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Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD) or frontotemporal lobar degeneration (FTLD) involve
specific loss of brain volume, detectable in vivo using T1-weighted MRI scans. Supervised machine learning ap-
proaches classifying neurodegenerative diseases require diagnostic-labels for each sample. However, it can be diffi-
cult to obtain expert labels for a large amount of data. Self-supervised learning (SSL) offers an alternative for training
machine learning models without data-labels. We investigated if the SSL models can applied to distinguish between
different neurodegenerative disorders in an interpretable manner. Our method comprises a feature extractor and a
downstream classification head. A deep convolutional neural network trained in a contrastive self-supervised way
serves as the feature extractor, learning latent representation, while the classifier head is a single-layer perceptron.
We used N=2694 T1-weighted MRI scans from four data cohorts: two ADNI datasets, AIBL and FTLDNI, including
cognitively normal controls (CN), cases with prodromal and clinical AD, as well as FTLD cases differentiated into its
sub-types. Our results showed that the feature extractor trained in a self-supervised way provides generalizable and
robust representations for the downstream classification. For AD vs. CN, our model achieves 82% balanced accuracy
on the test subset and 80% on an independent holdout dataset. Similarly, the Behavioral variant of frontotemporal
dementia (BV) vs. CN model attains an 88% balanced accuracy on the test subset. The average feature attribution
heatmaps obtained by the Integrated Gradient method highlighted hallmark regions, i.e., temporal gray matter atrophy
for AD, and insular atrophy for BV. In conclusion, our models perform comparably to state-of-the-art supervised deep
learning approaches. This suggests that the SSL methodology can successfully make use of unannotated neuroimaging
datasets as training data while remaining robust and interpretable.

Keywords: contrastive learning, self-supervised learning, neurodegenerative disorders, deep learning, structural
magnetic resonance imaging

1. Introduction

Neurodegenerative diseases such as Alzheimer’s dis-
ease (AD) and frontotemporal dementia (FTD) are char-
acterized by specific brain volume loss, which can be
assessed in-vivo using structural magnetic resonance
imaging (MRI). The usual radiological evaluation of
MRI scans is mainly performed via visual examination,
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which is often time-consuming. Assistance systems
for the automated detection of disease-specific patterns
could be useful for better clinical diagnosis, as they
can significantly decrease the evaluation time for the
radiologists and neurologists, and help them focus on
relevant brain regions. Convolutional neural networks
(CNNs) models can automatically identify neurodegen-
erative diseases from MRI scans and achieve state-of-
the-art results in medical imaging tasks. Recent devel-
opment in the CNN architectures have in turn shaped the
neuroimaging community, which is interested in auto-
matic discovery of image features pertinent to neurolog-
ical illnesses. Various tasks, such as - disease diagnosis,
pathology localisation, anatomical region segmentation
etc., now rely on the use of CNNs Dyrba et al.| (2021);
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Qiu et al.| (2020); [Eitel et al.|(2021)); 'Wen et al.| (2020);
Han et al.| (2022). CNN models are primarily trained in
a supervised manner by using an external ground-truth
label. Generating such labels for data samples is often
burdensome and costly. Furthermore, CNN models re-
quire a large amount of training data to achieve compet-
itive results. Such large datasets are not easily available
within the medical domain due to the high cost of data
collection and rarity of experts for annotations.

These constraints led us to reconsider the training of
CNN models in a supervised manner, and to explore
self-supervised learning (SSL) approaches. The SSL
methods learn without any sample labels by utilizing the
internal structure of the data, generating representative
features. Architectures trained in a self-supervised man-
ner are biologically plausible, provide extensive feature
space, and compete with supervised approaches |Orhan
et al. (2020). We employed contrastive learning, a type
of SSL methods, that allows learning of generalizable
features from data by contrasting similar and different
data samples.

The main goal of our study was to develop a computa-

tional approach for learning salient features from struc-
tural MRI data, enabling better generalization and inter-
pretability. We hypothesized that SSL methods could
learn meaningful structural representations, and result-
ing models could have comparable performances to su-
pervised models. Therefore, in this paper, we propose
to train a CNN model on structural MRI data within
an SSL setup and then to evaluate this trained CNN
model on a downstream classification task. We also
explore a saliency mapping technique for highlighting
relevant input regions. The main research question was
defined as: How does contrastive SSL paradigm com-
pare against supervised learning paradigm in terms
of predictive power? Are the models trained in con-
trastive self-supervised way on neuroimaging data in-
terpretable?
Our main contributions are: i) The conceptualization
of a contrastive SSL architecture for the use with
neuroimaging data, ii) A comparison between models
trained on structural MRI data, using self-supervised
and supervised approaches, in terms of their classifica-
tion power, showing the results of our self-supervised
model comparable to the supervised methods.

