Research article: Cardi-Ankle Vascular Index Optimizes Ischemic Heart disease Diagnosis

Running tittle: Recent Advances in IHD Diagnosis

Authors' list: Basheer Abdullah Marzoog^{1,*}, Daria Gognieva¹, Peter Chomakhidze¹, Philipp Kopylov¹

¹ World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; postal address: Russia, Moscow, 8-2 Trubetskaya street, 119991.

^{*}Corresponding author: Basheer Abdullah Marzoog, MD, Ph.D. cardiology student at Sechenov First Moscow State Medical University at the World-Class Research Center "Digital biodesign and personalized healthcare". (marzug@mail.ru, +79969602820). Address: Russia, Moscow, 8-2 Trubetskaya street, 119991. Postal address: Russia, Moscow, 8-2 Trubetskaya street, 119991. ORCID: 0000-0001-5507-2413, Scopus ID: 57486338800

Competing interests: No competing interests regarding the publication.

Abstract

Background: Ischemic heart disease (IHD) has the highest mortality rate in the globe in between the other cardiovascular diseases (CVD). This returns to the poor diagnostic and therapeutic strategies including the primary prevention techniques.

Aims: To assess the changes in the cardio-ankle vascular index (CAVI) in patients with vs without IHD confirmed by stress computed tomography myocardial perfusion (CTP) imaging with vasodilatation stress-test (Adenosine triphosphate).

Objectives: IHD often has preventable risk factors and causes that lead to the appearance of the disease. However, the lack of appropriate diagnostic and prevention tools remains a global challenge in or era despite current scientific advances.

Material and methods: A single center observational study included 80 participants from Moscow. The participants aged \geq 40 years and given a written consent to participate in the study. Both groups, G1=31 with vs. G2 = 49 without post stress induced myocardial perfusion defect, received cardiologist's consultation, anthropometric measurements, blood pressure and pulse rate, echocardiography, CAVI and performing bicycle ergometry. For statistical analysis, descriptive statistics, t-test independent by groups and dependent by numerical variables for repeated analysis for the same patients, Pearson's correlation coefficient, multivariate ANOVA test, and for clarification purposes, diagrams and bar figures were used. For performing the statistical analysis, used the Statistica 12 programme (StatSoft, Inc. (2014). STATISTICA (data analysis software system), version 12. www.statsoft.com.) and the IBM SPSS Statistics, version 28.0.1.1 (14).

Results: The mean age of the participants 56.28, standard deviation (Std.Dev. \pm 10.601). Mean CAVI in the IHD group 8.509677 (Std.Dev. \pm 0.975057208) vs 7.994898 (Std.Dev. \pm 1.48990509) in the non-IHD group. The mean estimated biological age of the arteries according to the results of the CAVI in the first group 61.2258 years vs 53.5102 years in the second group. The Mean brachial-ankle pulse (Tba) in the IHD group 82.0968 vs 89.0102 in the second group. The mean heart-ankle pulse wave velocity (haPWV; m/s) in the IHD group was 0.9533 vs 0.8860 in the second group. Regression analysis demonstrated that the dependent variable, the CAVI parameter, have no significant effect on the development of stress-induced myocardial perfusion defect, regression coefficient 95.316, p>0.05. The CAVI showed 64 % diagnostic accuracy for the IHD.

Conclusion: The CAVI parameter showed no statistical difference between the participants with IHD vs without. The CAVI parameter can be used as an axillary method for improving the diagnosis of IHD.

Other: Additional indicators associated with IHD include the Tba and haPWV parameters, higher in patients with IHD.

Keywords: IHD, Single channel electrocardiography, CTP, Prevention, Risk Factors, Stress Test, Machine Learning Model, CAVI

Introduction

Ischemic heart disease remains the main challenge in terms of mortality and morbidity despite advances in the used methods for diagnosis and prevention. However, the early prevention in terms of evaluation of ischemic heart disease in early period was still underestimated. The current attention of scientists paid to the prevention rather than diagnosis and treatment. In this manner, the scientific community developed several cost-effective methods to be confirmed for the clinical use for early prevention of ischemic heart disease, including the use of single-channel electrocardiography and exhaled breath analysis in coronary heart disease prevention [1].

Vectorcardiography, a technique that records cardiac electrical activity as closed loops, can be useful for training in electrocardiography and detecting cardiac ischemia [2,3]. Portable and fast electrode placement devices allow for good-quality ECG tracings, making singlechannel ECG accessible and efficient [2].

The usage of CAVI in ischemic heart disease has a challenging role and requires further investigation and elucidation.

Material and methods

A prospective single center cohort study included 80 participants. According to the results of the CTP, the participates divided in to two groups. The first group of participants with stress-induced myocardial perfusion defect (n=31) and the second group without stress induced myocardial perfusion defect (n = 49) in the CTP. Participants are randomly chosen. Written consent has been taken from the participants. The study registered on clinicaltrials.gov (NCT06181799), and the study approved by the ethical commitment of the Sechenov University, Russia, from "Ethics Committee Requirement No 19-23 from 26.10.2023".

The study evaluated continuous and categorical variables. The continuous variables included; age, pulse at rest, systolic blood pressure (SBP) at rest, diastolic blood pressure (DBP) at rest, body weight, height, maximum heart rate (HR) on physical stress test, watt (WT) on physical stress test, metabolic equivalent (METs) on physical stress test, reached percent on physical stress test , ejection fraction (EF %) on echocardiography, estimated vessel age, right cardio-ankle vascular index (R-CAVI), left Cardio-ankle vascular index (L-CAVI), mean CAVI (=(right-CAVI + left-CAVI)/2), right ankle-brachial index (RABI), left ankle-brachial index (LABI), mean ankle-brachial index (ABI), mean SBP brachial (SBPB) (=(right SBPB+ left SBPB)/2), mean DBPB (=(right DBPB + left DBPB)/2), BP right brachial (BPRB) (=(SBP+DBP)/2), BP left brachial (BPLB) (=(SBP+DBP)/2), BP left ankle (BPRA) (=(SBP+DBP)/2), BP left ankle (BPLA)

(=(SBP+DBP)/2), mean BPA (=(BPRA+ BPLA) /2), right brachial pulse (RTb), left brachial pulse (LTb), mean Tb (=(LTb+ RTb)/2), right brachial-ankle pulse (Tba), left brachial-ankle pulse (Tba), mean Tba (= (left Tba+right Tba)/2), length heart-ankle (Lha in cm), heart-ankle pulse wave velocity (haPWV = Lha/(mean left Tba+ mean right Tba); m/s), β -stiffness index from PWV (=2*1050*(haPWV)^2*LN((mean SBPB *133.32/ mean DBPB *133,32))/((mean SBPB*133,32)-(mean DBPB *133,32)), creatinine (µmol/L), and eGFR (2021 CKD-EPI Creatinine). Categorical variables included; gender, obesity stage, smoking, concomitant disease, coronary artery, hemodynamically significant (>60%), myocardial perfusion defect after stress ATP, myocardial perfusion defect before stress ATP, atherosclerosis in other arteries (Yes/No), carotid atherosclerosis, brachiocephalic atherosclerosis, arterial hypertension (AH), stage of the AH, degree of the AH, risk of cardiovascular disease (CVD), stable coronary artery disease (SCAD), functional class (FC) by Watt and by METs, reaction type to stress test(positive/negative), reason of discontinuation of the stress test, CAVI degree, and ABI degree.

The selection criteria involved

The inclusion criteria;

- 1. Participants age ≥ 40 years.
- 2. Participants with intact mental and physical activity.
- 3. Written consent to participate in the study, take blood samples, and anonymously publish the results of the study.
- 4. The participants in the control group are individuals without coronary artery disease, confirmed by the absence of the stress-induced myocardial perfusion defect on adenosine triphosphate stress myocardial perfusion computed tomography ((by using contrast-enhanced multislice spiral computed tomography (CE-MSCT) using adenosine triphosphate (ATP)).
- 5. Participants in the experimental group are individuals with coronary artery disease, confirmed by stress-induced myocardial perfusion defect on the adenosine triphosphate stress myocardial perfusion computed tomography.

Exclusion criteria:

- 1. Failure of the stress test for reasons unrelated to heart disease
- 2. Reluctance to continue participating in the study.

Non-inclusion criteria

- 1. Pregnancy.
- 2. Diabetes mellitus

- 3. Presence of signs of acute coronary syndrome (myocardial infarction in the last two days), history of myocardial infarction;
- 4. Active infectious and non-infectious inflammatory diseases in the exacerbation phase;
- 5. Respiratory diseases (bronchial asthma, chronic bronchitis, cystic fibrosis);
- 6. Acute thromboembolism of pulmonary artery branches;
- 7. Aortic dissection;
- 8. Critical anatomical heart defects;
- 9. Active oncopathology;
- 10. Decompensation phase of acute heart failure;
- Neurological pathology (Parkinson's disease, multiple sclerosis, acute psychosis, Guillain-Barré syndrome);
- 12. Cardiac arrhythmias that do not allow exercise ECG testing (Wolff-Parkinson-White syndrome, Sick sinus syndrome, AV block of II-III-degree, persistent ventricular tachycardia);
- 13. Diseases of the musculoskeletal system that prevent passing a stress test (bicycle ergometry);
- 14. Allergic reaction to iodine and/or adenosine triphosphate.

Data collection

Both groups pass a vessel stiffness test and pulse wave recording as well as vascular age using Fukuda Denshi device (VaSera VS-1500; Japan). Cuffs placed to assess vascular stiffness (CAVI parameter) and vascular age as well as the ancle-brachial index [6]. Measurements performed in a quiet room at a stable temperature $24-26 \square^{\circ}$ C; exercise, smoking, discontinue chronotropic medications (beta-blockers and non-dihydropyridine drugs; verapamil, diltiazem) and food avoided $2-3\square$ hours prior to the measurement [7].

Subsequently, participants pass the exercise bicycle ergometry test (SCHILLER CS200 device; Bruce protocol or modified Bruce protocol). According to the metabolic equivalent; Mets-BT (BT), the functional class (FC) in participants with determined positive stress test results determined. During the bicycle ergometry, the participants monitored with 12-lead ECG and manual blood pressure measurement, 1 time each 2 minutes. The rest time ECG and blood pressure monitoring continue for at least five minutes after the end of the stress bicycle ergometry test.

The procedure is stopped if an increase in systolic blood pressure <220 mmHg, horizontal or down on the ECG ≥ 1 mm, typical heart pain during test, ventricular tachycardia or atrial

fibrillation, or other significant heart rhythm disorders were found. Furthermore, stop the procedure if the target heart rate (86% of the 220-age) is reached.

Before performing CTP, all the participants present results of the venous creatinine level, eGFR (estimated glomerular filtration rate) according to the 2021 CKD-EPI Creatinine > 30 ml/min/1,73 m2, according to the recommendation for using this formula by the National kidney foundation and the American Society of Nephrology [8–11].

Participants from both groups got catheterization in the basilar vein or the radial vein for injection of contrast and ATP to perform a pharmacological stress test in the heart by increasing heart rate during the computer tomography imaging of stressed myocardial perfusion.

Computer tomography was performed on Canon scanner with 640 slice, 0,5 mm thickness of slice, with contrast (Omnipaque, 50 ml), injected two times: in rest to get images for myocardial perfusion before test, and in 20 mints just after ATP had been injected in dose according to body weight.

The results of myocardial perfusion considered positive if there was a perfusion defect after the stress test or worsen the already existing perfusion defect in the rest phase.

Statistical processing was carried out using the Statistica 12 programme. (StatSoft, Inc. (2014). STATISTICA (data analysis software system), version 12. www.statsoft.com.).

Statistical Analysis

For quantitative parameters, the nature of the distribution (using the Shapiro-Wilk test), the mean, the standard deviation, the interquartile, the 95% confidence interval, the minimum and maximum values were determined. For categorical and qualitative features, the proportion and absolute number of values were determined. Comparative analysis for normally distributed quantitative traits was carried out on the basis of Welch's t-test (2 groups); for abnormally distributed quantitative traits, using the Mann-Whitney U-test (2 groups). Comparative analysis of categorical and qualitative features was carried out using the Pearson X-square criterion, in case of its inapplicability, using the exact Fisher test. For the risk of CAVI on the development of stress-induced myocardial perfusion defect, we used multivariate regression analysis using the SPSS programme. For assessing the diagnostic accuracy of the CAVI parameter for stress-induced myocardial perfusion defect, we used the ROC and it is AUC analysis. P considered significant at <0.05.

Results

The descriptive characteristics of the sample were shown as both groups and then each group separately in tables for a full representation of the results. The characteristics of the continuous variables of the sample described in the table below. (*Table 1*)

Table 1: The features of the continues variables of the sample represented in the table.

