this B times and estimate the variance from, vboot = (1/B)

∑
j(Sj − (1/B)

∑
k Sk)

2, where
Sj is the value of the sum using the jth sample [9]. For the examples in this article, B = 500.
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Figure 2: Af can be exactly calculated for simulated data (Appendices A and B), allowing P (X =
x|Y = 1) and the probability of necessity PN to be estimated using Eq. 4 and the data. As the
cohort’s median age increases, Eq. 5’s approximation for Af starts to fail. Reassuringly however,
the exact value remains within the 95% confidence intervals for ages greater than the median UK
life expectancy (79 and 83 years for men and women in born in 2018-2020).

Appendices A and B show how realistic cohort data can be simulated for a DAG corresponding
to figure 1, and how the attributable fractions can be exactly calculated. This allows the method
to be tested. Figure 2 compares the estimated and exact Af , and PN , versus the median age in
the cohort. The method is expected to fail for high median ages, but remains good for ages ∼ 80
years, which is similar to the average UK life expectancy. Therefore the estimates are expected
to be reasonable for typical UK cohorts. Further simulations with 1 and 2 million individuals
(Appendix E), found very similar results.

Figures 3 and 4 compare estimated and exact Af and PN for a simulated range of data gen-
erated by a causal process described by figure 1. The results are also listed in Table 1. Details of
how the data were generated are in appendices A and B, and involve a similar type of cohort to UK
Biobank, with a similar number of ∼ 500, 000 individuals. The examples start with “No effects”
with relative risks of eβx = 1 and eβz = 1, with “Exposure” or “confounding” corresponding to
eβx = 2 or eβz = 2 respectively, and “Strong exposure” or “strong confounding” corresponding
to eβx = 3 or eβz = 3 respectively. Exact and estimated attributable fractions Af and PN are
compared in figures 3 and 4, for all combinations of eβx and eβz in {1, 2, and 3}. The exact Af is
comfortably within the 95% confidence intervals, and although there is slightly more variation of
estimates for PN , all but ”Exposure only” have values within the confidence intervals.

5 Other attributable fractions

At least two other attributable fractions are often discussed, and are briefly considered here. The
excess risk ratio (ERR) [3, 4], is defined as,

ERR =
P (Y = y|X = x)− P (Y = y|X = x̄)

P (Y = y|X = x)
(6)
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Figure 3: Simulated data for ≃ 500,000 individuals were created for scenarios with relative risks
of eβx = 1, 2, 3 (”no exposure” to ”strong exposure”), and eβz = 1, 2, 3 (”no confounding” to
”strong confounding”). Eq. 5 was used to estimate Af , with confidence intervals estimated using
the bootstrap (see text for details).
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Figure 4: Simulated data for ≃ 500,000 individuals were created for scenarios with relative risks of
eβx = 1, 2, 3 (”no exposure” to ”strong exposure”), and eβz = 1, 2, 3 (”no confounding” to ”strong
confounding”). Eq. 5 was used to estimate Af and (subsequently) PN , with confidence intervals
estimated using the bootstrap (see text for details).
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Appendix D shows how this can be estimated in a similar way to Af , leading to,

ERR ≃ 1−
1
nx̄

∑
i:Xi=x̄ e

βT
z Zi

1
nx

∑
i:Xi=x e

βT
z Zi+βx

(7)

where as for Eq. 5, x is denoted by 1 and x̄ is denoted by 0, so that βxx equals βx and βxx̄ equals
0. There are important differences between ERR and Af . For ERR the sums are over subsets of
the population that have Xi = x and Xi = x̄ respectively, and in the denominator for ERR Xi = 1
whereas in the denominator of Af there is a sum over all Xi (that can have both Xi = 0 and
Xi = 1). Similarly to the approximations for Af , Eq. 7 is approximately equal to Eq. 6 for most
of the lifetime of most people in the UK, or can alternately be regarded as a definition of ERR for
a sufficiently young and healthy population with no pre-existing diseases (that could modify risk
of the disease being studied).

Another commonly seen attributable fraction for a risk factor x with relative risk eβx , is,

ARR = 1− 1

eβx
(8)

ARR is proportional to the difference in probability of an individual getting a disease when ex-
posed, compared to not exposed, when subject to the same confounding factors [6]. This factor is
analogous to the effect of treatment on the treated (ETT) [3, 4, 6], but now “treatment” is an expo-
sure that increases risk, and we measure how much the risk is increased (as opposed to decreased).
This is more relevant for individual risk, but its interpretation as an attributable fraction is unclear
when dealing with an individual, as opposed to a population.