2. Background

2.1. Self-supervised learning

In recent years, we have seen an emergence of self-
supervised learning (SSL) methods, which learn gener-
alizable features without any data labels or ground truth

information. By solving such an initial auxiliary task,
they are then used for specific downstream tasks, e.g.,
identification of neurodegenerative disorders.

Models trained under the SSL approach have found
application in different domains, i.e., image processing
Jing and Tian| (2020), video processing |Schiappa et al.
(2023)), audio processing |Liu et al. (2022a). Within the
imaging domain, multiple auxiliary or so-called ‘pre-
text’ tasks have been suggested previously: identify-
ing data augmentations Reed et al.| (2021); |Chen et al.
(2020), rotation prediction |Chen et al.| (2019), patch
position prediction |Doersch et al.| (2015); [Noroozi and
Favaro| (2016); [Wei et al.| (2019), image colorization
Larsson et al.| (2017, 2016), and contrastive learning
Jaiswal et al.| (2020).

SSL methods could be thought of as an alternative
to pretraining or automated feature learning step and
are related to the way how young children learn |Orhan!
et al.| (2020). Particularly, contrastive SSL methods try
to learn the general structure present within the data, by
using supervisory signals extracted from the data itself
independently of the ground truth for any specific use-
case.

2.1.1. Formal definition of contrastive SSL

Contrastive learning tasks have received considerable
attention within the SSL methods. Contrastive learn-
ing tasks aim at learning a latent space where embed-
dings of similar data samples are pulled together, and
the embeddings of dissimilar data samples are pushed
apart (Gutmann and Hyvirinen| (2010); Weng| (2021);
Chopra et al.| (2005). Various loss functions have been
suggested in order to increase the quality of learned
embeddings, and expedite the training. These include:
contrastive loss |(Gutmann and Hyvarinen| (2010), triplet
loss (Chechik et al.| (2010); |Schroff et al.| (2015)), N-pair
loss |Sohn| (2016)), InfoNCE loss |Oord et al.| (2019)) and
Neighbourhood-based loss Sabokrou et al.| (2019) etc.
Contrastive learning is based on the use of positive and
negative data pairs|Grill et al.|(2020); Chen et al.|(2020),
where a positive pair (i, j) consists of two similar data
instances or views. In many studies, a data sample is
paired with its own augmented variations in order to cre-
ate such positive pairs. A negative pair generally con-
tains two different data samples. The contrastive loss ¢
for a positive pair is formally defined as follows:

exp(cos(z;,z;)/7)

S Lienexplcos(z, 7)/7)

UG, j) = —log (1)

where 7 is a scaling factor called temperature, 1 is an
indicator function with output values being O or 1, N is
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the number of training samples, exp(-) is the exponential
function, and cos(+) is the cosine similarity function.

The  Nearest-Neighbor  Contrastive  Learning
(NNCLR) method Dwibedi et al| (2021) extends
the common contrastive loss by keeping a record of
recent embeddings of augmented views in a queue
Q. Thus, the pairs are not directly compared, rather a
projection embedding that is most similar to a view is
selected from Q for the comparison with another view.
The NNCLR contrastive loss ¢, is defined as:

exp(cos(S(zi, 0).2))/7)

(i, j) = —log ,
S Lisnexp(cos(S(zi, 0),z)/7)
()
where S (z, Q) is the nearest neighbour function:
S(z, Q) = argmin ||z — q]|, . 3)
qeQ

2.1.2. Self-supervised learning in medical imaging

Compared to supervised approaches, there are rela-
tively few applications of SSL methods in the medi-
cal domain [Shurrab and Duwairi (2022); [Huang et al.
(2023). Most SSL approaches applied to MRI data fo-
cus on image reconstruction or segmentation Taleb et al.
(2020); Hu et al.| (2021a). Here, we briefly review two
SSL methods applied by |Taleb et al.| (2020) within the
medical imaging domain similar to our study. First, the
3D Contrastive Predictive Coding operates on 3D data
by splitting it into patches. It uses the InfoNCE loss for
training the model, on an auxiliary task of predicting
the latent representations of the next patches. Second,
the 3D Exemplar networks uses an auxiliary task of data
augmentation prediction, where the model optimises the
triplet loss.

Another methodology for SSL from MRI data was
proposed by Hu et al| (2021a) that is based on paral-
lel training of two networks with the objective of min-
imizing the reconstruction loss. Other recent research
applied SSL to longitudinal AD MRI datasets in or-
der to i) study methods for combining information from
multiple imaging modalities [Fedorov et al.| (2021), or
ii) to predict the trajectories of cognitive performance
and/or cognitive decline |Ouyang et al.| (2021)); [Zhao
et al.[|(2021)).