	Descriptive Statistics (Both in primary data.stw)					
Variable	Valid N	Mean	Minimum	Maximum	Std.Dev.	
Age	80	56.28	40.24	77.94	10.601	
Pulse rest	80	70.29	49.00	93.00	9.559	
SBP rest	80	123.16	54.00	159.00	15.437	
DBP rest	80	80.61	60.00	122.00	11.238	
Body weight	80	77.92	52.50	140.00	16.236	
Height	80	169.95	148.00	190.00	8.835	
BMI	80	26.93	18.49	48.44	4.901	
Pulse rest	80	69.68	49.00	99.00	9.260	
Pulse after stress	80	86.89	63.00	115.00	10.579	
Goal heart rate	80	163.72	142.06	179.76	10.601	
Max HR	80	146.25	108.00	199.00	14.111	
Reached %	80	89.53	64.89	135.25	9.166	
WT	80	125.63	75.00	250.00	44.111	
METs	80	6.67	2.90	11.90	1.977	
EF (%)	65	64.52	55.00	73.00	4.388	
eVessel age	80	56.50	20.00	80.00	13.520	
R-CAVI	80	8.21	4.80	15.10	1.379	
L-CAVI	80	8.18	4.80	14.90	1.299	
Mean CAVI	80	8,194	4,800	15,000	1,331	
RABI	80	1.15	0.86	1.40	0.088	
LABI	80	1.15	0.89	1.42	0.084	
Mean SBP B	80	134.38	105.50	169.00	13.086	
Mean DBP B	80	85.28	60.50	104.50	8.358	
BP RB (=(SBP+DBP)/2)	80	103.98	75.00	137.00	11.547	
BP LB (=(SBP+DBP)/2)	80	104.54	71.00	136.00	10.534	
Mean BP B	80	104.26	73.00	136.50	10.772	
BP RA (=(SBP+DBP)/2)	80	108.39	80.00	137.00	12.553	
BP LA (=(SBP+DBP)/2)	80	108.63	81.00	138.00	11.519	
Mean BP A	80	108.51	81.50	135.00	11.468	
Mean ABI	80	1.15	0.88	1.41	0.081	
RTb	80	80.53	59.00	152.00	13.441	
LTb	80	77.26	58.00	128.00	14.012	
Mean Tb	80	78.89	59.00	132.50	12.547	
Right Tba	80	86.26	23.00	117.00	16.232	
Left Tba	80	86.40	24.00	114.00	14.685	
Mean Tba	80	86.33	23.50	115.00	15.358	
Lha (cm)	80	148.17	130.33	164.47	7.182	
haPWV (m/s)	80	0.91	0.67	1.42	0.124	

	Descriptive Statistics (Both in primary data.stw)				
Variable	Valid N	Mean	Minimum	Maximum	Std.Dev.
β-stiffness index from PWV	80	2.83	1.21	7.04	0.813
Creatinine (µmol/L)	80	82.74	53.90	138.00	16.014
eGFR (2021 CKD-EPI	80	85.31	45.40	113.70	14.684
Creatinine)					

The comparative characteristics of the sample represented in the below tables based on the presence or absence of the stress induced myocardial perfusion defect of the CTP imaging with the adenosine triphosphate. (*Table 2A-B*)

Table 2A: Categorical variables presented in absolute and relative study values for the true incidence of the stated factor. X^2 test used for the analysis of categorical variables. * Values of statically significant differences. Abbreviations METs; metabolic equivalent, CPT; stress myocardial perfusion computer tomography imaging.

Index	Factor	Group 1 (n=31). Positive CTP	Group 2 (n=49). Negative CTP	р
Gender	F	17 (54.83871%)	22 (44.89796%)	0.387
	М	14 (45.16129%)	27 (55.10204%)	
Obesity stage	Normal	12 (38.70968%)	18 (36.73469%)	0.988 363
	Overweig ht	11 (35.48387%)	18 (36.73469%)	
	1 degree	8 (25.80645%)	12 (24.48980%)	
	3 degree	0 (0.0%)	1 (2.04082 %)	
Smoking	Yes	7 (22.5806 %)	7 (14.28571 %)	0.342
Smoking	No	24 (77.41935 %)	42 (85.71429 %)	
	Yes	15 (48.38710%)	26 (53.06122 %)	0.835
Concomitant diseases	No	12 (38.70968 %)	23 (46.93878 %)	
Concommant diseases	Missing data	4 (12.90323 %)	0 (0.0 %)	
Atherosclerosis of the	Yes	16 (51.61290 %)	15 (30.61224 %)	0.061
coronary artery	No	15 (48.38710 %)	34 (69.38776 %)	
Hemodynamically significant coronary artery	Yes	8 (25.80645 %)	1 (2.04082 %)	0.002 *
atherosclerosis on the CTP (>60% stenosis)	No	23 (74.19355%)	48 (97.95918 %)	
Stress induced myocardial	Yes	31 (100 %)	0 (0.0 %)	<0.00 1 *
perfusion defect on the CIP	No	0 (0.0 %)	49 (100 %)	
Myocardial perfusion defect	Yes	21 (67.74194 %)	5 (10.20408 %)	<0.00 1*
before Stress ATP on the CTP	No	10 (32.25806 %)	44 (89.79592 %)	

	Yes	22 (70.96774 %)	19 (38.77551%)	0.006 *
Atherosclerosis in other	No	7 (22.58065 %)	25 (51.02041 %)	
arteries	Missing	2 (6.45161 %)	5 (10.20408 %)	
	data			
Atherosclerotic vascular	Carotid	1 (3.22581%)	0 (0.0%)	0.347
(Namely)	Carotid. Brachioce phalic bifurcatio	21 (67.74194%)	19 (38.77551%)	
	II Missing	0(2002226%)	20 (61 22440 %)	
	Missing	9 (29.05220 %)	30 (01.22449 %)	
	Vas	20(64516120/)	10 (29 77551 0/)	0.015
	res	20 (04.31013 %)	19 (38.77331 %)	0.015
Carotid artery atherosclerosis	No	8 (25.80645 %)	26 (53 06122 %)	
curotic artery atterosererosis	Missing	3 (9 67742 %)	4 (8 16327 %)	
	data	5 (510771270)	1 (0.10027 70)	
	Yes	18 (58.06452 %)	19 (38.77551 %)	0.067
Brachiocephalic artery	No	10 (32.25806 %)	26 (53.06122 %)	
atherosclerosis	Missing	3 (9.67742 %)	4 (8.16327 %)	
	data			
	Yes	19 (61.29032 %)	21 (42.85714 %)	0.109
Arterial Hypertension	No	12 (38.70968 %)	28 (57.14286 %)	
Stage of the arterial	Ι	4 (13.55%)	1 (2.04082%)	0.079
hypertension				756
	II	6 (19.35484%)	14 (28.57143%)	
	III	9 (29.03226%)	7 (14.28571%)	
Degree of hypertension	Degree 1	10 (32.25806%)	9 (18.36735%)	0.098 908
	Degree 2	3 (9.67742%)	10 (20.40%)	
	Degree 3	6 (19.35484%)	3 (6.12245%)	
Risk of cardiovascular disease	Low	10 (32.25806%)	19 (38.77551%)	0.449 429
	Moderate	8 (25.80645%)	16 (34.70%)	
	High	8 (25.80645%)	10 (20.40816%)	
	Very high	5 (16.12903%)	3 (6.12245%)	
	Yes	4 (12.90323 %)	1 (2.04082 %)	<0.00 1 *
SCAD from anamnesis	No	2 (6.45161 %)	25 (51.02041%)	
	Missing data	25 (80.64516 %)	23 (46.93878 %)	
Blood pressure reaction type on stress test	Asthenic	2 (10.5%)	2 (4.08163 %)	0.072 076
	Hypotonic	3 (15.8%)	1 (2.04082 %)	
	Hypertoni	1 (5.3%)	4 (8.16327 %)	

	0			
		1 (5 20/)		
	Mild	1 (5.3%)	0 (0.0 %)	
	Hypertoni			
	с			
	Normoton	12 (63.2%)	42 (85.71429 %)	
	ic			
Watt	75	5 (16.12903 %)	10 (20.40816 %)	0.456
	100	15 (48.38710%)	11 (22.44898 %)	
	125	4 (12.90323%)	9 (18.36735 %)	
	150	2 (6.45161%)	6 (12.24490%)	
	175	1 3.22581%)	7 (14.28571%)	
	200	1 (3.22581%)	6 (12.24490%)	
	225	2 (6 45161 %)	0 (0 0%)	
	250	1 (3 22581%)		
Eurotional alage by Watt	ECI	1(3.2238170) 1(2.2258107)	7(14.285710/)	0.212
Functional class by wait		1(5.22381%)	7 (14.28371%)	0.515
	FC-II	3 (9.6/742%)	o (12.24490%)	
	No SCAD	27 (87.09677%)	36 (73.46939 %)	
Functional class by METs	FC-I	1 (3.22581%)	5 (10.20408%)	0.556
	FC-II	3 (9 67742%)	7 (14 28571%)	0
	FC-III	0(00%)	1 (2 04082%)	
		27(87.09677.%)	36 (73 /6030 %	
	NU SCAD	27 (87.09077 70))	
Reaction type to stress test	Negative	16 (51.61290%)	26 (53.06122%)	0.191
(positive/negative)				007
	Suspected	11 (35.45%)	10 (20.40816%)	
	Positive	4 (12.90323%)	13 (26.53061%)	
Reason of discontinuation of	Horizontal	2 (6.45%)	6 (12.24490%)	0.385
the stress test	ST	2 (0.1570)	0 (12.211)070)	0.000
	depression			
	>1mm			
	Reach	29 (93 54839%)	42 (88 11 %)	
	goal HR		72 (00.11 /0)	
Tolerance to exertion on	Low	1 (3 22581%)	1 (2.04082 %)	0.416
stress test		1 (3.2230170)	1 (2.01002 /0)	079
	Moderate	20 (64 45%)	23 (46 93878 %)	
	Close to	3 (9 67742%)	5 (10 20408%)	
	high	5 (7.077270)	5 (10.20+0070)	
	Uigh	3(0,6774204)	13 (26 52061 0/)	
	Vorshi-1	J(7.0774270)	13(20.33001%)	
	very nign	4 (12.90525%)	/ (14.265/1 %)	0.072
	Normal	9 (29.03226 %)	27 (55.10204 %)	0.073
	(<8)			757
CAVI degree	Borderline	11 (35.48387 %)	11 (22.44898 %)	
	(8-9)			
	Pathologic	11 (35.48387 %)	11 (22.44898 %)	
	al (>9)			

	Normal	29 (93.54839 %)	47 (95.91837 %)	0.893
ADI degree				81
Abi degree	Borderline	1 (3.22581 %)	1 (2.04082 %)	
	Abnormal	1 (3.22581 %)	1 (2.04082 %)	
Biological estimated vascular	Normal	16 (51.61290%)	29 (59.18367%)	0.507
age	High	15 (48.38710%)	20 (40.81633%)	
				0.285
	Ι	12 (38.70%)	23 (46.93877 %)	103
	Π	16 (51.61290%)	25 (51.02041%)	
CKD stage	IIIa	3 (9.67742%)	1 (2.04082 %)	

Table 2 B: Continuous variables of the sample presented as mean ± standard deviation (Std. div.), Student test as independent variables used. * Values of statically significant differences. Abbreviations: SBP; systolic blood pressure, DBP; diastolic blood pressure, BMI, body mass index, HR; heart rate, METs; metabolic equivalent, R-CAVI; right cardio-ankle vascular index, L-CAVI; left Cardio-ankle vascular index, RABI; right ankle-brachial index, LABI; left ankle-brachial index, SBP B; systolic blood pressure brachial, DBP B; diastolic blood pressure ight brachial, BP RB; blood pressure right brachial, BP RA ; blood pressure right ankle, BP LA; blood pressure left ankle, BP A; blood pressure ankle, ABI; ankle-brachial index, RTb; right brachial pulse, LTb; left brachial pulse, Tb; mean brachial pulse, Tba; mean brachial-ankle pulse, Lha (cm); length heart-ankle, haPWV (m/s); heart-ankle pulse wave velocity.

