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Abstract 

Systematic literature reviews (SLRs) are crucial for generating research evidence, supporting 

clinical decisions, advancing scientific knowledge, and informing policymaking. Despite their 

importance, manual SLRs are time-consuming, costly, and prone to errors. The increasing 

volume of published data and the complexity of clinical trials necessitate more efficient 

approaches. We present an automated SLR system using large language models (LLMs), 

designed to streamline the entire SLR process from initial query to data extraction, and 

customizable for various study fields. We developed an LLM-assisted SLR system, AID-SLR, 

accompanied by a user interface (UI) comprising 6 modules 1) Query, 2) Inclusion/Exclusion 

(I/E) criteria, 3) Abstract screening, 4) Full-text screening, 5) Data extraction, and 6) Data 

summary. The LLM model was utilized for abstract screening, full-text screening, and data 

extraction and its performance was evaluated using precision, recall, and F1 scores. We selected 

a non-small cell lung cancer use case to evaluate the system’s performance. We additionally 

compared the performance of GPT-4 and GPT-4o models, focusing on data extraction across 

different categories. A qualitative evaluation was conducted to assess common error types and 

the reliability of extracted information. AID-SLR is user-centric, allowing users to specify study 

criteria and provide additional information and feedback. The LLM prompts are generalizable 

and automatically incorporate the user-entered details and instructions on the UI, such as 

domain-specific guidelines, thereby enabling easy adoption of the system to different study and 

disease areas.  AID-SLR effectively screens relevant studies and extracts data elements. The 

system demonstrated high precision, recall, and F1 scores in screening both Irrelevant (1, 0.9286, 

and 0.9630, respectively) and Relevant (0.9737, 1, and 0.9867, respectively) articles, with an 

overall accuracy of 98.04%. Data extraction was granular with promising performance, 
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successfully identifying a wide range of treatment-related outcomes and statistical values. For 

data extraction, GPT-4o outperformed GPT-4, achieving higher precision (0.9984 vs. 0.9819), 

recall (0.9989 vs. 0.9519), and F1-score (0.9987 vs. 0.9651). GPT-4o also exhibited superior 

performance in cohort identification and value extraction, with fewer errors and more accurate 

capture of study design and demographic information. Our LLM system and UI provided a 

seamless end-to-end solution for automated SLRs. This automated SLR system can contribute to 

reducing the time, cost, and human errors associated with traditional manual SLRs. Integrating 

this model with other AI tools for comprehensive data analysis could further enhance its utility in 

SLRs.   
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Introduction  

Systematic literature reviews (SLRs) are foundational in generating research evidence. They 

support clinical decisions, fill scientific knowledge gaps, and inform policymaking 1–3. With the 

growing emphasis on evidence-based practice 4, the Food and Drug Administration (FDA)’s 

acceptance of real-world evidence (RWE) to support drug approval 5, and the health technology 

assessment (HTA) requirement for drug pricing and reimbursement guidance 6, SLRs have 

become indispensable methods for synthesizing high-quality, up-to-date evidence 7. However, 

manual SLRs are labor-intensive, costly, and prone to errors. Conducting and publishing a single 

SLR typically takes between 12 to 24 months 8, with an average duration of approximately 17 

months 9. Major pharmaceutical companies spend over 5 million annually on these studies 10. 

This substantial time and cost burden hinders the thorough conduct of SLR studies with the 

increasing volume of published data. Additionally, with around 20,000 new trials starting 

annually 11,12, the volume and complexity of ongoing clinical research create a pressing need for 

more efficient SLR approaches.   

Automation has shown great potential to enhance SLRs 8, with various initiatives aiming to 

automate these processes 13–16. Advances in artificial intelligence (AI), particularly in natural 

language processing (NLP), have notably accelerated SLR automation, especially in literature 

screening and data extraction 17–19. The integration of large language models (LLMs) has further 

expedited each phase of the SLR process, though their implementation should be approached 

with caution and include human oversight 20,21. LLMs have shown high accuracy in screening 

relevant titles, abstracts, and full-text 22,23, and effectively conducting quality assessment and 

risk-of-bias evaluation 24. Moreover, the LLM system has been employed to automate the 
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extraction of Population, Intervention, Comparator, and Outcome (PICO) elements 25,26, the 

generation of evidence via data extraction 27,28, and the conduction of the network meta-analyses 

using generated R scripts and extracted data elements 29. However, there has been limited 

exploration into the holistic integration of all steps 26, including querying relevant articles from 

databases like PubMed, screening abstracts and full texts based on the PICO eligibility criteria 

user-defined, and extracting user-specified data elements into a computable format for 

downstream analysis.  