2.2. Convolutional neural network backbones

Convolutional neural networks (CNN) have been the
state-of-the-art solutions for computer vision tasks for
almost a decade. In the last few years, numerous
approaches on the advancement of CNNs were pro-
posed: introduction of skip connections|He et al.|(2016);

Huang et al.|(2017), experimentation with model hyper-
parameters such as kernel size|Ganjdanesh et al.| (2023)),
normalisation strategies |loffe and Szegedy| (2015) and
activation functions Dubey et al.| (2022); |Apicella et al.
(2021), depthwise convolutions [Howard et al| (2017),
and model’s block architecture Sandler et al.|(2018).

With the introduction of attention priors, the vision
transformers (ViT) Dosovitskiy et al.| (2020) soon be-
came a viable alternative to the purely convolutional
models, and currently represent the state-of-the-art
model architecture as generic vision backbones. ViTs
were inspired from the transformer models applied for
the language processing tasks. To the best of our knowl-
edge, there weren’t attempts of systematically compar-
ing attention priors with convolutional priors. However,
in their study [Liu et al| (2022b) culminated many of
the CNN advancements proposed over the years, and
compared the resulting ConvNeXt model with compa-
rable vision transformers. ConvNeXt|Liu et al.| (2022b)
was proposed as a purely convolutional model, which
achieved favourable results on common vision bench-
marks such as the ImageNet Deng et al. (2009) and
the COCO |Lin et al.| (2014) datasets, sometimes even
providing higher accuracy than competing ViT models.
Notably, ConvNeXt achieved these results while main-
taining the computational simplicity and efficiency of
standard CNN models, highlighting the importance of
convolutional priors for vision tasks.

2.3. Feature attribution

With the growing popularity of CNN models and
these models becoming the off-the-shelf baselines, there
has also been a growing need to understand them. Mul-
tiple studies have attempted to explain and interpret
the black-box CNN models. Within the domain of ex-
plainable AI (XAI), there are various methods to de-
rive the importance of input features, i.e., the impor-
tance scores with respect to each prediction. These
importance scores can be visualized by superimpos-
ing them on the input scans [Van der Velden et al.
(2022). Certain favoured methods of importance scor-
ing are Layer-wise Relevance Propagation (LRP) Mon-
tavon et al. (2019)); [Kohlbrenner et al. (2020}, Gradient-
weighted Class Activation Mapping (Grad-CAM) |Sel-
varaju et al.[(2020), and Integrated Gradients (IG) |Sun-
dararajan et al.| (2017)). There have been multiple stud-
ies mapping importance scores to input regions, partic-
ularly within the neuroscience application of dementia
detection Dyrba et al.|(2021); Singh and Dyrba (2023));
Bohle et al.| (2019).
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3. Methods

3.1. Neuroimaging datasets

We used T1-weighted brain MRI scans from publicly
available neuroimaging repositories. The data scans in
our study were pooled from the following data reposito-
ries: 1) the Alzheimer’s Disease Neuroimaging Initiative
(ADNIﬂ study phases ADNI2 and ADNI3, ii) the Aus-
tralian Imaging, Biomarker & Lifestyle Flagship Study
of Ageing (AIBLﬂ Ellis et al.| (2009), collected by the
AIBL study group, and iii) the Frontotemporal Lobar
Degeneration Neuroimaging Initiative (FTLDNIﬂ

In our study, the cognitively normal (CN) scan sam-
ples were consolidated from all three data cohorts.
The samples with dementia due to Alzheimer’s dis-
ease (AD) and mild cognitive impairment (MCI) were
collected from ADNI and AIBL data cohorts. While,
FTLDNI was the only data cohort with samples cat-
egorised into different frontotemporal lobar degenera-
tion (FTLD) sub-types, i.e., the behavioral variant of
frontotemporal dementia (BV), the semantic variant of
frontotemporal dementia (SV), and the progressive non-
fluent aphasia (PNFA).

We applied the ‘tl-linear pipeline’ of the Clinica li-
brary [Routier et al,| (2021)); Wen et al.[ (2020) to pre-
process the raw MRI scans. The pipeline uses the
N4ITK method for bias field correction and the SyN
algorithm from ANTSs to perform an affine registration
for the alignment of each scan to the Montreal Neu-
rological Institute (MNI) reference space. During the
execution of the pipeline, some MRI samples were ex-
cluded due to quality checking or some missing infor-
mation. Additionally, each scan was cropped to the size
of 169 x 208 x 179 voxels with 1 mm isotropic resolu-
tion.