	T-tests; Grouping: Myocardial perfusion defect after stress ATP						
Variable	(Both in primary data.stw)						
	Group 1 (n=31). Pos	sitive CTP. Mean ± S	Std. div.				
	Group 2 (n=49). Ne	gative CTP. Mean ±	Std. div.				
	Mean	Mean Mean t-value p					
	Yes	No					
Age	59.9307 ±11.70846	53.9675 ± 9.23135	2.53382	0.013287*			
Pulse rest	70.2258 ± 10.74464	70.3265 ±8.84446	-0.04562	0.963726			
SBP rest	124.4839 ±	122.3265	0.60653	0.545921			
	20.56351	±11.22755					
DBP rest	82.3548 ±13.16447	79.5102 ± 9.81521	1.10453	0.272758			
Body weight	77.1290 ± 14.71675	78.4204	-0.34465	0.731287			
		± 17.25762					
Height	169.8065 ±9.41424	170.0408	-0.11487	0.908845			
		± 8.54695					
BMI	26.7076 ±4.23191	27.0654 ± 5.31845	-0.31627	0.752643			
Pulse rest	$69.6452 \pm$	69.6939 ±7.63273	-0.02278	0.981884			
	11.51390						
Pulse after stress	85.7419 ±	87.6122 ±9.72072	-0.76835	0.444602			
	11.88828						

	T-tests; Grouping: Myocardial perfusion defect after stress ATP				
Variable	(Both in primary dat	ta.stw)			
	Group 1 (n=31). Pos	sitive CTP. Mean \pm S	Std. div.		
	Group 2 (n=49). Ne	gative CTP. Mean ±	Std. div.		
	Mean	Mean	t-value	р	
	Yes	No		-	
Goal heart rate	160.0693	166.0325	-2.53382	0.013287*	
	± 11.70846	±9.23135			
Max HR	142.6774	148.5102	-1.82761	0.071432	
	±17.66614	±10.91849			
Reached %	89.4238 ±12.09432	$39.4238 \pm 12.09432 89.6020 \pm 6.84428 -$		0.933138	
WT	120.9677	128.5714	-0.74903	0.456093	
	±47.03579	±42.38956			
METs	6.3290 ± 2.03571	6.8878 ±1.92934	-1.23526	0.220441	
EF (%)	64.4783 ±4.77560	64.5476 ±4.22075	-0.06046	0.951981	
eVessel age	61.2258 ± 12.42232	53.5102	2.57376	0.011955*	
		±13.44762			
R-CAVI	8.5806 ±1.03904	7.9714 ±1.51891	1.95970	0.053603	
L-CAVI	8.4387 ±0.93868	8.0184 ±1.46922	1.41852	0.160024	
Mean CAVI	8.509677 ±0.97506	7.994898	1,704581	0,092253	
		±1.48991			
RABI	1.1232 ± 0.10041	1.1629 ±0.07697	-1.99089	0.049996*	
LABI	1.1297 ±0.08716	1.1584 ±0.08032	-1.50589	0.136133	
Mean SBP B	137.9839	132.0918	1.99878	0.049116	
	±15.43399	±10.91953			
Mean DBP B	86.9194 ±8.76841	84.2347 ±8.00397	1.40836	0.162997	
BP RB (=(SBP+DBP)/2)	106.4194	102.4286	1.51834	0.132972	
	±12.85243	±10.48411			
BP LB	107.0968	102.9184	1.75092	0.083892	
(=(SBP+DBP)/2)	±11.51044	±9.63898			
Mean BP B	106.7581	102.6735	1.67101	0.098728	
	±11.94004	±9.75990			
BP RA	110.6452	106.9592	1.28474	0.202687	
(=(SBP+DBP)/2)	±13.09338	±12.11741			
BP LA	111.2903	106.9388	1.66443	0.100039	
(=(SBP+DBP)/2)	±12.77026	±10.43913			
Mean BP A	110.9677	106.9490	1.54024	0.127550	
	±12.37129	±10.69572	1.07701	0.044070	
Mean ABI	1.1265 ±0.09089	1.1606 ±0.07259	-1.85781	0.066970	
RTb	77.2581 ±10.23708	82.5918	-1.75167	0.083761	
		±14.85193	1.500.66	0.115050	
LTb	74.1613 ±12.88176	79.2245	-1.58966	0.115958	
Mean Th	75 7007 + 10 65022	± 14.40730	1.92215	0.070746	
Iviean 10	15.1091 ±10.65033	00.9082	-1.83213	0.070746	
Dicht The	Q1 1025 1 1 070 (Q	±13.32318	2 27000	0.025241*	
Kigin 10a	01.1905 ±10.2/968	09.4094	-2.27998	0.025341*	
L off The	82 0000 + 14 72002	±13.32029 99.5510	166560	0.00006	
Lett 10a	05.0000 ±14.73092	00.3310	-1.00300	0.099800	
		±14.39048			

	T-tests; Grouping: Myocardial perfusion defect after stress ATP					
Variable	(Both in primary data.stw)					
	Group 1 (n=31). Pos	sitive CTP. Mean ± S	Std. div.			
	Group 2 (n=49). Ne	gative CTP. Mean \pm	Std. div.			
	Mean Mean t-value p					
	Yes	No				
Mean Tba	82.0968 ± 15.38420	89.0102	-1.99834	0.049164*		
		± 14.87850				
Lha (cm)	148.0571 ± 7.65284	148.2476	-0.11487	0.908845		
		± 6.94782				
haPWV (m/s)	0.9533 ±0.11852	0.8860 ± 0.12080	2.44529	0.016727*		
β-stiffness index from	2.9538 ±0.65907	2.7567 ±0.89559	1.05682	0.293858		
PWV						
Creatinine (µmol/L)	80.3787 ±15.44759	84.2339	-1.04969	0.297103		
		± 16.34146				
eGFR (2021 CKD-EPI	84.8548 ±15.14628	85.5898	-0.21677	0.828950		
Creatinine)		± 14.53585				

The bivariant continuous variables of the sample are represented in the following tables. (*Table 3A-3 3M*)

Table 3: The comparative features of the sample divided by various binary categorical variables. The represented continuous variables are all statistically significant at p<0.05.

3-A							
Variable	T-tests; Groupi	ng: Gender (Bo	th in primary d	ata.stw)			
	Group 1: F	-					
	Group 2: M						
	Mean	Mean Mean t-value p					
	F	М					
Body weight	71.5974	83.9341	-3.65280	0.000468			
Height	163.9359	175.6707	-7.93010	0.000000			
WT	94.8718	154.8780	-8.28672	0.000000			
METs	5.8846	7.4195	-3.74534	0.000343			
Lha (cm)	143.2849	152.8242	-7.93010	0.000000			
β -stiffness index from PWV	2.6430	3.0138	-2.08085	0.040730			
Creatinine (µmol/L)	72.4862	92.4937	-7.13522	0.000000			

3-B

Variable	T-tests; Grouping: Smoking (Both in primary data.stw) Group 1: No Group 2: Yes				
	Mean No	Mean Yes	t-value	р	
DBP rest	79.4394	86.1429	-2.06890	0.041869	
Body weight	75.3121	90.2143	-3.31009	0.001414	
Height	168.9848	174.5000	-2.17081	0.032987	
BMI	26.3829	29.4905	-2.20717	0.030242	

Lha (cm)	147.3892	151.8725	-2.17081	0.032987

2	1	٦
Э	-	~

Variable	T-tests; Groupin	g: Concomitant d	isease (Both in p	orimary
	data.stw)			
	Group 1: Yes			
	Group 2: No			
	Mean	Mean	t-value	р
	Yes	No		_
Age	58.2005	53.0605	2.15911	0.034084
BMI	28.2638	25.4612	2.54843	0.012894
Goal heart rate	161.7995	166.9395	-2.15911	0.034084
WT	115.8537	139.2857	-2.35097	0.021390
METs	6.0683	7.5000	-3.29168	0.001528
eVessel age	59.4146	52.0286	2.42323	0.017829
Mean SBP B	136.6829	130.7429	2.02434	0.046545
BP RA	110.7561	104.0571	2.42353	0.017815
(=(SBP+DBP)/2)				
BP LA (=(SBP+DBP)/2)	111.2195	103.9143	3.02442	0.003423
Mean BP A	110.9878	103.9857	2.85424	0.005593
RTb	77.7805	84.6286	-2.24257	0.027920
Mean Tb	76.3780	82.7714	-2.24909	0.027482

3-D

Variable	T-tests; Groupin	g: Atheroscleros	is of the coronar	y artery (Both
	in primary data.s	stw)		
	Group 1: No			
	Group 2: Yes			
	Mean	Mean	t-value	р
	No	Yes		_
Age	51.2944	64.1558	-6.53443	0.000000
Body weight	74.1694	83.8484	-2.69905	0.008522
Goal heart rate	168.7056	155.8442	6.53443	0.000000
Reached %	87.7888	92.2900	-2.19067	0.031461
eVessel age	50.1224	66.5806	-6.56896	0.000000
R-CAVI	7.6796	9.0419	-4.89037	0.000005
L-CAVI	7.7122	8.9226	-4.53296	0.000021
Mean SBP B	131.3673	139.1290	-2.68406	0.008879
BP RB (=(SBP+DBP)/2)	101.1020	108.5161	-2.92887	0.004458
BP LB (=(SBP+DBP)/2)	102.0000	108.5484	-2.82609	0.005982
Mean BP B	101.5510	108.5323	-2.95961	0.004078
LTb	79.7143	73.3871	2.00482	0.048452
Right Tba	91.5714	77.8710	4.01447	0.000136
Left Tba	91.1224	78.9355	3.93370	0.000180
Mean Tba	91.3469	78.4032	4.00722	0.000139
haPWV (m/s)	0.8614	0.9922	-5.36049	0.000001
β-stiffness index from	2.5866	3.2226	-3.66533	0.000449

PWV				
Creatinine (µmol/L)	79.2967	88.1826	-2.49669	0.014644
eGFR (2021 CKD-EPI	88.9265	79.5806	2.90054	0.004838
Creatinine)				

3-E

Variable	T-tests; Grouping: Hemodynamically significant (>60%) (Both in primary data.stw)				
	Group 1: No				
	Group 2: Yes				
	Mean	Mean	t-value	р	
	No	Yes			
Age	54.6859	68.8402	-4.14128	0.000087	
Goal heart rate	165.3141	151.1598	4.14128	0.000087	
Max HR	148.2254	130.6667	3.80483	0.000281	
EF (%)	65.1207	59.5714	3.41368	0.001125	
eVessel age	54.4085	73.0000	-4.29401	0.000050	
R-CAVI	7.9563	10.1889	-5.30446	0.000001	
L-CAVI	7.9634	9.9000	-4.75273	0.000009	
Mean SBP B	133.0423	144.8889	-2.65461	0.009621	
Mean DBP B	84.4014	92.1667	-2.73106	0.007803	
BP RB	102.6620	114.3333	-2.99746	0.003650	
(=(SBP+DBP)/2)					
BP LB	103.5070	112.6667	-2.54098	0.013038	
(=(SBP+DBP)/2)					
Mean BP B	103.0845	113.5000	-2.85369	0.005532	
LTb	78.3803	68.4444	2.04390	0.044339	
Mean Tb	79.8944	71.0000	2.04336	0.044394	
Right Tba	88.9718	64.8889	4.72565	0.000010	
Left Tba	88.7606	67.7778	4.50455	0.000023	
Mean Tba	88.8662	66.3333	4.65823	0.000013	
haPWV (m/s)	0.8871	1.1089	-6.13269	0.000000	
β-stiffness index from PWV	2.6918	3.9474	-4.97558	0.000004	

3-F

Variable	T-tests; Grouping: Myocardial perfusion defect before Stress ATP (Both in primary data.stw)					
	Group 1: Yes					
	Group 2: No					
	Mean Mean t-value df p					
	Yes No					
Max HR	138.4615	150.0000	-3.68868	78	0.000415	
Reached %	86.4746	91.0055	-2.11588	78	0.037545	

EF (%)	62.7000	65.3333	-2.30735	63	0.024333
eVessel age	61.8846	53.9074	2.55701	78	0.012498
LABI	1.1204	1.1602	-2.03157	78	0.045603
Right Tba	80.3846	89.0926	-2.30823	78	0.023637
Mean Tba	81.2115	88.7963	-2.11386	78	0.037723

3-G

Variable	T-tests; Grouping	g: Atherosclerosis	in other arteries	(Yes/No) (Both
	in primary data.st	tw)		
	Group 1: No			
	Group 2: Yes			
	Mean	Mean	t-value	р
	No	Yes		*
Age	48.4591	61.8114	-6.67105	0.000000
SBP rest	116.8750	126.9024	-2.81141	0.006372
DBP rest	77.0313	82.8780	-2.21050	0.030294
Body weight	71.1656	80.9585	-2.71672	0.008276
BMI	24.4660	28.4944	-3.74890	0.000359
Goal heart rate	171.5409	158.1886	6.67105	0.000000
Max HR	152.4063	141.3415	3.45324	0.000938
WT	139.0625	114.6341	2.35423	0.021332
METs	7.9406	5.8195	5.19338	0.000002
eVessel age	46.3125	64.0000	-7.21404	0.000000
R-CAVI	7.5125	8.6780	-3.85771	0.000249
L-CAVI	7.5781	8.5707	-3.44625	0.000959
Mean SBP B	127.1406	139.8171	-4.41075	0.000036
Mean DBP B	80.3438	88.1463	-4.39502	0.000038
BP RB	97.2500	108.5122	-4.51995	0.000024
(=(SBP+DBP)/2)				
BP LB	99.3125	107.9512	-3.63760	0.000518
(=(SBP+DBP)/2)				
Mean BP B	98.2813	108.2317	-4.21410	0.000073
BP RA	101.0000	112.6098	-4.38235	0.000040
(=(SBP+DBP)/2)				
BP LA	101.7188	113.0000	-4.69401	0.000013
(=(SBP+DBP)/2)				
Mean BP A	101.3594	112.8049	-4.81404	0.000008
RTb	87.6563	76.0488	3.97243	0.000169
LTb	82.4063	74.5366	2.40142	0.018952
Mean Tb	85.0312	75.2927	3.48807	0.000839
Right Tba	94.5938	79.2439	4.35025	0.000045
Left Tba	93.8750	80.2927	4.22749	0.000069
Mean Tba	94.2344	79.7683	4.32624	0.000049
haPWV (m/s)	0.8353	0.9627	-4.96219	0.000005
β-stiffness index from PWV	2.4801	3.0110	-2.92002	0.004688