Although widely discussed, the greatest limitation of ERR is that it does not have a causal
interpretation (except in terms of other quantities [3, 4]). For the examples listed in Table 1, ERR
has values that are very different to the other causally interpretable quantities, so it does not in
general provide a reliable estimate for any of those. As discussed elsewhere [6], and described
above, ARR has a causal interpretation that is related to ETT and an individual’s increased disease
risk. In the examples considered here, ARR had similar values to PN.

6 Which attributable fraction should you report?

Whether to report an attributable fraction, a relative risk, a probability of necessity, or some other
causally meaningful quantity, depends on what you are intending to quantify. It might be that
several of these might be reported together, because they each characterise different aspects of an
exposure’s impact on disease risk. To help with this, several quantities are summarised below:

RR : The estimated hazard of disease in an exposed individual, relative to someone that is not
exposed. This is approximately equal to the ratio of probability for disease in an exposed,
compared with the unexposed [6, 7].

Af : The proportion of disease that occurs in the population being studied (typically a cohort),
that could have been prevented if all the population had avoided the exposure. This is a
factor P (X = 1|Y = 1) smaller than PN, because disease incidence can only be reduced for
the proportion of the population that are exposed.

PN: The probability that a disease would not have occurred, but for the exposure [3, 4]. For the
examples in table 1, this increased with greater relative risks of the exposure or confounding
factors associated with increased exposure (see figure 4 and table 1).
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ERR: Does not have a causal interpretation, except in terms of other quantities [3, 4]. For the ex-
amples in table 1, its values usually differed from the other causally interpretable quantities,
so it would not in general provide an approximation for them.

ARR: The probability of an individual getting a disease when exposed, relative to someone without
the exposure, but with the same confounding factors. It has a causal interpretation that is
analogous to effect of treatment on the treated [6], but its interpretation as an attributable
fraction is unclear because it refers to an individual, not a population. For the examples
in table 1, it shows a similar trend to PN, but with smaller estimates when confounding is
present.

7 Limitations of directed acyclic graphs (DAGs)

Despite the many advocates for a greater use of DAGs in epidemiology [1–4, 12], several authors
have cautioned against over-reliance on them, highlighting important examples where their value
is limited [13, 14]. For example, what DAG should you formulate when considering the influence
of BMI on ill health? It may differ depending on whether you are interested in understanding the
biologically-mediated causes of ill health, or the underlying societal issues that lead to higher BMI
[14]. This and other examples highlight the limitations of formal causal reasoning, and suggest that
causal methods should be regarded as tools to provide insights, similar to how a physicist explores
the physical world using mathematical models.

An important purpose of this article is to highlight opportunities that arise from causal as-
sumptions that are often made in the course of many epidemiological studies. The notion of using
the best available information to form a model, and then exploring its predictions, is a legitimate
and established mode of study in the physical sciences. It is similar to “inference to the best ex-
planation” [14], where a DAG may represent our best understanding, and subsequently allows a
more nuanced interrogation of the data. DAGs and causal inference are valuable tools, but causal
understanding emerges from a body of evidence arising from several distinct sources [15, 16].
The approach is familiar to physicists, where a theoretical model is formulated, its consequences
explored, and the model revised when new data make it necessary to do so.

8 Summary and conclusions

It has become standard practice for observational studies to report relative risks [11], most com-
monly calculated with proportional hazards methods. There is considerable experience with these
widely used methods, that are thought to produce reliable results that can be reproduced in differ-
ent cohorts. However the reporting of studies using them (and other methods), have been criticised
for failing to identify which parameters are risk factors or confounders, or the causal relationships
that have been assumed to hold between them [1, 2]. This is unlike Mendelian Randomisation,
in which a DAG is used to indicate causal relationships. However, whether causal modelling as-
sumptions are explicit or not, they are necessary for formulating and interpreting the results of a
statistical analysis [1]. When stated explicitly in the form of a DAG, a causal diagram clarifies
assumptions for the reader, but also allows a broader range of methods from causal inference to
be used, similar to how a theoretical physicist will state a model and then make deductions. This
allows a much wider range of causally meaningful quantities to be calculated, such as population
attributable fractions and the probability of necessity. These offer valuable alternative character-
isations of an exposure’s influence on a population or individual, that ideally would be regularly
reported.
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The approach is illustrated for scenarios with the DAG in figure 1, for which it is shown how
attributable fractions and the probability of necessity can be estimated using conventional propor-
tional hazards methods. This allows decades of experience that epidemiologists have gained with
using proportional hazards, to be used for the accurate calculation of these alternative measures of
risk. The estimates were found to be reliable for the wide range of simulated data that were consid-
ered, that were designed to be similar to that expected for common diseases in cohorts such as UK
Biobank. More generally, for studies where a DAG can be formulated with reasonable confidence,
it is expected that the approach can be applied using methods from causal inference [3, 4], leading
to similar but modified versions of Eq. 5. In future, epidemiologists will become more familiar
with causal quantities such as PN, and with using methods from causal inference to formulate esti-
mates. This will allow a wider range of questions to be tackled and provide alternative measures of
risk, improving our understanding of the causes of diseases and the consequences of interventions.
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A Example - Exact values for PN and Af