After applying preprocessing methods, our study in-
cludes 841 scans from the ADNI2, 968 scans from the
ADNI3, 612 scans from AIBL and 273 scans from
FTLDNI. Table [I| summarizes the sample statistics of
the different data sources.

3.2. Proposed self-supervised learning pipeline

Our proposed method consists of two modules: a fea-
ture extractor and a classification head. The feature ex-
tractor is a convolutional neural network trained without
any sample labels in a self-supervised manner. The clas-
sification head is a simple neural network subsequently

TADNI: https://adni.loni.usc.edu/

2AIBL: https://aibl.csiro.au/

3FTLDNI: https://memory.ucsf .edu/research-trials/
research/allftd

trained in a supervised way. The proposed architecture
is shown in Figure

After executing the tl-linear pipeline of the Clinica
library, we obtained a 3D image for the brain of each
participant. However, we only used 2D convolutional
operations, as they reduce the CNN parameter space
and model complexity. We selected only the coronal
plane for the present study. In each MRI sample, there
were in total 208 coronal slices, however, we considered
only 120 coronal slices in the middle. The slices from
the middle contain the relevant regions, such as the hip-
pocampus and the temporal lobe, which are reported to
be affected already in the earliest stages of Alzheimer’s
disease [Whitwell et al.| (2008)).

Feature extractor: We used the ConvNeXt model [Liu
et al.| (2022b) as the backbone for the SSL framework.
It was trained with the NNCLR loss ¢, for learning vi-
sual representations from the input data (see Eq.[2). We
applied a series of random augmentations to a randomly
selected coronal slice for the creation of positive pairs,
as exemplified in Figure[2]

The loss optimised for a data batch was:

1 &
L= N ;[&,(Zk - 1,2k) + £,(2k, 2k — 1)], “

where ¢, is the NNCLR loss from Eq.[2} 2k — 1 and 2k
represent the indices of the same augmented slice, and
N is the total number of training samples.

Specifically, we used the ‘tiny’ ConvNeXt model
variant [Liu et al.| (2022b) as our backbone model.
It has a configuration with sequential blocks set to
(3,3,9,3) and the number of output channels equalling
to (96, 192,384,768). ConvNeXt culminates many ar-
chitectural advancements such as larger kernel sizes of
7x7, skip connections, inverted bottleneck, Gaussian er-
ror linear units (GELU) as activation function, layer-
wise normalization (LN) strategy instead of batch nor-
malisations (BN), etc. The ConvNeXt model and pre-
trained model weights can be downloaded from the pub-
licly available PyTorch libraryﬂ

Classification head: While using the ConvNeXt
model as a feature extractor, we considered the output
produced by a 2D adaptive average pooling layer after
the last convolutional block as input for the subsequent
‘classification head’ (Figure [I). That means the classi-
fication head takes as input the latent feature represen-
tations of the MRI scans that where processed by the

#ConvNeXt via PyTorch: https://pytorch.org/vision/mai
n/models/convnext.html
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Table 1: Sample statistics of study data per diagnosis state. CN: a cognitively normal state, AD: dementia due to Alzheimer’s disease, MCI: mild
cognitive impairment, BV: behavioral variant of frontotemporal dementia, SV: semantic variant of frontotemporal dementia, PNFA: progressive
non-fluent aphasia, y: mean, o standard deviation, MMSE: mini-mental state examination, F: female, M: male.

CN AD MCI
ADNI3
Age:pu(o)  TA(T)  TT(83)  T46(8)
MMSE: (o)  29.4 (0.7) 20.8 (4.5) 27.9(1.1)
Sex: M 312/221 52/70 140/173
ADNI2
Age: u(o) 758 (7)  76.2(7.6) 74.6(7.9)
MMSE: (o) 293 (0.7) 21.14.3) 27.8(1.1)
Sex: M 110/94  120/163  151/203
AIBL
Age: (o) 73.5(64) 75.4(7.9) 76.6(6.5)
MMSE: u(o)  29.2(0.8) 19.5(5.8) 27.2(1.3)
Sex: /M 239/182  51/37 41/62
CN BV SV PNFA
FTLDNI
Age: u(o) 64.3(7.1) 62.1(5.8) 62.7(6.8) 68.9(7.7)
MMSE: (o)  29.7 (0.5) 22.6(6.2) 22.5(5.7) 24.9(5.5)
Sex: /M 72/58 23/48 14/23 19/16

backbone CNN model. The dimension of the extracted
feature vector per MRI slice is 768. Our classification
head is a simple neural network consisting of a single
fully-connected layer preceded by a layer normalization
operation (Figure|T).