2	TT	
Э	-п	

Variable	T-tests; Grouping: Carotid (Both in primary data.stw)				
	Group 1: No	-			
	Group 2: Yes				
	Mean	Mean	t-value	р	
	No	Yes			
Age	49.3632	62.3779	-6.47581	0.000000	
SBP rest	117.9412	127.0000	-2.50663	0.014480	
DBP rest	76.9118	83.0256	-2.31854	0.023304	
Body weight	72.7735	81.1103	-2.26866	0.026331	
BMI	24.7749	28.6399	-3.55828	0.000670	
Goal heart rate	170.6368	157.6221	6.47581	0.000000	
Max HR	152.2353	141.2308	3.42535	0.001024	
WT	137.5000	114.1026	2.24521	0.027870	
METs	7.7676	5.7692	4.71014	0.000012	
eVessel age	47.5294	64.6154	-6.85002	0.000000	
R-CAVI	7.6265	8.7000	-3.49087	0.000832	
L-CAVI	7.6912	8.5872	-3.06143	0.003109	
Mean SBP B	127.3676	140.3974	-4.60363	0.000018	
Mean DBP B	80.7059	88.2308	-4.22680	0.000069	
BP RB (=(SBP+DBP)/2)	97.9118	108.8718	-4.34732	0.000045	
BP LB (=(SBP+DBP)/2)	99.8529	108.2564	-3.51634	0.000767	
Mean BP B	98.8824	108.5641	-4.05994	0.000125	
BP RA (=(SBP+DBP)/2)	101.9412	112.8462	-4.04464	0.000132	
BP LA (=(SBP+DBP)/2)	103.0000	113.2051	-4.02214	0.000142	
Mean BP A	102.4706	113.0256	-4.27458	0.000059	
RTb	86.6176	76.0256	3.55900	0.000669	
LTb	81.5588	73.6154	2.57072	0.012246	
Mean Tb	84.0882	74.8205	3.35620	0.001272	
Right Tba	94.2059	78.6667	4.43953	0.000032	
Left Tba	93.4118	79.8718	4.22990	0.000069	
Mean Tba	93.8088	79.2692	4.37414	0.000041	
haPWV (m/s)	0.8461	0.9674	-4.68414	0.000013	
β-stiffness index from PWV	2.5549	3.0133	-2.48557	0.015291	

\mathbf{a}	т
	_
	-1

Variable	T-tests; Grouping: Brachiocephalic (Both in primary data.stw) Group 1: No				
	Group 2: Yes				
	Mean	Mean	t-value	р	
	No	Yes			
Age	50.1003	62.3642	-5.92974	0.000000	
SBP rest	118.3333	127.1081	-2.42735	0.017748	
DBP rest	76.6667	83.5946	-2.66257	0.009586	
Body weight	73.1472	81.1973	-2.19058	0.031767	

BMI	24.9034	28.7238	-3.51942	0.000759
Pulse rest	66.5556	71.4865	-2.38704	0.019651
Goal heart rate	169.8997	157.6358	5.92974	0.000000
Max HR	151.4722	141.3784	3.10945	0.002697
WT	136.1111	114.1892	2.09958	0.039321
METs	7.6444	5.7811	4.31716	0.000050
Mean SBP B	128.6111	139.8919	-3.85507	0.000252
Mean DBP B	81.3889	87.9730	-3.60347	0.000579
BP RB (=(SBP+DBP)/2)	98.9444	108.4595	-3.66602	0.000472
BP LB (=(SBP+DBP)/2)	100.5000	108.0811	-3.13005	0.002537
Mean BP B	99.7222	108.2703	-3.50544	0.000794
BP RA $(=(SBP+DBP)/2)$	102.9167	112.4865	-3.46814	0.000894
BP LA (=(SBP+DBP)/2)	103.5278	113.2432	-3.79923	0.000303
Mean BP A	103.2222	112.8649	-3.83495	0.000269
RTb	85.6111	76.4324	3.02549	0.003455
LTb	80.6111	74.1081	2.07795	0.041331
Mean Tb	83.1111	75.2703	2.78450	0.006867
Right Tba	92.5000	79.4865	3.58232	0.000620
Left Tba	92.3333	80.1892	3.71368	0.000403
Mean Tba	92.4167	79.8378	3.67203	0.000463
haPWV (m/s)	0.8603	0.9601	-3.68383	0.000445
β-stiffness index from PWV	2.6092	2.9852	-2.01532	0.047658

3-J

Variable	T-tests; Grouping: Arterial Hypertension (Both in primary									
	data.stw)									
	Group 1: No									
	Group 2: Yes	Group 2: Yes								
	Mean	Mean	t-value	р						
	No	Yes								
Age	51.4730	61.0834	-4.52681	0.000021						
SBP rest	117.8250	128.5000	-3.27783	0.001564						
DBP rest	77.7750	83.4500	-2.32017	0.022947						
BMI	25.6294	28.2240	-2.44082	0.016921						
Goal heart rate	168.5270 158.9166 4.52681									
WT	137.5000	113.7500	2.48550	0.015076						
METs	7.4750	5.8675	3.95860	0.000165						
eVessel age	49.3250	63.6750	-5.57881	0.000000						
R-CAVI	7.6525	8.7625	-3.91296	0.000194						
L-CAVI	7.7225	8.6400	-3.35647	0.001222						
Mean SBP B	128.4625	140.2875	-4.50838	0.000023						
Mean DBP B	82.8125	87.7375	-2.74183	0.007574						
BP RB (=(SBP+DBP)/2)	99.0250	108.9250	-4.22291	0.000065						
BP LB (=(SBP+DBP)/2)	101.3500	107.7250	-2.82342	0.006028						
Mean BP B	100.1875	108.3250	-3.62953	0.000505						
BP RA (=(SBP+DBP)/2)	104.4750	112.3000	-2.91720	0.004611						
BP LA (=(SBP+DBP)/2)	103.7500	103.7500 113.5000 -4.15705 0.00008								

Mean BP A	104.1125	112.9000	-3.69048	0.000413
RTb	84.8250	76.2250	3.00316	0.003590
LTb	80.7750	73.7500	2.30228	0.023987
Mean Tb	82.8000	74.9875	2.91367	0.004659
Right Tba	93.9250	78.6000	4.76792	0.000008
Left Tba	92.6750	80.1250	4.20660	0.000069
Mean Tba	93.3000	79.3625	4.53289	0.000021
haPWV (m/s)	0.8550	0.9692	-4.63729	0.000014
β-stiffness index from	2.6538	3.0123	-2.00831	0.048072
PWV				

3-K

Variable	T-tests; Grouping: SCAD II-III (Both in primary						
	data.stw)	-	-	-			
	Group 1: No						
	Group 2: Yes						
	Mean	Mean	t-value	Р			
	No	Yes					
Age	51.3686	74.1726	-4.50496	0.000094			
Height	172.5517	161.6667	2.14298	0.040345			
Pulse after stress	86.3448	70.0000	3.15103	0.003673			
Goal heart rate	168.6314	145.8274	4.50496	0.000094			
Max HR	150.9655	170.3333	-2.18173	0.037097			
Reached %	89.6496	116.6267	-4.95212	0.000027			
eVessel age	50.1034	74.6667	-3.35831	0.002146			
R-CAVI	7.8897	11.2667	-4.10892	0.000283			
L-CAVI	7.9207	11.1333	-4.10755	0.000284			
Right Tba	94.0345	49.3333	5.57398	0.000005			
Left Tba	93.3103	51.6667	5.70435	0.000003			
Mean Tba	93.6724	50.5000	5.66552	0.000004			
Lha (cm)	150.2887	141.4403	2.14298	0.040345			
haPWV (m/s)	0.8723	1.1609	-4.12256	0.000272			
β-stiffness index from PWV	2.7431	4.4903	-3.29422	0.002537			
eGFR (2021 CKD-EPI	88.0345	67.4000	2.32528	0.027008			
Creatinine)							

3	_T	
5	-L	

Variable	T-tests; Grouping: Reason of discontinuation (Both in primary						
	data.stw)						
	Group 1: Reach goal HR						
	Group 2: Horizontal ST depression >1mm						
	Mean Mean t-value P						
	Reach goal	1 Horizontal ST depression					
	HR						
Pulse after stress	87.9014	77.4286	2.55692	0.012554			
R-CAVI	8.0873	9.8286	-3.40533	0.001058			

L-CAVI	8.0873	9.5571	-3.01437	0.003499
Right Tba	86.9859	73.1429	2.23774	0.028167
Mean Tba	86.9155	74.4286	2.13132	0.036296
haPWV (m/s)	0.9027	1.0327	-2.75026	0.007439
β-stiffness index from	2.7566	3.7569	-3.27037	0.001616
PWV				

\mathbf{a}	ъπ
<u>۲</u> .	- IX/I
5	111

Variable	T-tests; Grouping: vessel stiffness (Both in primary data.stw)						
	Group 1: Normal						
	Group 2: High						
	Mean	Mean	t-value	р			
	Normal	High					
Age	54.0870	59.0955	-2.14345	0.035193			
SBP rest	119.4667	127.9143	-2.50815	0.014212			
Goal heart rate	165.9130	160.9045	2.14345	0.035193			
Max HR	149.8667	141.6000	2.70090	0.008479			
WT	135.0000	113.5714	2.20767	0.030206			
METs	7.1889	6.0057	2.76413	0.007119			
eVessel age	50.0667	64.7714	-5.71036	0.000000			
R-CAVI	7.6156	8.9686	-4.96292	0.000004			
L-CAVI	7.6311	8.8886	-4.87258	0.000006			
BP RA $(=(SBP+DBP)/2)$	105.6000	111.9714	-2.31324	0.023345			
BP LA (=(SBP+DBP)/2)	106.0667	111.9143	-2.31365	0.023322			
Mean BP A	105.8333	111.9429	-2.43662	0.017104			
RTb	85.0889	74.6571	3.71174	0.000384			
Mean Tb	82.2222	74.6143	2.80499	0.006349			
Right Tba	90.7556	80.4857	2.94006	0.004316			
Left Tba	90.5333	81.0857	2.99525	0.003674			
Mean Tba	90.6444	80.7857	2.98776	0.003756			
haPWV (m/s)	0.8652	0.9723	-4.23338	0.000062			
β -stiffness index from PWV	2.5951	3.1390	-3.12731	0.002480			

Patients with atherosclerosis of coronary artery have a higher CAVI in compare to patients without atherosclerosis of the coronary artery disease, R-CAVI; 9.0419 vs 7.6796, L-CAVI; 7.7122 vs 8.9226, p <0.000005, 0.000021, respectively.

Hemodynamically significant coronary artery atherosclerosis (>60%) exist in group with stress induced myocardial perfusion defect on the CTP imaging with ATP.

In terms of the correlations, the whole correlations between the continuous variables represented in the supplementary files. (*Suppl. file 1,2*)

The regression analysis showed no effect of the CAVI on the presence or absence of the IHD. (*Table 4*)

Table 4: The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0. a. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Likelihood Ratio Tests								
Effect	Model Fitting Criteria			Likelihood Ratio Tests				
	AIC of	BIC of	BIC of -2 Log		df	Sig.		
	Reduced	Reduced	Likelihood of	Square				
	Model	Model Reduced						
			Model					
Intercept	261,639	537,954	29,639 ^a	,000	0			
Mean	99,316	104,080	95,316	65,677	114	1,000		
CAVI								

Moreover, the ROC analysis showed a 64 % diagnostic accuracy for IHD using CAVI parameter. (*Figure 1*)

Figure 1: The CAVI parameter showed a 64 % Area Under the ROC Curve. The test result variable(s): Mean CAVI has at least one tie between the positive actual state group and the negative actual state group.

The CAVI parameters assessment and features

Participants passed vessel stiffness test and pulse wave as well as vascular age by using Fukuda Denshi device (VaSera VS-1500; Japan). Cuffs placed to assess the vascular stiffness and the vascular age as well as the ancle-brachial index.

Cuffs fitted to the size of the arms and ankles of the patients. Electrodes attached to the two arms, and a microphone for cardio-phonogram measurements fixed with double-sided tape over the sternum in the second intercostal space. Cardio-ankle vascular index (CAVI) reflects the overall stiffness of the aorta, femoral artery and tibial artery, and is theoretically not affected by blood pressure [6]. CAVI measurements considered valid only when obtained during at least three consecutive heartbeats [6].

Four cuffs are positioned on the two arms, near the elbow flexion crease, and on the two legs, close to the ankles. This device performs all functions automatically, including the cuffs inflating and recording pulse waves with an incorporated oscillometric sensor. Using the VaSera VS-1500, we assessed the estimated vessel age, vessel stiffness right and left CAVI, right and left ABI, mean brachial SBP/ DBP, mean right and left brachial BP (BP RB =(RBSBP+LBDBP)/2); (BP LB =(LBSBP+LBDBP)/2), mean right and left ankle BP (BP RA =(RASBP+RADBP)/2); (BP LA =(LASBP+LADBP)/2), mean ankle BP, Mean ABI, right and left brachial pulse (RTb, LTb), mean brachial pulse (Tb), right and left brachial-ankle pulse (RTba, LTba), mean Tba. Then we calculated the length heart-ankle (Lha), heart-ankle pulse wave velocity (haPWV; m/s), and β -stiffness index from PWV.

