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Abstract 21 

Increasing attention has focused on health outcomes of Campylobacter infections 22 

among children under five years in low-resource settings. Recent evidence suggests 23 

colonization of Campylobacter species contributes to environmental enteric dysfunction, 24 

malnutrition, and growth faltering in young children. Campylobacter species are 25 

zoonotic, and factors from humans, animals, and the environment are involved in 26 

transmission. Few studies have assessed geospatial effects of environmental factors 27 

along with human and animal factors on Campylobacter infections. Here, we leveraged 28 

Campylobacter Genomics and Environmental Enteric Dysfunction (CAGED) project 29 

data to model multiple socio-environmental factors on Campylobacter burden among 30 

infants in Eastern Ethiopia. Stool samples from 106 infants were collected monthly from 31 

birth through the first year of life (December 2020 – June 2022). Genus-specific 32 

Taqman real-time PCR was performed to detect and quantify Campylobacter spp. and 33 

calculate cumulative Campylobacter burden for each child as the outcome variable. 34 

Thirteen regional environmental covariates describing topography, climate, vegetation, 35 

soil, and human population density were combined with household demographics, 36 

livelihoods/wealth, livestock ownership, and child-animal interactions as explanatory 37 

variables. We dichotomized all continuous outcome and explanatory variables and built 38 

logistic regression models for the first and second half of the infant’s first year of life. 39 

Infants being female, living in households with cattle, reported to have physical contact 40 

with animals, or reported to have mouthed soil or animal feces had increased odds of 41 

higher cumulative Campylobacter burden in Eastern Ethiopia. Future interventions 42 
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should focus on infant-specific transmission pathways and create adequate separation 43 

of domestic animals from humans to prevent potential fecal exposures. 44 
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Introduction 46 

Campylobacter species are zoonotic bacteria, and the animal reservoirs include 47 

poultry, free-living birds, ruminants such as cattle and goats, as well as other warm-48 

blooded animals 1,2. Common symptoms of Campylobacter infection include fever, 49 

diarrhea, and abdominal pain 3. In addition to symptomatic infections, asymptomatic 50 

Campylobacter cases are common, specifically among children and adults in low- and 51 

middle-income countries (LMICs) 4,5. Evidence from studies in low-resource settings has 52 

shown that colonization of Campylobacter species acquired at the early stage of child 53 

development potentially contributes to environmental enteric dysfunction (EED), 54 

malnutrition, and growth faltering in children 4,6,7, which draws increasing attention to the 55 

long-term health effects of Campylobacter infections among children under five years of 56 

age (CU5) in LMICs. 57 

Campylobacter jejuni and C. coli have been reported as the two most common 58 

species that cause illness in humans 3. Traditional methods selectively isolating these 59 

two species have resulted in a large body of knowledge specific to their disease burden 60 

and clinical manifestations 8. However, several Campylobacter species other than C. 61 

jejuni/coli (non- C. jejuni/coli species), such as C. concisus, C. lari, C. upsaliensis, and 62 

C. ureolyticus, have been recognized as “emerging species” and have shown increasing 63 

clinical importance 9. An increasing proportion of non-C. jejuni/coli species, including a 64 

new species "Candidatus Campylobacter infans” (C. infans), were isolated from child 65 

stool samples collected in low-resource settings, and several studies have revealed 66 

their potential linkages with child stunting 7,10–13. This evidence shifts our attention 67 
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towards the genus Campylobacter as a whole, rather than focusing solely on C. 68 

jejuni/coli in the context of child health. 69 

The classic “F-diagram” (fluids, fields, flies, fingers, fomites, and food) from WHO 70 

indicates that adequate sanitation and hygiene can be effective in interrupting the fecal-71 

oral transmission routes of diarrheic pathogens, including Campylobacter, in low-72 

resource settings 14,15. Driven by this idea, water, sanitation, and hygiene (WaSH) 73 

interventions, including improved pit latrine, hand-washing stations, liquid soap, and 74 

point-of-use water chlorination, have been developed and implemented in LMICs 16,17. 75 

Substantial evidence suggests that adequate WaSH contributes to reducing the risk of 76 

childhood diarrheal disease 18,19. However, several recent large-scale randomized 77 

controlled trials have found that WaSH interventions did not significantly reduce the 78 

occurrence of diarrhea or other enteric infections 20–22. One possible explanation is that 79 

traditional WaSH interventions generally target routes of children’s exposure to human 80 

feces but fail to pay adequate attention to children’s exposure to animal feces 15,23. Risk 81 

factors for exposing children to animal feces might include livestock ownership, 82 

proximity to livestock, cohabitation of humans and animals, etc. 83 

The first year of a child's life is marked by remarkable developmental milestones, 84 

and the differentiation between the first and second six months brings about major 85 

changes in both biological risk and environmental interaction. In the initial six months, 86 

breastfeeding plays a crucial role in offering infants essential nutrients and immune 87 

protection against pathogens 24. However, as the infant transitions into the second six 88 

months, the introduction of solid foods broadens the child's nutritional spectrum but also 89 

amplifies their exposure to contaminants and pathogens through the food pathway 25. 90 
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Meanwhile, the infant becomes more mobile, gaining the ability to explore their 91 

surroundings independently. This newfound mobility empowers infants to explore their 92 

environment actively through touching and tasting 26, potentially increasing exposure to 93 

pathogens via the fecal-oral pathway. This developmental transition underscores the 94 

dynamic effects of age on infant’s biological risk and environmental interaction. 95 