 

In this study, we detail the development of an automated SLR system, AID-SLR, that leverages 

LLMs and features a seamless end-to-end user interface (UI), incorporating human oversight. 

We apply this system to a non-small cell lung cancer (NSCLC) use case focusing on the first line 

of immunotherapy literature, demonstrating its potential to streamline the automated SLR 

process.   
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Materials and Methods 

System Architecture and User Interface Overview 

Our AID-SLR system consists of 6 modules: 1) Query Setup Module, 2) Inclusion/Exclusion 

(I/E) criteria Input Module, 3) Abstract Screening Module, 4) Full-text Screening Module, 5) 

Data Extraction Module, and 6) Data Summary Module. Users can select either abstract 

screening only or both abstract and full-text screening when creating a new project. The UI is 

designed to provide clear navigation through each module, ensuring an intuitive user experience. 

Figure 1 illustrates the system’s architecture, and detailed functionality and implementation for 

each module are described below. 

  

Module Functionality and Implementation Details 

Each module is designed to ensure high accuracy and efficiency. We utilize the OpenAI GPT-4 

model to develop the screening and data extraction modules. The LLM prompts are adaptable to 

various disease areas and user-defined study I/E criteria. The Supplementary Methods delineate a 

protocol for the UI application and LLM prompts, and screenshots of the UI design are available 

in Supplementary Figure 1A-F.  

  

Query Setup Module 

The system supports scalability and integration with two literature databases. It employs search 

APIs and techniques from literature databases such as PubMed and Embase to automatically 

expand queries. This includes mapping the search terms to medical subject headings terms, 

synonyms, and variants. For example, entering "lung cancer” will automatically expand to 

include “lung (adeno)carcinoma”, “lung neoplasm”, and other related terms. 
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Inclusion/Exclusion (I/E) Criteria Input Module 

 Users specify PICO (Population, Intervention, Comparator, Outcome) criteria for screening 

relevant articles in this module. Additionally, they specify any other criteria in free text under the 

“Other I/E Criteria” section. The system allows for the storage and retrieval of user-pre-defined 

PICO templates, ensuring that user inputs are seamlessly integrated into the screening workflow. 

 

Abstract Screening Module 

This module uses an LLM for the initial screening based on user-defined I/E criteria. The AI-

recommended results can be adjusted through an interactive UI with human review. The LLM 

prompt for abstract screening considers user-specified information such as the I/E criteria and 

any domain interpretations along with generic screening instructions in its context to make the 

screening decision. Screening instructions are relaxed at this initial stage to encourage high 

recall. The model is guided to classify an article as "Irrelevant" if it matches at least one 

exclusion criterion and "Relevant" for all other scenarios, including unclear instances due to 

insufficient information in the abstract. As part of the screening output, the LLM provides an 

explanation that supports its decision and the specific exclusion reasons. Publication type and 

study design information are also considered in this screening prompt which are first identified 

using a separate prompt described in Supplementary Methods. 

 

Full-Text Screening Module 

This module enables the full-text screening of articles using stricter PICO I/E criteria if provided, 

and prompt instructions. The LLM first reviews the exclusion criteria and subsequently checks 

each inclusion criterion if no exclusion criteria are met. If all inclusion criteria are satisfied, the 
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article is classified as "Relevant." If the model is not fully confident, it labels the article as 

"Relevant - not confident," prioritizing it for further user review. This warrants more precise 

eligibility decisions and highlights the articles needing additional review. Explanations behind 

screening decisions and exclusion reasons are also generated in this module similar to abstract 

screening.  