Using x̄ to denote the negation of x, Eqs. 3 and 4 give,

Af =
P (Y = y)− P (Yx̄ = yx̄)

P (Y = y)
(9)

That for the example DAG of figure 1, the adjustment formula [3, 4] can be used to write it as,

Af = 1− P (Y=y|do(X=x̄))∑
x,z P (Y=y|X=x,Z=z)P (X=x,Z=z)

= 1−
∑

z P (Y=y|X=x̄,Z=z)P (Z=z)∑
x,z P (Y=y|X=x,Z=z)P (X=x|Z=z)P (Z=z)

(10)

To simplify the notation, let,

py|x,z = P (Y = y|X = x, Z = z)
px|z = P (X = x|Z = z)
pz = P (Z = z)

(11)

with equivalent expressions for negations of x, so that if x replaces x̄ then px is replaced by px̄ =
P (X = x̄). Then,

Af = 1−
py|x̄,zpz + py|x̄,z̄pz̄

py|x,zpx|zpz + py|x̄,zpx̄|zpz + py|x,z̄px|z̄pz̄ + py|x̄,z̄px̄|z̄pz̄
(12)

Noting that px̄,z = (1 − px|z) and py|x,z = eβxeβzH0(t) where H0(t) is the cumulative baseline
hazard function, and similarly for the other terms, then,

Af = 1− eβzpz + (1− pz)

eβxeβzpx|zpz + eβz(1− px|z)pz + eβxpx|z̄(1− pz) + (1− px|z̄)(1− pz)
(13)
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where the factors of H0(t) have cancelled in the fraction. Therefore, specifying the relative risks
eβx and eβz , and px|z, px|z̄, px, pz, determines Af . Note that if eβx = eβz = 1, then Af = 0, as it
should do. Hence we can simulate data using eβx , eβz , px|z, px|z̄, px, and pz, and test the estimate
of Eq. 5 by comparing it with the exact value given by 13.

In practice we only need to specify eβx , eβz , px, pz, and the relative risk px|z̄/px|z. To see why,
note that,

px = px,z + px,z̄
= px|zpz + px|z̄(1− pz)

= px|z

(
pz + (1− pz)

px|z̄
px|z

) (14)

giving,
px|z =

px

pz + (1− pz)
px|z̄
px|z

(15)

Similarly, we can rearrange,
px = px|zpz + px|z̄(1− pz) (16)

to give,

px|z̄ =
px − px|zpz
1− pz

(17)

with px|z evaluated using Eq. 15.

B Simulated data

Consider the simplified DAG of figure 1, with exposures X and confounders Z. For this example
we will consider X as smoking status of yes or no, and Z as whether you live in a city or the
country. The example is intended to test the statistical approach, and not necessarily to represent a
real situation. Data are simulated by:

1. Specify the size n of the simulated dataset.

2. Specify pz and the desired px, and simulate whether each individual lives in the city (z) or
country (z̄).

3. Specify the relative risk px|z̄/px|z for smoking status if you are not in a city, compared with
if you are.

4. Using px|z and px|z̄ from Eqs. 15 and 17, simulate whether individuals smoke, given their
city residence status.

5. Simulate the age of joining the cohort, here taking a minimum age of 45 plus a random
number of years in (0, 20).

6. Simulate their age at the end of the study period, as their age at the study start plus 10, plus
a random number of years in (0, 15).