Moreover, other environmental factors could impact the non-food transmission 96 

route of Campylobacter to humans directly or via animal reservoirs indirectly 27,28. 97 

Studies conducted in European countries, the United States, and Canada found 98 

campylobacteriosis incidence to be correlated with climatic variables, including 99 

temperature and precipitation 29–33. In addition to weather and climate factors, 100 

Sanderson et al. also examined the potential impacts of hydrology and landscape 101 

features, like soil type and land use, on the rates of human Campylobacter cases in the 102 

UK 34. This study showed that an increased risk of Campylobacter infections was 103 

associated with periods of high surface-water flow and catchment areas with 104 

cattle/sheep grazing on stagnogley soils. Another similar study conducted in New 105 

Zealand linked the risk of infection to a high dairy cattle density 35. However, these kinds 106 

of studies that investigate the influence of environmental factors have been 107 

predominantly conducted in developed countries with a focus on C. jejuni/coli. There is 108 

a critical knowledge gap in environmental effects on Campylobacter infections in LMICs. 109 

Although multiple factors are involved in the transmission pathways of 110 

Campylobacter, few studies have assessed the combined effects of environmental 111 

covariates with other relevant factors from different domains including humans and 112 

animals. Since environmental data often comprise spatial information such as land 113 
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cover, precipitation, and topography, geospatial analysis is needed to address the 114 

inherent differences in data types between environmental factors and human/animal 115 

factors by integrating them within a spatial framework (e.g., spatial regression). This 116 

capability to analyze data at different levels, from individual households to broader 117 

environmental landscapes, enhances the depth of risk factor identification. Coupled with 118 

the One Health perspective, this kind of analysis will help unravel the complex interplay 119 

between human, animal, and environmental factors involved in Campylobacter 120 

transmissions among children in a low-resource setting.  121 

The longitudinal study of the Campylobacter Genomics and Environmental 122 

Enteric Dysfunction (CAGED) project conducted in rural Eastern Ethiopia aimed to 123 

examine the association between Campylobacter infection, related reservoirs, and child 124 

health outcomes 36. It collected not only the child fecal samples but also environmental 125 

(e.g., soil and drinking water) and livestock samples. A household questionnaire 126 

included components on people (e.g., demographics, livelihoods and wealth), livestock, 127 

and the interactions between people, livestock, and the environment. Combined with the 128 

child and environmental samples, these data provide an opportunity to investigate the 129 

potential combined effects of these risk factors on Campylobacter infection in infants. 130 

Materials and Methods 131 

Study Design and Protocol 132 

A detailed description of the CAGED study design and protocol can be found 133 

elsewhere 36. Briefly, a total of 106 infants from 10 kebeles (the smallest administrative 134 

unit) of Haramaya woreda, Eastern Hararghe Zone, Oromia, Ethiopia (Figure 1) were 135 

enrolled at birth and followed until approximately 13 months of age. Written informed 136 

consent was obtained from both parents of each participating child in the local language 137 
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(Afan Oromo). Household information, including demographics, livelihoods and wealth, 138 

livestock ownership, and child health and nutrition status, was collected through 139 

household surveys at baseline and endline, along with short surveys conducted 140 

monthly. During the study period, child stool samples were collected monthly and tested 141 

for Campylobacter species. In addition, fecal samples from mothers and siblings of the 142 

enrolled children, feces from livestock (i.e., chicken, cattle, goat, and sheep), and 143 

environmental samples (soil and drinking water) were collected biannually. DNA 144 

extraction, genus-specific Taqman real-time PCR, and species-specific Sybr Green 145 

real-time PCR were performed afterwards to detect, quantify, and characterize 146 

Campylobacter spp. in these samples 37.  147 

Outcome variable 148 

We calculated the cumulative burden of Campylobacter infection for each 149 

enrolled child as the outcome variable of interest derived from the Ct values of their 150 

fecal samples collected over time. A genus-specific standard curve for expected 151 

bacterial load (log genome copies per 50 ng of DNA) against the Ct values was first 152 

generated using the 16S Taqman approach 38. One ml normalized bacterial culture 153 

cocktail (including Campylobacter jejuni, Campylobacter coli, Campylobacter 154 

hyointestinalis, Campylobacter lari and Campylobacter fetus) was used for DNA 155 

extraction, and 2 μl extracted DNA for qPCR afterwards. Nuclease free water and 156 

Salmonella genomic DNA were used as negative controls. We tested up to 10 157 

Campylobacter DNA concentrations and repeated the experiment three times. Then the 158 