3.3. Feature attribution

Integrated gradients (IG) can be applied to various
data modalities, such as texts, images or structured data
Sundararajan et al. (2017). IG was chosen over other
feature attribution methods because of its strong theo-
retical justifications, such as the completeness property
of the integrated gradients. IG considers a straight path
from some baseline to the input, and computes the gra-
dients along that path. These accumulated gradients are
called integrated gradients. However, this accumulation
is an approximation of the actual integration of the gra-
dients, and the number of steps taken between the base-
line to the input determines the quality of this approxi-
mation. To calculate the IG importance scores, a mean
CN image was used as the baseline to the IG attribution
method. We used the IG implementation provided by

the Captum libraryE] to calculate importance maps for
the MRI scans with respect to the classification task.

3.4. Experimental Setup

Training the feature extractor: We trained a fea-
ture extraction model (ConvNeXt) using the NNCLR
method on the ADNI3, ADNI2, and FTLDNI data for
three learning trials. For each trial, we created random
training and test sets. These sets were held constant for
all further experiments. If more than one MRI record-
ing was available per participant, then we assigned all of
the participant’s MRI scans only to one set, thus avoid-
ing data leakage. This resulted in 10% of data belonging
to the test set.

The model was trained for 1000 epochs using a batch
size of 180 samples. The size of the NNCLR queue
Q was set to 8192. We applied three different data
augmentation techniques with a probability of 0.5 to
produce views visualized in Figure [J(b-d): horizontal
flip, cropping and resizing, and occlusion. We experi-
mented with different data sources for training the fea-
ture extractor, i.e., utilising in-domain medical images

SCaptum: https://captum.ai/
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Figure 1: Illustration of the proposed architecture. (Top) ConvNeXt, a CNN model, trained under a self-supervised learning paradigm, extracts
features from coronal brain slices. (Bottom center) The classification head learns to classify neurodegenerative disorders from the extracted features.
CNN: convolutional neural network. LN: layer normalization. Conv: convolutional operation. LN: Layer Normalization

gk o #

100 125 150 50 75

100 125 150

(a) Original (b) Horizontal flip

0 25 50 75 100 125 150 100 125 150

(c) Crop and resize (d) Occlusion

Figure 2: Randomly applied data augmentations to the input during training.

vs. training with out-of-domain natural images. More
details about model training and results could be found
in the supplementary.

Training the classification head: To determine if a 3D
MRI scan belongs to a specific diagnostic group, we first
derive the latent representation vectors for coronal 2D
slices using the ConvNeXt feature extractor, and then
make a prediction for each slice using the classification
head. For evaluation with the test data, we applied a
simple voting procedure, in which the most frequently
occurring group label determined the final group assign-
ment. We trained the classification head for 100 epochs,
on the same three training trials that were used to train
the feature extractors. We use a batch size of 64 sam-
ples and decayed the learning rate with cosine annealing
after every 20 epochs.

We experimented with various setups for training a
classification head, with a) keeping the weights of the
feature extractor frozen vs. unfrozen, i.e., letting the
weights change during the classification head training,
and b) for the downstream task we compared differ-
ent multi-class classification heads, i.e., predicting four
(CN, MCI, AD, BV) or three classes - (CN, MCI, AD)
and (CN, AD, BV), and binary classification heads -
(CN, AD), (CN, BV), and (AD, BV). Furthermore, we
evaluated our models on the independent AIBL dataset,
which was not used during training. The independent
test dataset enabled us to assess the generalizability of
our approach.
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4. Results

4.1. Diagnostic group separation

We evaluated the manner in which the classification
head could be setup. We compared multi-class vs. bi-
nary classification heads. Table [2] shows the achieved
results of our proposed architecture for the identifi-
cation of neurodegenerative disorders, using a frozen
ConvNeXt feature extractor trained under NNCLR SSL
pradigm on the brain images. The numbers reported
were averaged over threee learning trials. For the bi-
nary (AD vs. CN) classification model, the balance
accuracy reached 82% for the cross-validation test sets
and 80% for the independent AIBL data cohort. In Sec-
tion[5.1]below, we discuss the achieved results and com-
pare them with the state of the art.

4.2. Model interpretability

To highlight the input regions that were found to be
useful by the SSL model, we used the Integrated Gra-
dients (IG) attribution method. IG calculates the impor-
tance scores for the input regions for a specified predic-
tion label. The IG importance scores were calculated
for every sample of the test data set (from ADNI2/3
and FTLDNI), on which our multi-class model (AD
vs. CN vs. BV) makes a correct classification. Fig-
ure [3] presents mean IG importance scores for the dis-
ease types AD and BV, visualised over the brain scan of
a healthy sample chosen from the ADNI cohort. While
making a prediction towards the diseased classes, the
red regions in the image highlight input regions repre-
senting the evidence for the diseased class, while the
green regions in the image highlight input regions rep-
resenting the evidence against the diseased class. The
mean importance scores were thresholded to visualize
the most relevant findings.