The heart ankle pulse wave velocity (haPWV; m/s) is estimated using the following equation: heart-ankle length (Lha)/time. Time is the pulse transit time of the pulse wave from the origin of the aorta (peak of the R wave in lead II of an electrocardiographic record incorporated in the system) to its arrival at each of the extremities (the cuff placement). The Lha calculated by applying the next mathematical height-based formula: Lhl= $0.8129 \times$ height (cm)+12.328. This measurement method was validated by VOPITB in the Spanish population and is also validated by VaSera VS-1500 [12]. Because VOPITB can measure the haPWV in each limb, CAVI can be determined. CAVI and ha β reflect the arteriosclerosis of the aorta, femoral artery and tibial artery quantitatively [13].

To make the best use of the nature of the stiffness parameter β to be used in VaSera, fixing the coefficients or termination of it is use considered [14]. Therefore, we used the β -stiffness index from haPWV (ha β) using the formula;

 $ha\beta = 2* \rho * (haPWV)^2*LN(SBP / DBP)/(SBP - DBP)$

Where;

 ρ is blood density (fixed value of 1050 kg/m3 in VaSera devices),

Ln is natural logarithm,

SBP is systolic blood pressure (SBP),

and DBP is diastolic blood pressure (DBP).

1 mmHg is converted to 133.32 Pa.

CAVI is disregarded if the ABI is \Box <0.9. The main principle of the Fukuda Denshi device is by calculating the cardio ankle vascular index (CAVI) which is preferred on the local pulse wave velocity (PWV) devices. Additionally, CAVI is independent from blood pressure or much less sensitive to the blood pressure values than PWV [7,15]. The CAVI is measured when used the Fukuda Denshi device. The CAVI is preferred in compare to other PWV by

higher accuracy in the determination of the risk of the cardiovascular disease [16,17]. Using the Fukuda Denshi device (VaSera VS-1500), the pulse wave velocity can be measured using the following formula

haPWV=Lha/(Ta+Tba or Tb+Tba)

Where;

Tb; Brachial pulse

Tba; tibial pules at brachial ankle

Lha; heart ankle length

Other CAVI measurements performed using VaSera VS-1500 according to the manufacturer's instructions [13].

According to the Japanese Society for Vascular Failure, the normal CAVI index considered < 8, borderline: $9 > CAVI \ge 8$ from, pathological: $CAVI \ge 9$. Normal ankle brachial index ABI considered from 0,9-1,29 [18]. According to the American heart association (AHA), ankle brachial index (ABI) readings are categorized as abnormal (ABI ≤ 0.90), borderline (ABI 0.91-0.99), and normal (ABI 1.00-1.40). An ABI > 1.40 is considered noncompressible [18].

Discussion

Using physical stress tested monitored 12 lead-ECG remains the elementary test for the primary detection of ischemic heart disease. However, severe limitations exist in the diagnostic accuracy related to the ECG artifact during the movement of the patients during the physical stress test.

Improving the diagnostic accuracy of the physical stress test is a point of focus of the cardiological scientific community. Several attempts performed to enhance the diagnosis performance of the physical exertion tests using complementary methods such as the dynamics of cardiac electrical activity (EAS) during exercise testing [19]. The study suggests that incorporating the equivalent electric cardiac generator of dipole type during exercise ECG testing can enhance the accuracy of diagnosing coronary artery disease [19].

Additional studies suggested the use of the single channel electrocardiography and or the exhaled volatile organic compounds as a molecular biomarker to detect the IHD [20–23].

The current study tried to demonstrate the strengthen and the benefits of the CAVI parameter in the diagnosis of IHD and or risk scoring of the IHD developing in the upcoming near future. Several studies demonstrated that CAVI can be a predictable for the cardiovascular diseases including the IHD [24]. Our study demonstrated a good diagnostic accuracy for the IHD (64 %) in compare to the physical stress test (55%), which is used as a classical method for IHD early detection [20]. The CAVI test is less time-consuming procedure in compare to the bicycle ergometry.

Single study demonstrated that high CAVI is associated with the higher post coronary artery bypass grafting surgery mortality [25].

With aging a dramatical elevation in the arterial stiffness and pulse pressure which is associated with increase of the systolic blood pressure and reduction of the diastolic blood pressure independence of the health and risk factors of the cardiovascular system. Our study showed similar findings that aging is associated with increase the CAVI levels and the further associated cardiovascular events.

Patients with a CAVI value $\Box \ge \Box$ 10 have high incidence of heart disease and cerebrovascular events during the 3 year follow-up period with a cumulative incidence rate > 17% [26]. Therefore, CAVI is recommended to be applied in primary and secondary prevention in patients with cardiovascular risk factors and/or diseases to detect sub-clinical arterial alterations and to evaluate the effect of treatment and its monitoring [7].

Patients with stable coronary artery disease have a low eGFR as an indicator of IHD associated systemic changes including the changes in the kidney filtration function. Previous studies demonstrated the role of the myocardial infraction in the development of kidney dysfunction in terms of elevation of creatinine plasma level [27].

Several ongoing clinical trials to assess the reliability of single channel ECG in the diagnosis of ischemic heart disease and arrythmia in both adults and children (NCT05756309, NCT06181799).

Conclusions

The CAVI showed no statistically significant difference between the two groups. According to the results of the multivariate regression analysis, CAVI levels not associated with the stress induced myocardial perfusion defect on the CTP. Therefore, CAVI levels are not potential tool to assess the risk of IHD development. Moreover, no correlation between the CAVI index and the stress induced myocardial perfusion defect on the CTP. However, the ankle-brachial index showed statistically significant difference between the patients with IHD and patients without IHD. Moreover, the estimated arterial age in the IHD group is statistically significantly higher than in the individuals without IHD. The CAVI shoed 64 % diagnostic accuracy for the stress induced myocardial perfusion defect on the CTP. Using the other possibilities of the Fukuda Denshi device parameters that can be calculated or estimated, additional indicators can be associated with the IHD include the Tba and haPWV

parameters, which are higher in the IHD patients in compare to the non IHD group. Further, study on a larger sample is ongoing on clinicaltrials.gov (NCT06181799).

List of abbreviations

CVD; cardiovascular disease, CTP; stress computed tomography myocardial perfusion imaging, IHD; ischemic heart disease,

Decelerations

- Ethics approval and consent to participate: the study approved by the Sechenov University, Russia, from "Ethics Committee Requirement № 19-23 from 26.10.2023". A written consent is taken from the study participants
- 2. Consent for publication: applicable on reasonable request
- 3. Availability of data and materials: applicable on reasonable request
- 4. Competing interests: The authors declare that they have no competing interests regarding publication.
- 5. Funding's: The work of Philipp Kopylov and Daria Gognieva was financed by the government assignment 1023022600020-6 «Application of mass spectrometry and exhaled air emission spectrometry for cardiovascular risk stratification». The work of Basheer Marzoog and Peter Chomakhidze was financed by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Center 'Digital biodesign and personalized healthcare' № 075-15-2022-304.
- 6. Authors' contributions: MB is the writer, researcher, collected and analyzed data, interpreted the results, and revised the final version of the manuscript, PCh revised the paper, and PhK revised the final version of the manuscript. All authors have read and approved the manuscript.
- 7. Acknowledgments: not applicable
- Authors' information: Basheer Abdullah Marzoog, World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; postal address: Russia, Moscow, 8-2 Trubetskaya street, 119991. (marzug@mail.ru, +79969602820). ORCID: 0000-0001-5507-2413. Scopus ID: 57486338800. Daria Gognieva, World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; postal address: Russia, Moscow, 8-2 Trubetskaya street, 119991. ORCID: 0000-0002-0451-2009. email: gognievad_g@staff.sechenov.ru. Peter Chomakhidze, World-

Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; postal address: Russia, Moscow, 8-2 Trubetskaya street, 119991. ORCID: 0000-0003-1485-6072. email: m.ba.m@bk.ru. **Philipp Kopylov**, director of the institute of the World class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; postal address: Russia, Moscow, 8-2 Trubetskaya street, 119991. ORCID: 0000-0002-4535-8685. Scopus ID: 6507736224. email: kopylovf_yu@staff.sechenov.ru

9. The paper has not been submitted elsewhere

STANDARDS OF REPORTING

STROBE guideline has been followed.

References

- [1] Marzoog BA. Breathomics Detect the Cardiovascular Disease: Delusion or Dilution of the Metabolomic Signature. Curr Cardiol Rev [Internet]. 2024;20. Available from: https://www.eurekaselect.com/226647/article.
- [2] Limitations of the conventional ECG: Utility of other techniques. Clin Electrocardiogr A Textb [Internet]. wiley; 2021. p. 552–570. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182967323&doi=10.1002%2F9781119536475.ch25&partnerID=40&md5=e86957d 021c98fcfd28ff702c8ee0b68.
- [3] Braun T, Spiliopoulos S, Veltman C, et al. Detection of myocardial ischemia due to clinically asymptomatic coronary artery stenosis at rest using supervised artificial intelligence-enabled vectorcardiography – A five-fold cross validation of accuracy. J Electrocardiol [Internet]. 2020 [cited 2024 Feb 9];59:100–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32036110.
- [4] Beck S, Martínez Pereyra V, Seitz A, et al. Detection of ECG alterations typical for myocardial ischemia: New methods 2021. Internist [Internet]. 2021; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106521891&doi=10.1007%2Fs00108-021-01037-6&partnerID=40&md5=adf8f638fba0ece77e4b54f07f49d3d1.
- [5] Hilbel T, Frey N. Review of current ECG consumer electronics (pros and cons). J Electrocardiol [Internet]. 2023;77:23–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-

> 85144804511&doi=10.1016%2Fj.jelectrocard.2022.11.010&partnerID=40&md5=21d 2af84ea1f3a406b6c8451d053a994.

- [6] Shirai K, Hiruta N, Song M, et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. J Atheroscler Thromb. 2011;18:924–938.
- [7] Asmar R. Principles and usefulness of the cardio-ankle vascular index (CAVI): a new global arterial stiffness index. Eur Hear J Suppl [Internet]. 2017;19:B4–B10. Available from: https://academic.oup.com/eurheartjsupp/article/2999692/Principles.
- [8] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron [Internet]. 1976;16:31–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1244564.
- [9] Winter MA, Guhr KN, Berg GM. Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gault equation.
 Pharmacotherapy [Internet]. 2012;32:604–612. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22576791.
- Brown DL, Masselink AJ, Lalla CD. Functional range of creatinine clearance for renal drug dosing: a practical solution to the controversy of which weight to use in the Cockcroft-Gault equation. Ann Pharmacother [Internet]. 2013;47:1039–1044. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23757387.
- [11] Delgado C, Baweja M, Crews DC, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis [Internet]. 2022;79:268-288.e1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272638621008283.
- [12] Muñoz-Torrero JFS, Calderón-García JF, De Nicolás-Jiménez JM, et al. Automatic or manual arterial path for the ankle-brachial differences pulse wave velocity. PLoS One. 2018;13.
- [13] Shirai K, Utino J, Otsuka K, et al. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13:101–107.
- [14] Ato D. Evaluation of the calculation formulas of the cardio-ankle vascular index used in the Japanese apparatus. Vasc Health Risk Manag [Internet]. 2019;Volume 15:395– 398. Available from: https://www.dovepress.com/evaluation-of-the-calculationformulas-of-the-cardio-ankle-vascular-in-peer-reviewed-article-VHRM.
- [15] Wohlfahrt P, Krajčoviechová A, Seidlerová J, et al. Arterial stiffness parameters: How

do they differ? Atherosclerosis [Internet]. 2013;231:359–364. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915013006035.