 

Data Extraction Module 

We design a generalizable data extraction module with three prompts to identify: 1) Study details 

(e.g., sample size), 2) Study cohorts (different study arms), and 3) Study outcomes (e.g., overall 

survival). The user-provided data elements, along with any domain-specific descriptions and 

interpretations, are leveraged in constructing the context for the study details and outcome 

extraction prompts. The study cohorts returned by the second prompt are used in the Study 

outcomes (third) prompt to guide the association of each identified outcome with the relevant 

cohort. We highlight the corresponding text spans of the extracted data elements on the UI to 

facilitate easy manual review.  Moreover, for data extraction from full-text articles, we extract 

the study outcome elements from both the tables and the main text of an article. For this, we 

separately process each table and the main text for LLM prompting.  

 

Data Summary Module 

This module compiles extracted data into a comprehensive summary. Users can review, filter, 

and download the summarized data. It provides a robust data management system, generating 

summary reports with key information such as PMID, citation title, authors, year of publication, 

and extracted data elements.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.24309897doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309897


 

Evaluation 

To evaluate the system’s performance, we conduct both quantitative and qualitative assessments 

using the NSCLC use case. We utilized 10 articles to optimize the LLM prompts for screening 

and data extraction and assess the system’s performance on a held-out set of 50 articles. For 

quantitative evaluation, we calculate the accuracy, precision, recall, and F1 scores for both 

screening and data extraction processes. Precision is calculated as the ratio of correctly predicted 

positive entities to the total predicted positive entities (Precision= TP/ (TP + FP)). Recall, also 

known as sensitivity, is calculated as the ratio of correctly predicted positive entities to all actual 

positive entities (Recall=TP/ (TP + FN)). The F1-score is the harmonic mean of precision and 

recall and is calculated using the formula: F1-score=2 × ((Precision × Recall) / (Precision + 

Recall)). In these equations, TP stands for true positives, FP stands for false positives, and FN 

stands for false negatives.  Additionally, for abstract data extraction, we evaluate and compare 

the performance of two versions of GPT models, GPT-4 and GPT-4o, in two primary categories: 

Study Details and Study Outcomes. The qualitative evaluation involved analyzing common error 

types encountered during data extraction to gain insights into areas needing improvement.   

 

Use Case: Non-Small Cell Lung Cancer 

The inclusion and exclusion criteria, shown in Figure 2, were applied for the literature screening 

phases. During the abstract screening phase, broader criteria were used to capture a wide array of 

relevant studies. For instance, abstracts mentioning general categories like immunotherapy 

instead of specific drug names were included. The outcome criteria encompassed a wide range of 

treatment-related outcomes, such as efficacy, adverse events, treatment trends, and patient-
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reported outcomes. In the full-text screening phase, more specific criteria were applied. For 

example, the inclusion intervention criteria were narrowed to include only studies specifically 

mentioning pembrolizumab. 

 

 

Figure 1. The overview of the AID-SLR system 

    

 

 

Figure 2. Eligible criteria for abstracts and full-text screening for non-small cell lung cancer. 

Black-colored criteria are for both, red-colored criteria are for abstract screening, and blue-

colored criteria are for full-text screening. 
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Results 

NSCLC Use Case Implementation on Our UI 

The system found 2,135 articles when the user put the following query, limiting the publication 

year between 2023 and 2024. 

à (((NSCLC) or (non-small cell lung cancer) AND ((advanced) or (metastatic) or (Stage 

III) or (stage IV)) AND ((immunotherapy) or (immune checkpoint inhibitor) or 

(pembrolizumab))) AND (English[Language]) 

Out of 2,135 articles, 898 and 1,172 abstracts were recommended as “Relevant” and 

“Irrelevant”, respectively (Supplementary Figure 1B), based on the PICO criteria we defined 

(Figure 2). 65 abstracts were not screened due to the absence of an abstract. We randomly 

selected relevant and irrelevant articles and reviewed the AI explanation. In “irrelevant” cases 

(Supplementary Figure 1C), the system shows the matched Exclusion criteria under the 



“Exclusion details” section and provides a plain language explanation under the “AI 

explanation” section. For example, an article focusing on early-stage resectable NSCLC 

population, not advanced NSCLC, was marked as “Irrelevant”. In contrast, in “relevant” cases 

(Supplementary Figure 1D), the “Exclusion details” section is empty, showing only the AI 

explanation for inclusion. Supplementary Figure 1E shows examples of user-selected 

progression-free survival (PFS) and overall survival (OS) outcomes values in each cohort with 

the corresponding text span where the information was extracted. For example, 

à From the sentence, “Progression-free survival (PFS) was significantly shorter in patients 

with venous thrombotic events (VTE) compared to patients without VTE: 6.1 (95% CI 

4.1-9.0) months vs. 8.3 (6.9-10.3) months (p=0.03)”, PFS values were extracted for both 

Patients with VTE and without VTE cohorts. 