5. Discussion

5.1. Feature learning

In our proposed SSL framework, we rely on signals
that are derived from the data itself rather than on exter-
nal classification target labels to train a feature extractor.
We trained our SSL model while restricting input to a
subset of 2D coronal slices. It should be noted that other
SSL studies also avoided training 3D CNN with high
input resolution, and followed similar 2D approaches as
our study (Couronné et al.|(2021)) or alternatively needed
to downscale the 3D images to a very low 64 x 64 x 64
resolution |Ouyang et al.| (2021)); [Fedorov et al.| (2021}).

In Table 2] upon comparing results from various set-
tings of classification heads trained over a frozen fea-
ture extractor, we can observe a general trend, i.e., the
binary classification for separating cognitively normal
(CN) and Alzheimer’s disease (AD) samples is a much
simpler task than the multi-class classification of CN,
mild cognitive impairment (MCI), AD and behavioral
variant of frontotemporal dementia (BV) samples. This
finding has often been reported in other studies in the
field.

In the multi-class classification setting, the AD vs.
MCI vs. CN model, often confuse MCI samples with
CN or AD samples. This reflects the progressive nature
of the Alzheimer’s dementia, with MCI being interme-
diate stage between CN and AD. Interestingly, we found
that the AD vs. MCI vs. CN vs. BV model is substan-
tially better at separating BV samples from the other
CN, MCI and AD samples, with the recall (=sensitiv-
ity) of the BV class being 0.89, compared to the aver-
age micro recall of the same model being 0.51. This
finding points towards different underlying pathologies
of different dementia diseases - frontotemporal demen-
tia and AD. The same fact could also be corroborated
from the high performance metrics of the binary AD vs.
BV model.

Our AD vs. CN vs. BV multi-class model achieves a
balanced accuracy of 78%. Certain supervised methods
solve the same task, achieving performance metrics as
- Ma et al.| (2020) reports (simple) accuracy of 85.97%
from a model comparable to ours and 88.28% from a
model with more data information sources and gener-
ative data augmentation, and [Hu et al.| (2021b) reports
(simple) accuracy of 66.79% on a larger diverse dataset,
and 91.83% on a smaller cleaner dataset. While our BV
vs. CN binary model achieves a balanced accuracy of
88.2%. For the same task Moguilner et al.| (2023) re-
ports (simple) accuracy of 80% and 95% on MRI scans
with 1.5T and 3T strength, respectively.

The closest work to ours are by Ouyang et al.| (2021)
that reported group separation results using a SSL ap-
proach. However, they explicitly models longitudinal
aspect of the data for the disease trajectory prediction
task, these design choices explicitly encodes more in-
formation in the model than our models. On the ADNI
dataset, they achieved a balanced accuracy of 81.9%
from a multilayer perceptron classifier with frozen fea-
ture encoder and 83.6% post fine-tuning the feature en-
coder, for the binary AD vs. CN task. While, simi-
larly our model with a frozen feature extractor, achieves
a balanced accuracy of 82% on ADNI dataset. For
the same downstream binary classification task - AD
vs. CN, on an independent test set (AIBL), our model
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Table 2: Classification results of our proposed architecture, consisting of a frozen feature extractor trained under a SSL paradigm, and a single-layer
neural network as the downstream classification head. In a multi-class setup, micro averages are reported for the sensitivity and specificity metrics.
CN: a cognitively normal, AD: dementia due to Alzheimer’s disease, MCI: mild cognitive impairment, BV: behavioral variant of frontotemporal
dementia, MCC: Matthews correlation coefficient.

Balanced

accuracy MCC Sensitivity Specificity

Cross-validation test set (ADNI2/3 and FTLDNI)

AD vs. MCI vs.
CN vs. BV: 0.60+0.03 0.32+0.02 0.51+0.01 0.84+0.00
AD vs. MCI vs. CN:  0.56+0.02 0.32+0.03 0.55+0.02 0.78+0.01
ADvs.CNvs. BV:  0.78+0.03 0.55+0.05 0.73+0.02 0.87+0.01
BV vs.CN: 0.88+0.03 0.57+0.03 0.90+0.08 0.86+0.02
ADvs.CN: 0.82+0.04 0.61+0.08 0.82+0.05 0.82+0.03
ADvs. BV:  0.93+0.01 0.73+0.04 0.85+0.02 1.00+0.00
Independent test set (AIBL)

AD vs. MCI vs. CN:  0.53+0.01 0.30+0.03 0.69+0.01 0.84+0.01
ADvs. CN:  0.80+0.01 0.59+0.01 0.66+0.02 0.94+0.01

achieves a balanced accuracy of 80%, which is only
a two percentage point drop from the cross-validation
testing of the model, highlighting the robustness of the
model.