- [16] Nakamura K, Tomaru T, Yamamura S, et al. Cardio-Ankle Vascular Index is a Candidate Predictor of Coronary Atherosclerosis. Circ J [Internet]. 2007;72:598–604. Available from: http://www.jstage.jst.go.jp/article/circj/72/4/72_4_598/_article.
- [17] Horinaka S, Yabe A, Yagi H, et al. Comparison of Atherosclerotic Indicators between Cardio Ankle Vascular Index and Brachial Ankle Pulse Wave Velocity. Angiology
 [Internet]. 2009;60:468–476. Available from: http://journals.sagepub.com/doi/10.1177/0003319708325443.
- Budoff MJ, Alpert B, Chirinos JA, et al. Clinical Applications Measuring Arterial Stiffness: An Expert Consensus for the Application of Cardio-Ankle Vascular Index. Am J Hypertens [Internet]. 2022;35:441–453. Available from: https://academic.oup.com/ajh/article/35/5/441/6429330.
- [19] Kramm MN, Strelkov NO, Chomakhidze PS, et al. Study of additional diagnostic signs of myocardial ischemia. Kardiol i serdechno-sosudistaya khirurgiya [Internet].
 2016;9:52. Available from: http://www.mediasphera.ru/issues/kardiologiya-i-serdechno-sosudistaya-khirurgiya/2016/1/downloads/ru/141996-638520150110.
- [20] Marzoog BA, Abdullaev M, Suvorov A, et al. Single Channel Electrocardiography Optimizes the Diagnostic Accuracy of Bicycle Ergometry! medRxiv [Internet]. 2024
 [cited 2024 May 18];2024.04.20.24306122. Available from: https://www.medrxiv.org/content/10.1101/2024.04.20.24306122v1.
- [21] Marzoog BA. Breathomics Detect the Cardiovascular Disease: Delusion or Dilution of the Metabolomic Signature. Curr Cardiol Rev. 2024;20.
- [22] Marzoog B. Volatilome A Novel Tool for Risk Scoring in Ischemic Heart Disease. Curr Cardiol Rev. 2024;
- [23] Marzoog BA, Chomakhidze P, Kopylov P. The Biomarkers of Exhaled Breath & Single Channel Electrocardiography in the Diagnosis of Ischemic Heart Disease. New Emirates Med J. 2024;
- [24] Matsushita K, Ding N, Kim ED, et al. Cardio-ankle vascular index and cardiovascular disease: Systematic review and meta-analysis of prospective and cross-sectional studies. J Clin Hypertens. 2019;21:16–24.
- [25] Sumin AN, Shcheglova A V., ZHidkova II, et al. Assessment of Arterial Stiffness by Cardio-Ankle Vascular Index for Prediction of Five-Year Cardiovascular Events After Coronary Artery Bypass Surgery. Glob Heart [Internet]. 2021;16:90. Available from:

https://globalheartjournal.com/article/10.5334/gh.1053/.

- [26] Ichihara A, Hayashi M, Koura Y, et al. Long-term effects of statins on arterial pressure and stiffness of hypertensives. J Hum Hypertens [Internet]. 2005;19:103–109. Available from: https://www.nature.com/articles/1001786.
- [27] Marzoog BA. Early Prognostic Instrumental and Laboratory Biomarkers in Post-MI. Cardiovasc Hematol Agents Med Chem [Internet]. 2024;22. Available from: https://www.eurekaselect.com/226403/article.

Tables legend

Table 1: The features of the continues variables of the sample represented in the table.

	Descriptive Statistics (Both in primary data.stw)				
Variable	Valid N	Mean	Minimum	Maximum	Std.Dev.
Age	80	56.28	40.24	77.94	10.601
Pulse rest	80	70.29	49.00	93.00	9.559
SBP rest	80	123.16	54.00	159.00	15.437
DBP rest	80	80.61	60.00	122.00	11.238
Body weight	80	77.92	52.50	140.00	16.236
Height	80	169.95	148.00	190.00	8.835
BMI	80	26.93	18.49	48.44	4.901
Pulse rest	80	69.68	49.00	99.00	9.260
Pulse after stress	80	86.89	63.00	115.00	10.579
Goal heart rate	80	163.72	142.06	179.76	10.601
Max HR	80	146.25	108.00	199.00	14.111
Reached %	80	89.53	64.89	135.25	9.166
WT	80	125.63	75.00	250.00	44.111
METs	80	6.67	2.90	11.90	1.977
EF (%)	65	64.52	55.00	73.00	4.388
eVessel age	80	56.50	20.00	80.00	13.520
R-CAVI	80	8.21	4.80	15.10	1.379
L-CAVI	80	8.18	4.80	14.90	1.299
Mean CAVI	80	8,194	4,800	15,000	1,331
RABI	80	1.15	0.86	1.40	0.088
LABI	80	1.15	0.89	1.42	0.084
Mean SBP B	80	134.38	105.50	169.00	13.086
Mean DBP B	80	85.28	60.50	104.50	8.358
BP RB (=(SBP+DBP)/2)	80	103.98	75.00	137.00	11.547
BP LB (=(SBP+DBP)/2)	80	104.54	71.00	136.00	10.534
Mean BP B	80	104.26	73.00	136.50	10.772
BP RA $(=(SBP+DBP)/2)$	80	108.39	80.00	137.00	12.553
BP LA (=(SBP+DBP)/2)	80	108.63	81.00	138.00	11.519
Mean BP A	80	108.51	81.50	135.00	11.468
Mean ABI	80	1.15	0.88	1.41	0.081
RTb	80	80.53	59.00	152.00	13.441

	Descriptive Statistics (Both in primary data.stw)				
Variable	Valid N	Mean	Minimum	Maximum	Std.Dev.
LTb	80	77.26	58.00	128.00	14.012
Mean Tb	80	78.89	59.00	132.50	12.547
Right Tba	80	86.26	23.00	117.00	16.232
Left Tba	80	86.40	24.00	114.00	14.685
Mean Tba	80	86.33	23.50	115.00	15.358
Lha (cm)	80	148.17	130.33	164.47	7.182
haPWV (m/s)	80	0.91	0.67	1.42	0.124
β-stiffness index from PWV	80	2.83	1.21	7.04	0.813
Creatinine (µmol/L)	80	82.74	53.90	138.00	16.014
eGFR (2021 CKD-EPI	80	85.31	45.40	113.70	14.684
Creatinine)					

Table 2A: Categorical variables presented in absolute and relative values of the study for true incidence of the stated factor. Abbreviations: CPT; stress myocardial perfusion computer tomography imaging. X^2 test used for the analysis of the categorical variables. * Values statically significant difference. Abbreviations: METs; metabolic equivalent.

Index	Factor	Group 1 (n=31).	Group 2 (n=49).	р
		Positive CTP	Negative	
			CTP	
Gender	F	17 (54.83871%)	22 (44.89796%)	0.387
	М	14 (45.16129%)	27 (55.10204%)	
Obesity stage	Normal	12 (38.70968%)	18 (36.73469%)	0.988
				363
	Overweig	11 (35.48387%)	18 (36.73469%)	
	ht			
	1 degree	8 (25.80645%)	12 (24.48980%)	
	3 degree	0 (0.0%)	1 (2.04082 %)	
See alvin a	Yes	7 (22.5806 %)	7 (14.28571 %)	0.342
Smoking	No	24 (77.41935 %)	42 (85.71429 %)	
	Yes	15 (48.38710%)	26 (53.06122 %)	0.835
Concomitant discosos	No	12 (38.70968 %)	23 (46.93878 %)	
Concomitant diseases	Missing	4 (12.90323 %)	0 (0.0 %)	
	data			
Atherosclerosis of the	Yes	16 (51.61290 %)	15 (30.61224 %)	0.061
coronary artery	No	15 (48.38710 %)	34 (69.38776 %)	
Hemodynamically significant	Yes	8 (25.80645 %)	1 (2.04082 %)	0.002
coronary artery	No	23 (74.19355%)	48 (97.95918 %)	
atherosclerosis on the CTP				
(>60% stenosis)				
Strass induced myceordial	Yes	31 (100 %)	0 (0.0 %)	< 0.00
norfusion defect on the CTD				1
perfusion defect on the CTP	No	0 (0.0 %)	49 (100 %)	

Myocardial perfusion defect	Yes	21 (67.74194 %)	5 (10.20408 %)	<0.00
before Stress ATP on the CTP	No	10 (32.25806 %)	44 (89,79592 %)	
	Yes	22 (70.96774 %)	19 (38.77551%)	0.006
Atherosclerosis in other	No	7 (22.58065 %)	25 (51.02041 %)	
arteries	Missing	2 (6.45161 %)	5 (10.20408 %)	
	data		- (,	
Atherosclerotic vascular	Carotid	1 (3.22581%)	0 (0.0%)	0.347
(Namely)	Carotid.	21 (67.74194%)	19 (38.77551%)	
· · · ·	Brachioce			
	phalic			
	bifurcatio			
	n			
	Missing	9 (29.03226 %)	30 (61.22449 %)	
	data			
	Yes	20 (64.51613 %)	19 (38.77551 %)	0.015
Carotid artery athereaderesis	No	8 (25.80645 %)	26 (53.06122 %)	
Carotid artery atheroscierosis	Missing	3 (9.67742 %)	4 (8.16327 %)	
	data			
	Yes	18 (58.06452 %)	19 (38.77551 %)	0.067
Brachiocephalic artery	No	10 (32.25806 %)	26 (53.06122 %)	
atherosclerosis	Missing	3 (9.67742 %)	4 (8.16327 %)	
	data			
Arterial Hypertension	Yes	19 (61.29032 %)	21 (42.85714 %)	0.109
Arteriar Hypertension	No	12 (38.70968 %)	28 (57.14286 %)	
Stage of the arterial	Ι	4 (13.55%)	1 (2.04082%)	0.079
hypertension				756
	Π	6 (19.35484%)	14 (28.57143%)	
	III	9 (29.03226%)	7 (14.28571%)	
Degree of hypertension	Degree 1	10 (32.25806%)	9 (18.36735%)	0.098 908
	Degree 2	3 (9.67742%)	10 (20.40%)	
	Degree 3	6 (19.35484%)	3 (6.12245%)	
Risk of cardiovascular disease	Low	10 (32.25806%)	19 (38.77551%)	0.449 429
	Moderate	8 (25.80645%)	16 (34.70%)	
	High	8 (25.80645%)	10 (20.40816%)	
	Very high	5 (16.12903%)	3 (6.12245%)	
	Yes	4 (12.90323 %)	1 (2.04082 %)	<0.00 1
SCAD from anamnesis	No	2 (6.45161 %)	25 (51.02041%)	
	Missing	25 (80.64516 %)	23 (46.93878 %)	
	data	, , , , , , , , , , , , , , , , , , ,		
Blood pressure reaction type on stress test	Asthenic	2 (10.5%)	2 (4.08163 %)	.0720 76
	Hypotonic	3 (15.8%)	1 (2.04082 %)	

	Hypertoni	1 (5.3%)	4 (8.16327 %)	
	c		` ,	
	Mild	1 (5.3%)	0 (0.0 %)	
	Hypertoni		, ,	
	c			
	Normoton	12 (63.2%)	42 (85.71429 %)	
	ic		, , ,	
Watt	75	5 (16.12903 %)	10 (20.40816 %)	0.456
	100	15 (48.38710%)	11 (22.44898 %)	
	125	4 (12.90323%)	9 (18.36735 %)	
	150	2 (6.45161%)	6 (12.24490%)	
	175	1 3.22581%)	7 (14.28571%)	
	200	1 (3.22581%)	6 (12.24490%)	
	225	2 (6.45161 %)	0 (0.0%)	
	250	1 (3.22581%)	0 (0.0%)	
Functional class by Watt	FC-I	1 (3.22581%)	7 (14.28571%)	0.313
	FC-II	3 (9.67742%)	6 (12.24490%)	
	No SCAD	27 (87.09677 %)	36 (73.46939 %)	
Functional class by METs	FC-I	1 (3.22581%)	5 (10.20408%)	0.556
		- (8
	FC-II	3 (9.67742%)	7 (14.28571%)	
	FC-III	0 (0.0%)	1 (2.04082%)	
	No SCAD	27 (87.09677 %)	36 (73.46939 %	
		(,)	
Reaction type to stress test	Negative	16 (51.61290%)	26 (53.06122%)	0.191
(positive/negative)	8			007
	Suspected	11 (35.45%)	10 (20.40816%)	
	Positive	4 (12.90323%)	13 (26.53061%)	
Reason of discontinuation of	Horizontal	2 (6.45%)	6 (12.24490%)	0.385
the stress test	ST	_ (*****		
	depression			
	>1mm			
	Reach	29 (93.54839%)	42 (88.11 %)	
	goal HR	, , , , , , , , , , , , , , , , , , ,		
Tolerance to exertion on	Low	1 (3.22581%)	1 (2.04082 %)	0.416
stress test			, , ,	079
	Moderate	20 (64.45%)	23 (46.93878 %)	
	Close to	3 (9.67742%)	5 (10.20408%)	
	high	· · · ·	. ,	
	High	3 (9.67742%)	13 (26.53061 %)	
	Very high	4 (12.90323%)	7 (14.28571 %)	
	Normal	9 (29.03226 %)	27 (55.10204 %)	0.073
	(<8)			757
CAVI degree	Borderline	11 (35.48387 %)	11 (22.44898 %)	
Č	(8-9)	. ,		
	Pathologic	11 (35.48387 %)	11 (22.44898 %)	

	al (>9)			
	Normal	29 (93.54839 %)	47 (95.91837 %)	0.893
API degree				81
Abi degree	Borderline	1 (3.22581 %)	1 (2.04082 %)	
	Abnormal	1 (3.22581 %)	1 (2.04082 %)	
Biological estimated vascular	Normal	16 (51.61290%)	29 (59.18367%)	0.507
age	High	15 (48.38710%)	20 (40.81633%)	
				0.285
	Ι	12 (38.70%)	23 (46.93877 %)	103
	Π	16 (51.61290%)	25 (51.02041%)	
CKD stage	IIIa	3 (9.67742%)	1 (2.04082 %)	

Table 2 B: The continuous variables of the sample presented as a mean ± standard deviation (Std. div.), Student test as independent variables used. * Values statically significant difference. Abbreviations: SBP; systolic blood pressure, DBP; diastolic blood pressure, BMI, body mass index, HR; heart rate, METs; metabolic equivalent, R-CAVI; right Cardio-ankle vascular index, L-CAVI; left Cardio-ankle vascular index, RABI; right ankle-brachial index, LABI; left ankle-brachial index, SBP B; systolic blood pressure brachial, DBP B; diastolic blood pressure brachial, BP RB; blood pressure right brachial, BP RA ; blood pressure right ankle, BP LA; blood pressure left ankle, BP A; blood pressure ankle, ABI; ankle-brachial index, RTb; right brachial pulse, LTb; left brachial pulse, Tb; mean brachial pulse, Tba; mean brachial-ankle pulse, Lha (cm); length heart-ankle, haPWV (m/s); heart-ankle pulse wave velocity.