 

Abstract and Full-Text Screening  

The human reviewer annotated 36 out of the 50 articles as “Relevant” including 12 articles with 

a “Need to check full-text” tag and the remaining 14 as “Irrelevant”. The precision, recall 

(sensitivity), and F1 scores for “Relevant” abstracts are 0.9737, 1, and 0.9867, respectively. For 

“Irrelevant” abstracts, the scores are 1, 0.9286, and 0.9630, respectively, with an overall 

accuracy of 98.04%. The macro and weighted averages for these performance metrics are shown 

in Table 1. The 12 “Relevant” articles with the “Need to check full-text” tag from the abstract 

screening stage were screened for full text, of which the human reviewer excluded 2 articles. The 

results of these 12 articles indicated perfect agreement between a human-annotated gold standard 

and AI recommendation, with both precision and recall (sensitivity) achieving scores of 1.00, 

resulting in an F1-score of 1.00. The system's overall accuracy was also 100%, reflecting the 



efficient identification of studies that met the specific criteria for detailed clinical outcomes 

involving pembrolizumab.  

Table 1. Performance metrics for abstract screening process on 50 articles 

   

  Precision 
 

Recall  

(sensitivity) F1-score 
 

Irrelevant 1.0000 0.9286 0.9630 

Relevant 0.9737 1.0000 0.9867 

Macro average 0.9868 0.9643 0.9748 

Weighted average 0.9809 0.9804 0.9802 

Specificity 0.9286 0.9286 0.9286 

 

Data Extraction from Abstracts 

Quantitative Evaluation  

Table 2 presents the performance scores on 34 human-annotated final “Relevant” articles 

obtained after full-text screening. We observe high performance in both GPT-4 and GPT-4o 

models, with GPT-4o consistently outperforming GPT-4. Example output formats for extracted 

data elements are shown in Supplementary Tables 1 and 2. GPT4o achieved an overall precision 

score of 0.9984 compared to GPT-4's 0.9819. For recall, GPT-4o again showed an overall recall 

of 0.9989, while GPT-4 scored 0.9519. The F1-score for GPT-4o was 0.9987, compared to GPT-

4’ 0.9651(Table 2). These results demonstrate that GPT-4o is more precise and thorough in data 

extraction. Additionally, the accuracy metrics indicate that GPT-4o achieves near-perfect 

accuracy (0.9975) across all features, while GPT-4 scores were slightly lower (0.9379). We also 



compare the performance of the models for individual features of the extracted elements such as 

value and text span. We found that GPT4o performs superiorly in study cohort identification and 

corresponding outcome value extraction. Detailed performance scores of GPT-4o and GPT 4 in 

identifying individual features are provided in Table 2 and illustrated in Figure 3.  

 

Table 2. Performance metrics for data extraction from 34 abstracts   

  Precision Recall F1-score Accuracy 

  GPT-

4  

GPT-

4o  

GPT-

4  

GPT-

4o  

GPT-

4  

GPT-

4o  

GPT-

4  

GPT-

4o  

 Overall 

Average 0.9819 0.9984 0.9520 0.9989 0.9651 0.9987 0.9379 0.9975 

 

Study 

Details 

Overall 0.9938 1.0000 0.9956 1.0000 0.9946 1.0000 0.9895 1.0000 

Element 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Description 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Text span 0.9861 1.0000 0.9852 1.0000 0.9843 1.0000 0.9713 1.0000 

Value 0.9676 1.0000 0.9871 1.0000 0.9751 1.0000 0.9547 1.0000 

 

Study 

Outcomes 

Overall 0.9701 0.9968 0.9083 0.9979 0.9356 0.9973 0.8863 0.9950 

Element 0.9914 1.0000 0.9471 0.9977 0.9663 0.9988 0.9393 0.9977 

Description  0.9827 0.9923 0.9455 0.9968 0.9612 0.9943 0.9319 0.9907 

Text span  0.9672 1.0000 0.9213 0.9977 0.9341 0.9988 0.8963 0.9977 

Study 

cohort  0.9476 0.9880 0.7511 0.9968 0.8129 0.9920 0.7380 0.9864 



Value 0.8965 1.0000 0.8336 0.9977 0.8595 0.9988 0.8231 0.9977 

 

Figure 3. Comparison of precision, recall, and F1 scores between GTP-4 and GTP-4o in various 

features of extracted data elements.