In Table 3] we compare our model evaluation results
with the state-of-the-art studies that also used AIBL
as an independent test dataset. Here, we compare our
SSL model with other models trained in a supervised
manner. Qiu et al| (2020), reports manual expert rat-
ing scores, with a simple accuracy metric of 82.3%.
This performance level is comparable to that of our SSL
models, which achieved the simple accuracy measure
of 89.9% on the AIBL independent test set. It should
be noted that some papers did not report the balanced
accuracy measure, thus, their ‘simple’ accuracy results
might be biased towards the majority class of cogni-
tively normal people who comprise 80% in the AIBL
dataset for the group comparison AD vs. CN.

With regard to our achieved level of performance, we
can conclude that the ConvNeXt model trained under a
SSL paradigm learns generalizable features for the sub-
sequent downstream classification tasks without requir-
ing data sampling techniques or sophisticated data aug-
mentations, and consequently achieving competitive re-
sults in comparison to other supervised approaches. The
reported results show that our model learnt meaning-
ful feature representations, in a self-supervised manner,
which helped it in successfully separating different de-
mentia stages and types.

5.2. Neural network interpretability

We chose the SSL paradigm for extracting more
generalizable image features independently of a down-
stream task. However, the SSL paradigm also allows the
backbone model to learn features of the brain that may
correlate with a specific neurodegenerative disorder.

We applied the Integrated Gradients (IG) method to
interpret the models and provide insights into the sig-
nificance of input regions for the predictions. The IG
importance scores were calculated for samples from the
test dataset for which our AD vs. CN vs. BV multi-
class model makes correct classifications. Figure |3 il-
lustrates the mean IG importance scores for classify-
ing samples into the AD or BV group. In Figure [3(a-
b), we see the hippocampus region being highlighted in
red, for the AD classification. Temporal lobe atrophy,
specifically hippocampus atrophy, is a hallmark sign of
Alzheimer’s disease. In Figure Ekc-d), we see the insula
and frontal lobe regions being highlighted in red. Insu-
lar atrophy is associated with behavioral variant fron-
totemporal dementia Moguilner et al.| (2023); |Seeley
(2010); [Luo et al.| (2020); [Mandell1 et al.| (2016). It is
of great interest to see the IG maps separately highlight-
ing regions, which in literature are often associated with
AD and BV pathology.

Notably, the model successfully learned to not con-
sider tissue outside of the brain or regions outside of the
skull. However, the derived attributions provide a rather
general indication of important input regions throughout
the brain including primarily the grey and white matter
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(a) Slice: 0, Diagnosis: AD

(c) Slice: 0, Diagnosis: BV

(b) Slice: 60, Diagnosis: AD

(d) Slice: 60, Diagnosis: BV

Figure 3: Mean attribution maps derived from the Integrated Gradients method for correctly identified AD and BV samples. Green and red color
highlight pixel contributions to the model’s prediction. Here, red highlight evidence for the respective disease classification and green indicates
evidence against it. The attribution map overlay image was smoothed and thresholded to highlight relevant findings and improve visualization. AD:
dementia due to Alzheimer’s disease, BV: behavioral variant of frontotemporal dementia.

tissue. Few studies have pointed out the complex na-
ture of IG importance scores highlighting multiple im-
age features, both for and against a class instance, which
makes their comprehension non-trivial |Adebayo et al.
(2018)); [Kakogeorgiou and Karantzalos| (2021)).

5.3. Limitations and future work

Our study uses only a subset of coronal slices for
making sample level classifications. We acknowledge

that the selection of the full slice set along the coronal
axis or selection of the full 3D MRI data could have a
positive effect on classification performance, however,
the main goal of the study was to investigate the appli-
cation of SSL and to compare it with traditional super-
vised approaches, thus only a subset of slices along the
coronal axis were chosen as input. In addition, training
3D CNN requires a considerably larger parameter space
than 2D models. Learning a 3D CNN is currently a
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Table 3: Comparison of our proposed method with the state-of-the-art. The results are provided for studies that used the AIBL dataset for
independent evaluation and the group comparison AD vs. CN. In some studies balanced accuracy was not reported, ‘simple’ accuracy is provided

instead, which might be biased towards the majority class (=CN).

AD: dementia due to Alzheimer’s disease, CN: cognitively normal. SSL: Self-supervised learning, SL: Supervised learning. CNN: Convolutional

neural network.