	T-tests; Grouping: Myocardial perfusion defect after stress ATP					
Variable	(Both in primary data.stw)					
	Group 1 ($n=31$). Positive CTP. Mean \pm Std. div.					
	Group 2 (n=49). Neg	gative CTP. Mean ± S	Std. div.			
	Mean	Mean	t-value	р		
	Yes	No				
Age	59.9307 ±11.70846	53.9675 ± 9.23135	2.53382	0.013287		
Pulse rest	70.2258 ± 10.74464	70.3265 ±8.84446	-0.04562	0.963726		
SBP rest	124.4839 ±	122.3265	0.60653	0.545921		
	20.56351	±11.22755				
DBP rest	82.3548 ±13.16447	1.10453	0.272758			
Body weight	77.1290 ±14.71675	78.4204 ±17.25762	-0.34465	0.731287		
Height	169.8065 ±9.41424 170.0408 ±8.54695 -0.11487					
BMI	26.7076 ±4.23191	27.0654 ± 5.31845	-0.31627	0.752643		
Pulse rest	69.6452 ±	69.6939 ±7.63273	-0.02278	0.981884		
	11.51390					
Pulse after stress	85.7419 ±	87.6122 ±9.72072	-0.76835	0.444602		
	11.88828					
Goal heart rate	160.0693	166.0325 ±9.23135	-2.53382	0.013287		

	T-tests; Grouping: Myocardial perfusion defect after stress ATP					
Variable	(Both in primary data.stw)					
	Group 1 (n=31). Pos	sitive CTP. Mean \pm St	td. div.			
	Group 2 (n=49). Neg	gative CTP. Mean \pm S	Std. div.			
	Mean	Mean	t-value	р		
	Yes	No		_		
	±11.70846					
Max HR	142.6774	148.5102	-1.82761	0.071432		
	±17.66614	±10.91849				
Reached %	89.4238 ±12.09432	89.6020 ±6.84428	-0.08417	0.933138		
WT	120.9677	128.5714	-0.74903	0.456093		
	±47.03579	±42.38956				
METs	6.3290 ± 2.03571	6.8878 ±1.92934	-1.23526	0.220441		
EF (%)	64.4783 ±4.77560	64.5476 ±4.22075	-0.06046	0.951981		
eVessel age	61.2258 ±12.42232	53.5102 ±13.44762	2.57376	0.011955		
R-CAVI	8.5806 ±1.03904	7.9714 ±1.51891	1.95970	0.053603		
L-CAVI	8.4387 ±0.93868	8.0184 ±1.46922	1.41852	0.160024		
Mean CAVI	8.509677 ±0.97506	7.994898 ±1.48991	1,704581	0,092253		
RABI	1.1232 ± 0.10041	1.1629 ±0.07697	-1.99089	0.049996		
LABI	1.1297 ±0.08716	1.1584 ±0.08032	-1.50589	0.136133		
Mean SBP B	137.9839	132.0918	1.99878	0.049116		
	±15.43399	±10.91953				
Mean DBP B	86.9194 ±8.76841	84.2347 ±8.00397	1.40836	0.162997		
BP RB (=(SBP+DBP)/2)	106.4194	102.4286	1.51834	0.132972		
	±12.85243	± 10.48411				
BP LB (=(SBP+DBP)/2)	107.0968	102.9184 ±9.63898	1.75092	0.083892		
	±11.51044					
Mean BP B	106.7581	102.6735 ±9.75990	1.67101	0.098728		
	± 11.94004					
BP RA	110.6452	106.9592	1.28474	0.202687		
(=(SBP+DBP)/2)	± 13.09338	±12.11741				
BP LA $(=(SBP+DBP)/2)$	111.2903	106.9388	1.66443	0.100039		
	±12.77026	±10.43913				
Mean BP A	110.9677	106.9490	1.54024	0.127550		
	±12.37129	±10.69572				
Mean ABI	1.1265 ±0.09089	1.1606 ±0.07259	-1.85781	0.066970		
RTb	77.2581 ±10.23708	82.5918 ±14.85193	-1.75167	0.083761		
LTb	74.1613 ±12.88176	79.2245 ±14.46730	-1.58966	0.115958		
Mean Tb	75.7097 ± 10.65033	80.9082 ±13.32318	-1.83215	0.070746		
Right Tba	81.1935 ± 16.27968	89.4694 ±15.52029	-2.27998	0.025341		
Left Tba	$83.0000 \pm \! 14.73092$	$88.5510 \pm \! 14.39048$	-1.66560	0.099806		
Mean Tba	82.0968 ±15.38420	89.0102 ± 14.87850	-1.99834	0.049164		
Lha (cm)	148.0571 ± 7.65284	148.2476 ± 6.94782	-0.11487	0.908845		
haPWV (m/s)	0.9533 ±0.11852	0.8860 ±0.12080	2.44529	0.016727		
β-stiffness index from	2.9538 ±0.65907	2.7567 ±0.89559	1.05682	0.293858		
PWV						
Creatinine (µmol/L)	80.3787 ±15.44759	84.2339 ±16.34146	-1.04969	0.297103		
eGFR (2021 CKD-EPI	84.8548 ±15.14628	85.5898 ± 14.53585	-0.21677	0.828950		

	T-tests; Grouping: Myocardial perfusion defect after stress ATP					
Variable	(Both in prim	(Both in primary data.stw)				
	Group 1 (n=3	Group 1 (n=31). Positive CTP. Mean \pm Std. div.				
	Group 2 (n=4	Group 2 (n=49). Negative CTP. Mean \pm Std. div.				
	Mean	Mean Mean t-value p				
	Yes No					
Creatinine)						

Table 3: the comparative features of the sample divided by various categorical variables.

Variable	T-tests; Grouping: Gender (Both in primary data.stw)						
	Group 1: F	Group 1: F					
	Group 2: M	Group 2: M					
	Mean	Mean Mean t-value p					
	F	М					
Body weight	71.5974	83.9341	-3.65280	0.000468			
Height	163.9359	175.6707	-7.93010	0.000000			
WT	94.8718	154.8780	-8.28672	0.000000			
METs	5.8846	7.4195	-3.74534	0.000343			
Lha (cm)	143.2849	152.8242	-7.93010	0.000000			
β -stiffness index from PWV	2.6430	3.0138	-2.08085	0.040730			
Creatinine (µmol/L)	72.4862	92.4937	-7.13522	0.000000			

3-B

Variable	T-tests; Grouping: Smoking (Both in primary data.stw)						
	Group 1: No	Group 1: No					
	Group 2: Yes						
	Mean	Mean	t-value	р			
	No	Yes					
DBP rest	79.4394	86.1429	-2.06890	0.041869			
Body weight	75.3121	90.2143	-3.31009	0.001414			
Height	168.9848	174.5000	-2.17081	0.032987			
BMI	26.3829	29.4905	-2.20717	0.030242			
Lha (cm)	147.3892	151.8725	-2.17081	0.032987			

3-C

Variable	T-tests; Grouping: Concomitant disease (Both in primary data.stw) Group 1: Yes Group 2: No						
	Mean Mean t-value Yes No						
Age	58.2005	53.0605	2.15911	0.034084			
BMI	28.2638	25.4612	2.54843	0.012894			
Goal heart rate	161.7995	166.9395	-2.15911	0.034084			
WT	115.8537	139.2857	-2.35097	0.021390			
METs	6.0683	7.5000	-3.29168	0.001528			

eVessel age	59.4146	52.0286	2.42323	0.017829
Mean SBP B	136.6829	130.7429	2.02434	0.046545
BP RA	110.7561	104.0571	2.42353	0.017815
(=(SBP+DBP)/2)				
BP LA (=(SBP+DBP)/2)	111.2195	103.9143	3.02442	0.003423
Mean BP A	110.9878	103.9857	2.85424	0.005593
RTb	77.7805	84.6286	-2.24257	0.027920
Mean Tb	76.3780	82.7714	-2.24909	0.027482

3-D

Variable	T-tests; Grouping: Atherosclerosis of the coronary artery (Both			
	in primary data.s	stw)		
	Group 1: No			
	Group 2: Yes			
	Mean	Mean	t-value	р
	No	Yes		
Age	51.2944	64.1558	-6.53443	0.000000
Body weight	74.1694	83.8484	-2.69905	0.008522
Goal heart rate	168.7056	155.8442	6.53443	0.000000
Reached %	87.7888	92.2900	-2.19067	0.031461
eVessel age	50.1224	66.5806	-6.56896	0.000000
R-CAVI	7.6796	9.0419	-4.89037	0.000005
L-CAVI	7.7122	8.9226	-4.53296	0.000021
Mean SBP B	131.3673	139.1290	-2.68406	0.008879
BP RB (=(SBP+DBP)/2)	101.1020	108.5161	-2.92887	0.004458
BP LB (=(SBP+DBP)/2)	102.0000	108.5484	-2.82609	0.005982
Mean BP B	101.5510	108.5323	-2.95961	0.004078
LTb	79.7143	73.3871	2.00482	0.048452
Right Tba	91.5714	77.8710	4.01447	0.000136
Left Tba	91.1224	78.9355	3.93370	0.000180
Mean Tba	91.3469	78.4032	4.00722	0.000139
haPWV (m/s)	0.8614	0.9922	-5.36049	0.000001
β-stiffness index from	2.5866	3.2226	-3.66533	0.000449
PWV				
Creatinine (µmol/L)	79.2967	88.1826	-2.49669	0.014644
eGFR (2021 CKD-EPI	88.9265	79.5806	2.90054	0.004838
Creatinine)				

3-E

Variable	T-tests; Grouping: Hemodynamically significant (>60%) (Both in primary data.stw) Group 1: No Group 2: Yes			
	Mean	Mean	t-value	р
	No	Yes		
Age	54.6859	68.8402	-4.14128	0.000087

Goal heart rate	165.3141	151.1598	4.14128	0.000087
Max HR	148.2254	130.6667	3.80483	0.000281
EF (%)	65.1207	59.5714	3.41368	0.001125
eVessel age	54.4085	73.0000	-4.29401	0.000050
R-CAVI	7.9563	10.1889	-5.30446	0.000001
L-CAVI	7.9634	9.9000	-4.75273	0.000009
Mean SBP B	133.0423	144.8889	-2.65461	0.009621
Mean DBP B	84.4014	92.1667	-2.73106	0.007803
BP RB	102.6620	114.3333	-2.99746	0.003650
(=(SBP+DBP)/2)				
BP LB	103.5070	112.6667	-2.54098	0.013038
(=(SBP+DBP)/2)				
Mean BP B	103.0845	113.5000	-2.85369	0.005532
LTb	78.3803	68.4444	2.04390	0.044339
Mean Tb	79.8944	71.0000	2.04336	0.044394
Right Tba	88.9718	64.8889	4.72565	0.000010
Left Tba	88.7606	67.7778	4.50455	0.000023
Mean Tba	88.8662	66.3333	4.65823	0.000013
haPWV (m/s)	0.8871	1.1089	-6.13269	0.000000
β-stiffness index from PWV	2.6918	3.9474	-4.97558	0.000004

3-F

Variable	T-tests; Grouping: Myocardial perfusion defect before			ect before	
	Stress ATP (Both in prim	ary data.stw)		
	Group 1: Yes				
	Group 2: No				
	Mean Mean t-value df		р		
	Yes	No			
Max HR	138.4615	150.0000	-3.68868	78	0.000415
Reached %	86.4746	91.0055	-2.11588	78	0.037545
EF (%)	62.7000	65.3333	-2.30735	63	0.024333
eVessel age	61.8846	53.9074	2.55701	78	0.012498
LABI	1.1204	1.1602	-2.03157	78	0.045603
Right Tba	80.3846	89.0926	-2.30823	78	0.023637
Mean Tba	81.2115	88.7963	-2.11386	78	0.037723

3-G

Variable	T-tests; Grouping in primary data.s Group 1: No Group 2: Yes	g: Atherosclerosis tw)	in other arteries	(Yes/No) (Both
	Mean No	Mean Yes	t-value	р