 

 

Error Analysis 

The error analysis of data extraction between GPT-4 and GPT-4o models reveals several critical 

differences, as summarized in Table 3. In the domain of "Study Details," GPT-4 frequently 

misses essential information such as study design specifics (e.g., "randomized") and 

demographic details like sex ratios and prior treatments. Additionally, GPT-4 often 

misrepresents or omits details about the intervention. In contrast, GPT-4o rarely makes these 



mistakes, demonstrating more consistent accuracy in capturing study design and demographic 

information, thereby providing a more reliable and complete extraction of study details. 

In the "Study Outcome" category, GPT-4 performs well but has some limitations, particularly in 

accurately specifying study cohorts and subgroups. These errors were frequent in comparison 

studies involving multiple clinical trials. GPT-4o, however, performs much better in this regard, 

although it occasionally presents incorrect cohort names or confuses experimental groups with 

reference/comparator groups. Such errors are infrequent in GPT-4o, indicating higher precision 

and reliability in cohort-related data extraction. 

In terms of data elements and statistical values, GPT-4 often misses important elements such as 

"Study duration" and "Data cut-off" dates and struggles to separate statistical values like hazard 

ratios (HR), odds ratios, 95% confidence intervals (CI), ranges, and p-values. This often results 

in marking values as "NA" or providing incorrect information. Conversely, GPT-4o exhibits 

higher accuracy in capturing these elements and distinguishing between various statistical 

metrics, though it occasionally fails to separate specific metrics clearly.  

Table 3. Summary of qualitative evaluation in data extraction between GPT-4 and GPT-4o 

models.  

 

Aspect GPT-4 GPT-4o 

Study 

Details 
Study design 

- Misses study design information 

(e.g., "randomized") 
- Rarely makes such mistakes 



Demographic 

Information 

- Misses demographic 

information (ratios of sex, prior 

treatments) 

- More consistent accuracy in 

study design and demographic 

details 

Intervention 
- Misrepresents/omits 

"Intervention" or its details 
  

Study 

Outcomes 

Study 

Cohort 

- Fails to present, misses, or 

incorrectly specifies study 

cohorts and subgroups 

- Occasionally presents 

incorrect cohort names or 

confuses groups 

- Issues are frequent in 

comparison studies involving 

multiple trials 

- Such instances are rare 

Data 

Element 

- Misses important elements like 

"Study duration" and "Data cut-

off" 

- Higher accuracy in capturing 

study timelines 

Description 
- Incorrectly presents 

comparator/reference information 

- Improved accuracy in 

presenting descriptions 

Value 

- Struggles to separate HR, odds 

ratios, 95% CI, ranges, and p-

values 

- Better at distinguishing and 

presenting values 

- Often marks values as "NA" or 

provides incorrect values 

- Occasionally fails to separate 

specific metrics clearly 

- Does not reach necessary level 

of detail 

- Accurately indicates when 

there is no significant difference 



Error Analysis in Full-Text Data Extraction 

We manually reviewed the extracted data from 5 full-text articles 30–34, particularly focusing on 

elements extracted from tables. These articles included a total of 16 tables, with 3 to 4 tables per 

article. Out of 16 tables, the LLM model achieved nearly complete data extraction from 10 

tables, with only a few missing points. As shown in Supplementary Figure 2A-B, when a table 

had child components under one parent component, child components were sometimes captured 

on its own without the parent component mentioned. For example, “could not be evaluated” 

instead of “PD-L1 tumor proportion score-could not be evaluated” unlike other child components 

such as “PD-L1 tumor proportion score-1-49%”. Additionally, we noticed that some errors 

propagated from the “pdf-to-text" conversion step. For example, when the original PDF table 

contained the “greater than or equal to” symbol (“>=”), the converted text file only included the 

“greater than” symbol (“>”) without “equal to”, resulting in the final extracted outcome also 

displaying the “greater than” symbol (“>”) without “equal to” (Supplementary Figure 2A-B). 