7. Using smoking and membership status as risk factors with specified relative risks eβx and
eβz , simulate an age of disease onset using a Weibul model with scale factor 130 and shape
factor 8 (chosen to give similar disease incidence to a common disease).
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8. If the age of disease is before the study period starts or within 1-year of the study start,
exclude the data to simulate the process of trying to reduce the (hypothetical) risk that a
person joined the study due to having disease. If the disease onset is after the end of the
study period then censor.

This now provides a data set with ages tstart, tend, and status (censor or not), plus smoking status
and city membership. The simulated data can then be fit with a proportional hazards model (the
Weibull distribution is a specific type of proportional hazards model), and the estimates compared
with the known relative risks and attributable fraction given by Eq. 13. Table 1 provides compar-
isons between the estimated and actual relative risks and attributable fractions. In the examples,

pz = 0.4
px = 0.1

(18)

so that the probability of an exposure will be about 10%, and the probability of Z = 1 is slightly
less than Z = 0 (approximately 40%). The probability of X = 1 if Z = 0 was taken to be a factor
0.25 smaller than the probability of X = 1 if Z = 1, with,

px|z̄/px|z = 0.25 (19)

giving the probability of an exposure approximately 4 times greater if Z = 1. The relative risks
took values of,

eβx = {1, 2, 3}
eβz = {1, 2, 3} (20)

C Af has a normal distribution

Eq. 5 involves the ratio,
1
n

∑n
i=1 e

βzZi

1
n

∑n
i=1 e

βzZi+βxXi
(21)

The expectation and variance of the numerator are E[eβzZ ] and (1/n)V ar[eβzZ ] respectively, and
for the denominator E[eβzZ+βxX ] and (1/n)V ar[eβzZ+βxX ]. By the central limit theorem, the
numerator and denominator are normally distributed, with expectation and variance as given. If the
means were zero then the ratio would have a Cauchy distribution, however because the variances
tend to zero as n → ∞ and their means are positive and non-zero, then the ratio will tend to a
normal distribution [17], with,

1
n

∑n
i=1 e

βzZi

1
n

∑n
i=1 e

βzZi+βxXi
∼ N

(
E[eβzZ ]

E[eβzZ+βxX ]
,

V ar(eβzZ)

nE[eβzZ+βxX ]2
+

V ar(eβzZ+βxX)

nE[eβzZ ]2

)
(22)

D The excess risk ratio (ERR)

Another form of attributable fraction is the excess risk ratio (ERR) [3, 4], defined as,

ERR =
P (Y = y|X = x)− P (Y = y|X = x̄)

P (Y = y|X = x)
(23)

This can be estimated in a similar way to Af .

Recall that y true implicitly corresponds to the statement that disease has occurred by an age
less than t, and y false is that disease has not yet occurred by age t. Then as in the derivation of
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Eq. 5 for Af [6], P (Y = Y |Z = z,X = x) = F (t; z, x), where F (t; z, x) is the cumulative distri-
bution function for disease by age t, and we make the assumption 2, that this can be approximated
with a proportional hazards model with H(t; z, x) = H0(t)e

βT
z z+βxx. Then to approximate Eq. 23

with Eq. 26, we write,

P (Y = y|X = x)
=

∫
dzP (Y = y, Z = z|X = x)

=
∫
dzP (Y = Y |Z = z,X = x)P (Z = z|X = x)

≃ H0(t)
∫
dzeβ

T
z Z+βxXP (Z = z|X = x)

≃ H0(t)
1
nx

∑
i:Xi=x e

βT
z Zi+βxx

(24)

where the 3rd line takes P (Y = Y |Z = z,X = x) = F (t; z, x) ≃ H(t; z, x) = H0(t)e
βT
z z+βxx,

and as before [6] it is assumed there are sufficient data to be able to approximate the integral with
a sum over the data in the population (assumption 4). Note that the last line has denoted x true as
x = 1, and that the sum is over the subset of individuals for which x is true. The number of data
with X = x, and X = x̄, are denoted by nx and nx̄ respectively. Similarly,

P (Y = y|X = x̄) ≃ H0(t)
1
nx̄

∑
i:Xi=x̄ e

βT
z Zi (25)

where now x is false is denoted as x = 0, and the sum is over all individuals for which x is false.
Using Eq. 6 along with Eqs 24 and 25, gives,

ERR ≃ 1−
1
nx̄

∑
i:Xi=x̄ e

βT
z Zi

1
nx

∑
i:Xi=x e

βT
z Zi+βx

(26)

where as for Eq. 5, x is denoted by 1 and x̄ is denoted by 0, so that βxx equals βx and βxx̄ equals
0. There are important differences between ERR and Af . For ERR the sums are over subsets of
the population that have Xi = x and Xi = x̄ respectively, and in the denominator for ERR Xi = 1
whereas in the denominator of Af there is a sum over all Xi (that can have both Xi = 0 and
Xi = 1). Similarly to the approximations for Af , Eq. 7 is approximately equal to Eq. 6 for most
of the lifetime of most people in the UK, or can alternately be regarded as a definition of ERR for
a sufficiently young and healthy person with no pre-existing disease.