Age	48.4591	61.8114	-6.67105	0.000000
SBP rest	116.8750	126.9024	-2.81141	0.006372
DBP rest	77.0313	82.8780	-2.21050	0.030294
Body weight	71.1656	80.9585	-2.71672	0.008276
BMI	24.4660	28.4944	-3.74890	0.000359
Goal heart rate	171.5409	158.1886	6.67105	0.000000
Max HR	152.4063	141.3415	3.45324	0.000938
WT	139.0625	114.6341	2.35423	0.021332
METs	7.9406	5.8195	5.19338	0.000002
eVessel age	46.3125	64.0000	-7.21404	0.000000
R-CAVI	7.5125	8.6780	-3.85771	0.000249
L-CAVI	7.5781	8.5707	-3.44625	0.000959
Mean SBP B	127.1406	139.8171	-4.41075	0.000036
Mean DBP B	80.3438	88.1463	-4.39502	0.000038
BP RB	97.2500	108.5122	-4.51995	0.000024
(=(SBP+DBP)/2)				
BP LB	99.3125	107.9512	-3.63760	0.000518
(=(SBP+DBP)/2)				
Mean BP B	98.2813	108.2317	-4.21410	0.000073
BP RA	101.0000	112.6098	-4.38235	0.000040
(=(SBP+DBP)/2)				
BP LA	101.7188	113.0000	-4.69401	0.000013
(=(SBP+DBP)/2)				
Mean BP A	101.3594	112.8049	-4.81404	0.000008
RTb	87.6563	76.0488	3.97243	0.000169
LTb	82.4063	74.5366	2.40142	0.018952
Mean Tb	85.0312	75.2927	3.48807	0.000839
Right Tba	94.5938	79.2439	4.35025	0.000045
Left Tba	93.8750	80.2927	4.22749	0.000069
Mean Tba	94.2344	79.7683	4.32624	0.000049
haPWV (m/s)	0.8353	0.9627	-4.96219	0.000005
β-stiffness index from	2.4801	3.0110	-2.92002	0.004688
PWV				

3-Н

Variable	T-tests; Grouping: Carotid (Both in primary data.stw)			
	Group 1: No			
	Group 2: Yes			
	Mean	Mean	t-value	р
	No	Yes		
Age	49.3632	62.3779	-6.47581	0.000000
SBP rest	117.9412	127.0000	-2.50663	0.014480
DBP rest	76.9118	83.0256	-2.31854	0.023304
Body weight	72.7735	81.1103	-2.26866	0.026331
BMI	24.7749	28.6399	-3.55828	0.000670
Goal heart rate	170.6368	157.6221	6.47581	0.000000

Max HR	152.2353	141.2308	3.42535	0.001024
WT	137.5000	114.1026	2.24521	0.027870
METs	7.7676	5.7692	4.71014	0.000012
eVessel age	47.5294	64.6154	-6.85002	0.000000
R-CAVI	7.6265	8.7000	-3.49087	0.000832
L-CAVI	7.6912	8.5872	-3.06143	0.003109
Mean SBP B	127.3676	140.3974	-4.60363	0.000018
Mean DBP B	80.7059	88.2308	-4.22680	0.000069
BP RB (=(SBP+DBP)/2)	97.9118	108.8718	-4.34732	0.000045
BP LB (=(SBP+DBP)/2)	99.8529	108.2564	-3.51634	0.000767
Mean BP B	98.8824	108.5641	-4.05994	0.000125
BP RA (=(SBP+DBP)/2)	101.9412	112.8462	-4.04464	0.000132
BP LA (=(SBP+DBP)/2)	103.0000	113.2051	-4.02214	0.000142
Mean BP A	102.4706	113.0256	-4.27458	0.000059
RTb	86.6176	76.0256	3.55900	0.000669
LTb	81.5588	73.6154	2.57072	0.012246
Mean Tb	84.0882	74.8205	3.35620	0.001272
Right Tba	94.2059	78.6667	4.43953	0.000032
Left Tba	93.4118	79.8718	4.22990	0.000069
Mean Tba	93.8088	79.2692	4.37414	0.000041
haPWV (m/s)	0.8461	0.9674	-4.68414	0.000013
β-stiffness index from PWV	2.5549	3.0133	-2.48557	0.015291

3-I

Variable	T-tests; Groupin	T-tests; Grouping: Brachiocephalic (Both in primary data.stw)		
	Group 1: No			
	Group 2: Yes			
	Mean	Mean	t-value	р
	No	Yes		
Age	50.1003	62.3642	-5.92974	0.000000
SBP rest	118.3333	127.1081	-2.42735	0.017748
DBP rest	76.6667	83.5946	-2.66257	0.009586
Body weight	73.1472	81.1973	-2.19058	0.031767
BMI	24.9034	28.7238	-3.51942	0.000759
Pulse rest	66.5556	71.4865	-2.38704	0.019651
Goal heart rate	169.8997	157.6358	5.92974	0.000000
Max HR	151.4722	141.3784	3.10945	0.002697
WT	136.1111	114.1892	2.09958	0.039321
METs	7.6444	5.7811	4.31716	0.000050
Mean SBP B	128.6111	139.8919	-3.85507	0.000252
Mean DBP B	81.3889	87.9730	-3.60347	0.000579
BP RB (=(SBP+DBP)/2)	98.9444	108.4595	-3.66602	0.000472
BP LB (=(SBP+DBP)/2)	100.5000	108.0811	-3.13005	0.002537
Mean BP B	99.7222	108.2703	-3.50544	0.000794
BP RA $(=(SBP+DBP)/2)$	102.9167	112.4865	-3.46814	0.000894
BP LA (=(SBP+DBP)/2)	103.5278	113.2432	-3.79923	0.000303
Mean BP A	103.2222	112.8649	-3.83495	0.000269

RTb	85.6111	76.4324	3.02549	0.003455
LTb	80.6111	74.1081	2.07795	0.041331
Mean Tb	83.1111	75.2703	2.78450	0.006867
Right Tba	92.5000	79.4865	3.58232	0.000620
Left Tba	92.3333	80.1892	3.71368	0.000403
Mean Tba	92.4167	79.8378	3.67203	0.000463
haPWV (m/s)	0.8603	0.9601	-3.68383	0.000445
β -stiffness index from PWV	2.6092	2.9852	-2.01532	0.047658

-	
- つ	т
٦	- 1

Variable	T-tests; Grouping: Arterial Hypertension (Both in primary						
	data.stw)						
	Group 1: No						
	Group 2: Yes						
	Mean Mean t-value		р				
	No	Yes					
Age	51.4730	61.0834	-4.52681	0.000021			
SBP rest	117.8250	128.5000	-3.27783	0.001564			
DBP rest	77.7750	83.4500	-2.32017	0.022947			
BMI	25.6294	28.2240	-2.44082	0.016921			
Goal heart rate	168.5270	158.9166	4.52681	0.000021			
WT	137.5000	113.7500	2.48550	0.015076			
METs	7.4750	5.8675	3.95860	0.000165			
eVessel age	49.3250	63.6750	-5.57881	0.000000			
R-CAVI	7.6525	8.7625	-3.91296	0.000194			
L-CAVI	7.7225	8.6400	-3.35647	0.001222			
Mean SBP B	128.4625	140.2875	-4.50838	0.000023			
Mean DBP B	82.8125	87.7375	-2.74183	0.007574			
BP RB (=(SBP+DBP)/2)	99.0250	108.9250	-4.22291	0.000065			
BP LB (=(SBP+DBP)/2)	101.3500	107.7250	-2.82342	0.006028			
Mean BP B	100.1875	108.3250	-3.62953	0.000505			
BP RA (=(SBP+DBP)/2)	104.4750	112.3000	-2.91720	0.004611			
BP LA (=(SBP+DBP)/2)	103.7500	113.5000	-4.15705	0.000082			
Mean BP A	104.1125	112.9000	-3.69048	0.000413			
RTb	84.8250	76.2250	3.00316	0.003590			
LTb	80.7750	73.7500	2.30228	0.023987			
Mean Tb	82.8000	74.9875	2.91367	0.004659			
Right Tba	93.9250	78.6000	4.76792	0.000008			
Left Tba	92.6750	80.1250	4.20660	0.000069			
Mean Tba	93.3000	79.3625	4.53289	0.000021			
haPWV (m/s)	0.8550	0.9692	-4.63729	0.000014			
β-stiffness index from	2.6538	3.0123	-2.00831	0.048072			
PWV							

3-K

Variable	T-tests; Grouping: SCAD II-III (Both in primary
	data.stw)

	Group 1: No					
	Group 2: Yes					
	Mean	Mean	t-value	Р		
	No	Yes				
Age	51.3686	74.1726	-4.50496	0.000094		
Height	172.5517	161.6667	2.14298	0.040345		
Pulse after stress	86.3448	70.0000	3.15103	0.003673		
Goal heart rate	168.6314	145.8274	4.50496	0.000094		
Max HR	150.9655	170.3333	-2.18173	0.037097		
Reached %	89.6496	116.6267	-4.95212	0.000027		
eVessel age	50.1034	74.6667	-3.35831	0.002146		
R-CAVI	7.8897	11.2667	-4.10892	0.000283		
L-CAVI	7.9207	11.1333	-4.10755	0.000284		
Right Tba	94.0345	49.3333	5.57398	0.000005		
Left Tba	93.3103	51.6667	5.70435	0.000003		
Mean Tba	93.6724	50.5000	5.66552	0.000004		
Lha (cm)	150.2887	141.4403	2.14298	0.040345		
haPWV (m/s)	0.8723	1.1609	-4.12256	0.000272		
β-stiffness index from PWV	2.7431	4.4903	-3.29422	0.002537		
eGFR (2021 CKD-EPI	88.0345	67.4000	2.32528	0.027008		
Creatinine)						

3-L

Variable	T-tests; Grouping: Reason of discontinuation (Both in primary						
	data.stw)						
	Group 1: Reach goal HR						
	Group 2: Horizontal ST depression >1mm						
	Mean	t-value	Р				
	Reach goal	Horizontal ST dep	ression				
	HR	>1mm					
Pulse after stress	87.9014		77.4286	2.55692	0.012554		
R-CAVI	8.0873		9.8286	-3.40533	0.001058		
L-CAVI	8.0873		9.5571	-3.01437	0.003499		
Right Tba	86.9859		73.1429	2.23774	0.028167		
Mean Tba	86.9155		74.4286	2.13132	0.036296		
haPWV (m/s)	0.9027		1.0327	-2.75026	0.007439		
β-stiffness index from	2.7566		3.7569	-3.27037	0.001616		
PWV							

3-M

Variable	T-tests; Grouping	T-tests; Grouping: vessel stiffness (Both in primary data.stw)				
	Group 1: Norm	Group 1: Normal				
	Group 2: High					
	Mean	Mean	t-value	р		
	Normal	High		_		
Age	54.0870	59.0955	-2.14345	0.035193		

SBP rest	119.4667	127.9143	-2.50815	0.014212
Goal heart rate	165.9130	160.9045	2.14345	0.035193
Max HR	149.8667	141.6000	2.70090	0.008479
WT	135.0000	113.5714	2.20767	0.030206
METs	7.1889	6.0057	2.76413	0.007119
eVessel age	50.0667	64.7714	-5.71036	0.000000
R-CAVI	7.6156	8.9686	-4.96292	0.000004
L-CAVI	7.6311	8.8886	-4.87258	0.000006
BP RA (=(SBP+DBP)/2)	105.6000	111.9714	-2.31324	0.023345
BP LA (=(SBP+DBP)/2)	106.0667	111.9143	-2.31365	0.023322
Mean BP A	105.8333	111.9429	-2.43662	0.017104
RTb	85.0889	74.6571	3.71174	0.000384
Mean Tb	82.2222	74.6143	2.80499	0.006349
Right Tba	90.7556	80.4857	2.94006	0.004316
Left Tba	90.5333	81.0857	2.99525	0.003674
Mean Tba	90.6444	80.7857	2.98776	0.003756
haPWV (m/s)	0.8652	0.9723	-4.23338	0.000062
β-stiffness index from PWV	2.5951	3.1390	-3.12731	0.002480

Table 4: The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0. a. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

Likelihood Ratio Tests							
Effect	Model Fitting Criteria			Likelihood Ratio Tests			
	AIC of	BIC of	-2 Log	Chi-	df	Sig.	
	Reduced	Reduced	Likelihood of	Square			
	Model	Model	Reduced				
			Model				
Intercept	261,639	537,954	29,639 ^a	,000	0		
Mean	99,316	104,080	95,316	65,677	114	1,000	
CAVI							

Figure 2: The CAVI parameter showed a 64 % Area Under the ROC Curve. The test result variable(s): Mean CAVI has at least one tie between the positive actual state group and the negative actual state group.

Graphical abstract

al perfusion defect after stress ATP: Yes ?-stiffness index from PWV = -1,7454+0,5577*x; 0,95 Conf.Int. al perfusion defect after stress ATP: No ?-stiffness index from PWV = -1,0812+0,4882*x; 0,95 Conf.Int. ardial perfusion defect after stress ATP: Yes ?-stiffness index from PWV = -2,2606+0,6198*x; 0,95 Conf.Int. ardial perfusion defect after stress ATP: No ?-stiffness index from PWV = 7,984-0,6114*x; 0,95 Conf.Int. cardial perfusion defect after stress ATP: Yes ?-stiffness index from PWV = -2,8291+0,6564*x; 0,95 Conf.Int. cardial perfusion defect after stress ATP: No ?-stiffness index from PWV = -2,481+0,6303*x; 0,95 Conf.Int.