Furthermore, as shown in Supplementary Figure 2C, in some cases where the table legend is 

included inside a table, it is recognized as the table column header. In 6 out of 16 tables which 

were long and contained dense information, each table content was further split, and the data 

elements were extracted in multiple output files under the same table column headers to tackle 

the model’s output token limitations. However, we noticed a few errors in correctly assigning the 

column headers against the extracted elements in these long tables. 

 

.



Discussion 

We present a comprehensive, easily customizable, end-to-end solution for an automated SLR 

system supported by a user interface that begins with an initial paper selection using a simple 

query via integrated literature databases such as PubMed and Embase, followed by abstract/full-

text screening based on user-defined PICO I/E criteria and data elements, and subsequent 

extraction of these elements.  Our system integrates LLMs into each separate module to increase 

the system's flexibility, particularly in the screening and data extraction steps. The LLM prompts 

in AID-SLR are designed to automatically capture important information (e.g., study criteria, 

interpretations of domain-specific terms, etc.) from the users critical to performing the SLR 

tasks, enhancing the customizability of the system. AID-SLR achieves high performance in both 

screening and extraction, emphasizing its utility in automating complex literature review 

processes. Furthermore, we compared the most recent versions of LLMs, GPT-4 and GPT-4o, to 

investigate their application in data extraction for SLRs, particularly given the complexity and 

volume of clinical data involved in studies on NSCLC and immunotherapy.   

 

The literature screening process in our system is divided into two distinct phases: abstract 

screening and full-text screening. These phases address the inherent differences between 

abstracts and full texts in terms of scope and detail. Abstracts provide a concise overview, 

summarizing the research question, methods, key findings, and conclusions, while full texts offer 

a detailed understanding of the research methodology, findings, and their implications. Our 

system allows for different versions of I/E criteria for these two levels, enabling broader criteria 



for abstract screening to capture a wide array of relevant studies and more specific criteria for 

full-text screening to ensure precision. 

The evaluation of our system using the NSCLC use case revealed high levels of precision and 

recall in both screening phases, reflecting efficient and accurate identification of relevant studies. 

The system's ability to handle the extraction of detailed clinical study details and outcomes 

further enhances its value. It demonstrated granularity and depth in data extraction, successfully 

identifying a wide range of treatment-related outcomes and detailed statistical values. The 

extraction of hazard ratios (HRs), odds ratios (ORs) with confidence intervals (CIs), and P-

values, along with intervention and comparator group information, underscores the system's 

comprehensiveness and accuracy. 

Our comparison between GPT-4 and GPT-4o models highlighted the incremental improvements 

offered by GPT-4o. While GPT-4 already performs at a high level, GPT-4o consistently 

outperforms it in data extraction across all data elements. Higher precision scores in the GPT-4o 

model indicate its superior ability to correctly identify true positive instances, minimizing false 

positives. This enhanced precision is critical for ensuring the reliability of data extraction in 

SLRs, particularly when dealing with extensive and detailed clinical datasets. Higher recall in the 

GPT-4o model suggests it is more effective in capturing all relevant data elements, reducing the 

chances of missing critical information. Improved recall for specific features within "Study 

Outcomes," such as "Study Cohort" and "Value," highlights GPT-4o's enhanced capability in 

extracting complex cohort-related data, addressing shortcomings observed in GPT-4. 