Study training

Method details

Balanced accuracy

on the ADNI dataset
Our method SSL, 2D slice-level CNN 0.797+0.009
‘Wen et al.| (2020) SL, 2D slice-level CNN 0.756+0.015
‘Wen et al.| (2020) SL, 3D patch-level CNN 0.802+0.016
‘Wen et al.| (2020) SL, 3D subject-level CNN 0.862+0.016
Dyrba et al.|(2021) SL, 3D subject-level CNN  0.832+0.030

Simple accuracy

Our method

Qiu et al.| (2020)
Han et al.| (2022)
Han et al. (2022)
Qiu et al.|(2020)

SSL, 2D slice-level CNN 0.899+0.003
SL, 3D patch-level CNN 0.870+0.022
SL, 3D subject-level CNN 0.865
SL, 3D patch-level CNN 0.875
Expert Neurologists 0.823+0.094

computationally intractable problem for self-supervised
learning, as it relies on - a) very large data corpus, b)
data augmentation algorithms which are markedly more
computationally expensive in 3D, and c¢) many learning
iterations as training typically converges much slower
than in supervised learning. More specifically, train-
ing our models for 1000 epochs on a single NVIDIA
Quadro RTX 6000 GPU took on average 1 day and 3
hours.

In future, for training better feature extractors, we
would try to incorporate more spatial neuroanatomical
information, by combining three CNN:s, i.e., one trained
along each orthogonal planes - axial, coronal, and sagit-
tal, and hence learning a feature representations for full
3D MRI data, as was recently proposed for supervised
models |Qiao et al.|(2021)). Alternatively, a Transformer
model could be designed to efficiently process smaller
3D patches of the brain, which would not require sepa-
rate CNN models for each plane Qiu et al.| (2020); Wen
et al.[(2020); Han et al.| (2022).

With regards to neural network interpretability and
feature attribution, a comprehensive analysis of the
salient features and feature attribution methods lies out-
side the scope of our current work. Further experiments
are required to holistically understand our SSL model
and produced more informative importance maps. In
our future work, we will explore other methods for fea-
ture attribution, and methods to summarize attributions
per brain region to assess if specific disease patterns
emerge.
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We also intend to include more data in our future
studies, for learning more robust models. Specifically,
we intend to add FTLD data cohorts.

6. Conclusion

We presented an architecture for the identification of
neurodegenerative diseases from MRI data, consisting
of a feature extractor and a classification head. The fea-
ture extractor used the ConvNeXt architecture as a back-
bone, which was trained under a self-supervised learn-
ing paradigm with nearest-neighbor contrastive learning
(NNCLR) loss on brain MRI scans. The feature extrac-
tor model was used for subsequent downstream tasks by
training only an additional single-layer neural network
component which performs the classification. From our
experiments, we show that CNN models trained under
SSL paradigm have comparable performance to state-
of-the-art CNN models trained in a supervised manner.
With this presented approach, we provide a practical ap-
plication of self-supervised learning on MRI data, as
well as also demonstrate the application of attribution
mapping methods for such systems in order to improve
interpretability of the model’s decision.
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Abbreviations

AD: Alzheimer’s disease

ADNI: Alzheimer’s Disease Neuroimaging Initia-
tive

AIBL: Australian Imaging, Biomarker & Lifestyle
Flagship Study of Ageing

BN: Batch normalisation

BV: behavioral variant of frontotemporal dementia
CN: Cognitively normal participants

CNN: Convolutional neural network

ConvNeXT: A highly optimized CNN model ar-
chitecture recently introduced by |Liu et al.[(2022b))

DZNE: Deutsches Zentrum fiir Neurodegenerative
Erkrankungen (German Center for Neurodegener-
ative Diseases)

FTLD: Frontotemporal lobar degeneration

FTLDNI: Frontotemporal Lobar Degeneration
Neuroimaging Initiative

GELU: Gaussian error linear units

Grad-CAM: Gradient-weighted class activation
mapping
IG: Integrated gradients

InfoNCE: A form a contrastive loss metric, where
NCE stands for Noise-Contrastive Estimation

LN: Layer-wise normalization

LRP: Layer-wise relevance propagation

MCC: Matthews correlation coefficient

MCI: Mild cognitive impairment

MNI: Montreal Neurological Institute

MRI: Magnetic resonance imaging

NNCLR: Nearest-Neighbor Contrastive Learning
PNFA: Progressive non-fluent aphasia

SL: Supervised learning

SSL: Self-supervised learning

SV: semantic variant of frontotemporal dementia
ViT: Vision Transformers

XAI: Explainable artificial intelligence
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