E Additional examples

Figure 5 shows similar tests to those in in 2, but now with samples of 1 million and 2 million
individuals respectively, as opposed to 500,000 individuals in figure 2. As for figure 2 the results
are reassuringly accurate for cohorts with a median age that is likely to be seen in practice, in
addition, they appear to become more accurate with increasing sample size.

Table 1 lists the exact and estimated values for: relative risks RR0 and RR, attributable fractions
Af0 and Af , probability of necessity PN0 and PN, the excess risk ratio ERR, and ARR. The
subscripts 0 indicate quantities that are known and calculated exactly, or in the case of PN, expected
to be approximated fairly accurately from a combination of data and known values. Although
widely discussed, the ERR does not have a clear causal interpretation. For the examples listed in
Table 1, ERR has values that are very different to the other causally interpretable quantities. In this
example, ARR has similar values to PN. Af is systematically less than PN, because it is intended
to estimate the proportion of disease in a population that in principle could be avoided, and is a
product of PN and the probability of exposure in people with the disease (P (X = 1|Y = 1)).
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Figure 5: Similar to figure 2, estimates calculated with Eq. 5 are tested with simulated data, here
for sample sizes of 1 and 2 million individuals. As in figure 2, the approximation for Af starts
to fail at large enough median cohort age, but the exact value remains within the 95% confidence
intervals for ages greater than the median UK life expectancy (∼ 80 years).
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RR0 RR Af0 Af PN0 PN ERR ARR

No effects 1.00 0.97 [0.88,1.07] 0.00 0 [0,0.01] 0.00 0 [0,0.1] 0 [0,0.09] 0 [0,0.1]
Confounding only 1.00 1.01 [0.94,1.08] 0.00 0 [0,0.01] 0.00 0.01 [0,0.08] 0.22 [0.16,0.27] 0.01 [0,0.08]

Strong confounding only 1.00 1.04 [0.97,1.1] 0.00 0.01 [0,0.01] 0.00 0.04 [0,0.1] 0.32 [0.28,0.36] 0.04 [0,0.1]
Exposure only 2.00 2.11 [1.97,2.26] 0.09 0.1 [0.09,0.11] 0.49 0.53 [0.5,0.56] 0.52 [0.49,0.55] 0.53 [0.49,0.56]

Exposure and confounding 2.00 2.03 [1.91,2.14] 0.11 0.11 [0.1,0.12] 0.51 0.52 [0.49,0.54] 0.61 [0.59,0.63] 0.51 [0.48,0.53]
Exposure and strong confounding 2.00 1.97 [1.88,2.06] 0.12 0.12 [0.11,0.13] 0.52 0.5 [0.48,0.53] 0.64 [0.62,0.66] 0.49 [0.47,0.52]

Strong exposure only 3.00 3.09 [2.89,3.29] 0.17 0.17 [0.16,0.18] 0.67 0.69 [0.66,0.71] 0.67 [0.65,0.69] 0.68 [0.66,0.7]
Strong exposure, and confounding 3.00 2.94 [2.8,3.07] 0.20 0.19 [0.18,0.2] 0.70 0.68 [0.66,0.7] 0.73 [0.72,0.74] 0.66 [0.64,0.68]

Strong exposure and strong confounding 3.00 3.06 [2.93,3.18] 0.21 0.22 [0.21,0.23] 0.68 0.7 [0.68,0.71] 0.77 [0.76,0.78] 0.67 [0.66,0.69]

Table 1: For simulated data, the table lists estimates for different types of attributable fractions. RR0 and Af0 are
calculated exactly using parameters that specify the simulated data, and PN0 is calculated using an estimate for
P (X = 1|Z = 1). “Exposure”, “Strong exposure”, have eβx = 2, 3, and “Confounding”, “Strong confounding”,
have eβz = 2, 3.

F Data availability

R Code [18] used to produce the figures and simulated data will be available upon publication.
Code used R packages: survival [19], boot [20], meta [21], and xtable [22].
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