Moreover, our system's ability to extract data elements and associated values from tables, in 

addition to the main text of the articles, significantly enhances the comprehensiveness of the 



SLR process. Tables often contain detailed information that is not fully discussed in the text due 

to word limits. By capturing this information, our system ensures that no critical data is 

overlooked, providing a more robust and complete synthesis of evidence 

Limitations 

We acknowledged some limitations in our study. Our whole system was tested using one use 

case, although a similar LLM-based data extraction module focused on abstracts was previously 

tested in other indications and contexts 28. Evaluating the system’s performance across different 

disease areas and various types of clinical trials or real-world studies is crucial for establishing 

its generalizability and robustness. Additionally, our evaluation for screening and data extraction 

was conducted with a relatively small sample size. Increasing the evaluation set will be the next 

immediate step. We also intend to extend our full-text data extraction module to consider 

extracting elements from article figures and further improve the extraction performance from 

long tables. Moreover, the I/E criteria are updated manually by users after reviewing the 

disagreements and the AI screening statistics. In the future, we plan to leverage the feedback 

provided by users while disagreeing with AI recommendations to automate the process of 

updating the I/E criteria, thus relieving the burden on the users to modify them manually. 

In addition, our current UI can be improved in several ways. Firstly, the current UI does not 

provide a summary of all extracted data elements from selected relevant articles, even though 

these data elements and their corresponding values are extracted in the backend. Adding 

summary analytics of all extracted data elements from selected articles based on the user's PICO 

criteria could provide more valuable information. Future work could integrate these summary 

analytics modules, allowing users to choose which data elements to include in their own SLR 



studies. Secondly, while our system allows human-AI-interaction at every step, the current UI is 

designed for one human reviewer and does not provide inter-rater agreement checking between 

multiple reviewers. Given that the involvement of more than two reviewers is essential in SLRs, 

further development to integrate this functionality would be required. 

Conclusion 

By establishing the human-in-the-loop, automated end-to-end AI solution for SLRs with high 

precision and recall (sensitivity) in both screening and data extraction, our system can reduce the 

time, cost, and human errors associated with traditional SLRs, ultimately contributing to more 

timely and comprehensive evidence generation. Additionally, our user-friendly UI allows users 

to conduct the entire SLR process seamlessly. Integrating our system with other AI tools for 

comprehensive data analysis could further enhance its utility in SLRs. 
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Supplementary Methods. 

  

UI operation protocol 

Query 

Users can choose to search in PubMed, Embase or both and can enter search terms, combining 

them using “AND” or “OR” logic. PubMed or Embase’s query expansion techniques will be 

applied when the user enters terms. For example, entering "Kahler disease" (a synonym for 

multiple myeloma) will automatically search for multiple myeloma other mapped terms, 

providing all articles that include any of the synonyms or mapped terms. 

  

I/E criteria (Protocol) 

Our I/E criteria follow the PICO (Population, Intervention, Comparator, Outcome) framework. 

Supplementary Figure 1A shows that users can add their inclusion and exclusion criteria under 

population, interventions/comparators, and outcomes. Users can then select “Both,” “Abstract,” 

or “Full-text” for each criterion. Abstracts often include broader terms rather than specific 

information. For example, a study might mention “immunotherapy” or “chemotherapy” in the 

abstract, rather than specifying pembrolizumab or platinum-based chemotherapy. To be more 

inclusive in the abstract screening step, users can provide different sets of PICO criteria that are 

broader for abstract screening and stricter for full-text screening. If a single criterion applies to 

both, users can select “Both.” Users can also assign publication type and study design by 

clicking the relevant options. Additional criteria can be added in the "Other I/E Criteria" section 

to specify any criterion that does not fall under the PICO categories.   



Adding domain-specific knowledge in ambiguous or complex cases can improve model 

performance. For instance, if a user is screening for “Head and Neck Cancer,” providing 

definitions and lists of head and neck anatomical sites can improve screening efficiency, as many 

studies might mention specific cancer types like “nasal cavity and sinus cancer” or “throat 

cancer” instead of “Head and Neck Cancer”. Once this study protocol step is complete, the user 

can click the “Run AI Recommendation” button to start the abstract screening process.  

Abstract screening  

The abstract screening page displays 2 tables: “Screening counts” and “Confusion matrix” 

(Supplementary Figure 1B). The “Screening counts” table shows “AI recommended results for 

relevant and irrelevant articles. Initially, the Human screened column shows “0” for both 

relevant and irrelevant categories. As human reviewers label articles as relevant or irrelevant, the 

numbers in human screened column increase. If human reviewers disagree with AI 

recommendations, reviewers can click “relevant” or “irrelevant” for the individual article (See 

Supplementary Figure 1C, left panel). Supplementary Figures 1C and D show an example of AI-

recommended “irrelevant” and “relevant” articles, respectively, including the AI-recommended 

exclusion details based on PICO criteria and the AI-generated explanation in plain language. The 

“Confusion matrix” table shows the agreement between AI recommendations and Human 

screening. 

  

Full-text screening 

Only articles labeled as “relevant” will proceed to the full-text screening step. Users can upload 

private PDF files on the full-text screening page if not available in public databases.   

  



Data extraction 

Users can specify their desired data elements and add them using the interface. The selected data 

elements will appear as shown in Supplementary Figure 1E. 

  

Data Summary 

The articles that are reviewed and marked as “approved citation” by users will appear on the 

Data Summary page. The summary table includes columns for PMID, citation title, Primary 

author’s last name, Primary author’s first name, and Year of publication. Users can download 

filtered or all data (Supplementary Figure 1F). 

 

LLM prompts for screening and data extraction 

We leverage the OpenAI GPT-4 model to develop the screening and data extraction modules. 

Besides specifying the criteria and data elements, users can optionally add domain-specific 

information such as disease knowledge and term interpretations which are incorporated into the 

LLM prompts to guide the model in screening and extraction tasks.  

  

Abstract screening 

We construct a generalizable prompt that produces a final screening decision (“Relevant” or 

“Irrelevant”) based on an article’s abstract and the given I/E criteria. The prompt contains four 

components – 1) main instruction to perform the screening task, 2) necessary context to take the 

decision (title, abstract, I/E criteria, publication type, study design, and domain knowledge), 3) 

general instructions describing the screening logic, and 4) output schema for response generation 



which includes the screening decision, a supporting explanation, and the specific exclusion 

reasons for each PICO category.  

Publication type and study design classification 

We develop a prompt to classify an article’s publication type and study design. The prompt takes 

in the article’s title and abstract, followed by the step-by-step instructions for classification. The 

instructions contain two parts – 1) Publication type classification – Identify the type(s) given a 

list of publication type categories and their definitions, and 2) Study design classification – 

Identify the design(s) provided the guidelines defining the association between publication types 

and study designs (e.g., If the publication type is "Original research article", then the study 

design can be either "Clinical trial", "Real word evidence", or "Other/unspecified.") 

  

Full-text screening 

The prompt structure is like abstract screening except that we provide the full text of an article as 

context and the instructions to take the screening decision are stricter compared to abstract 

screening.  

  

Data element extraction from abstract 

We design a generalizable data extraction module that consists of three prompts to identify study 

details, study cohorts, and study outcomes. 

Study Details 

This prompt extracts key study characteristics, such as cohort size. The title, abstract, and any 

additional domain knowledge are provided as context. The output schema for each extracted 

study detail element includes four features: element name, description, value, and text span 

Study Cohorts 



This prompt aims to identify all the study cohorts or groups mentioned in the article’s abstract. 

This starts with a query, “Extract all detailed information of names or descriptions for all 

cohorts, sub-cohorts, sub-groups, and study arms mentioned in the following abstract.”, 

followed by the title and abstract as context, and finally instructs to list the names of all cohorts, 

sub-cohorts, sub-groups, and study arms separated by commas.   

Study Outcomes 

Similar to the study details prompt, this prompt instructs the model to identify outcome-related 

data elements using the abstract as context. The LLM output schema for outcomes includes five 

features: study cohort, element name, description, text span, and value. Additionally, this prompt 

instructs that every outcome value should be extracted with its associated cohort, selected from 

the ones returned by the “Study cohorts” prompt. To guide this association, we include a 

statement in the prompt, “Cohorts identified in the article include: -- <study cohorts returned by 

the above prompt>,” to inform the model about the study cohorts. If an outcome applies to the 

entire population, the study cohort should be assigned “Entire cohort.”     

 

Data element extraction from full-text  

The prompts are crafted similarly to abstract data extraction except that we provide the full text 

of an article as context to the model. Here, we extract the study outcome elements from both the 

tables and the main text by processing the tables and the article text separately. Further, for 

tables, each table is handled separately, that is, we provide each table content as context to the 

LLM to identify study outcomes from that specific table. In case the articles are available in pdf, 

we first convert their content into textual format using Amazon AWS Textract.    

  



 

 

 

 