Ct values of the tested stool samples were converted to the expected bacterial load 159 

using this standard curve. The cumulative Campylobacter burden was defined as the 160 

average of the expected bacterial loads from available stool samples for each child 37.  161 
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Explanatory Variables 162 

Household surveys 163 

Human and animal data were derived from household surveys. Demographic 164 

data including child sex, mother’s age, and mother’s education level were selected from 165 

the baseline survey, along with ownership of livestock (i.e., cattle, goat, sheep, and 166 

chicken) and assets (Table 1). To quantify all the livestock kept in a household, a 167 

composite metric, tropical livestock unit (TLU) was calculated based on the number of 168 

each species of livestock recorded in the baseline household survey 39.  169 

In the monthly short surveys, we selected variables that reflect interactions 170 

between the target child and animals or the environment (e.g., physical contact with 171 

animals, crawling in areas with animal droppings, and mouthing of soil or animal feces), 172 

diet and nutrition (e.g., consumption of animal source food [ASF]), feeding practices 173 

(e.g., pre-lacteal feeding, introduction of complementary foods, and consumption of any 174 

solid food in the past 24 h), and use of antibiotics (i.e., being treated with antibiotics in 175 

the past month) (Table 2). In addition, two composite variables, minimum dietary 176 

diversity (MDD) and household food insecurity access score (HFIAS), were generated 177 

according to their respective literature 40,41. 178 

Environmental variables 179 

Thirteen environmental covariates used for ecological niche modeling of the 180 

genus Campylobacter in a previous analysis 42 were also included in this study (Table 181 

3). Corresponding values in grids within which the 106 enrolled households were 182 

located were extracted from the raster layer of each environmental covariate using the 183 

raster package 43 in R.  184 
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Statistical Analysis 185 

Given that feeding practices (exclusive breastfeeding vs. complementary 186 

feeding) and the motor ability of infants are most often quite different between the first 187 

and second half of infants’ first year of life, related risk factors such as probability of 188 

exposure to livestock and contaminated environments are likely to dynamically change 189 

over time. Child age is also an important confounding factor for Campylobacter 190 

infections 4,39. To be consistent with our previous analysis about the prevalence of 191 

Campylobacter by age groups 42, we split the whole study period into two parts, with a 192 

cut-off of 177 days of child age, which reflects the boundary between the first two and 193 

second two age groups classified in that analysis.  194 

The outcome variable, cumulative Campylobacter burden, and all explanatory 195 

variables derived from the short household surveys were calculated separately for the 196 

two periods. We took the average of the monthly short survey data for each selected 197 

short survey variable, which resulted in an average value for the numeric variables or a 198 

proportion of being “1” for the binary variables (ordinal variable MDD was dichotomized 199 

using a generally accepted cut-off of < 5 and ≥ 5) during each period. Given the 200 

relatively small sample size, a median split approach was applied to dichotomize all 201 

continuous variables to improve the model robustness following a previous study 44.  202 

The purposeful selection of covariates approach was employed in this study to 203 

choose the candidate variables and determine which to include in the final model 45,46. 204 

The likelihood ratio test from logistic regression was performed for each explanatory 205 

variable with the outcome variable. The univariate analysis was conducted for the two 206 

time periods separately with the same pool of explanatory variables. For the first period, 207 

two variables, consumption of ASF in the past 24 h and MDD, were excluded from the 208 
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univariate analysis, as these questions were not asked until a child reached six months 209 

of age. Given 105 of 106 children didn’t have vitamin-A supplements in the first period, 210 

the variable vitamin-A supplementation was also excluded from the first period 211 

univariate analysis. Any variables with a p-value less than 0.25 were selected as 212 

candidates for the following multivariate analysis. 213 

A multivariate logistic regression model was built first with all candidate variables, 214 

followed by an iterative variable selection process. In each iteration, the covariate with 215 

the maximum p-value in the model was identified first. If the covariate was not 216 

significant at the 0.1 alpha level, it was removed from the model temporally, and a 217 

reduced model was fit to compare the change of coefficients (Δβ) without that covariate. 218 

If the maximum Δβ was greater than 20%, which indicates a potential confounding 219 

effect of the excluded covariate with one or more of the remaining variables in the 220 

model, the excluded covariate was added back to the model, and the next covariable 221 

with the maximum p-value was evaluated. Otherwise, this temporarily excluded 222 

covariate was deleted from the pool of candidates, and a new multivariate model was 223 

built to start another round of evaluations. After multiple iterations, the final model with 224 

significant covariates and potential confounders was obtained. 225 

Nagelkerke R2 47, a so-called pseudo-R2 measure, and Hosmer & Lemeshow 226 

goodness-of-fit test 48 were used to test the model fit. For a sample size less than 200 227 

and percentage of success in the outcome variable ranging from 38 – 62%, benchmark 228 

values between 0.32 and 0.58 of Nagelkerke R2 indicate good fit of the model 49. The 229 

Hosmer & Lemeshow test is a hypothesis test and evaluates if the expected event 230 

frequencies from the logistic regression model match the observed event frequencies in 231 
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subgroups. The area under the receiver operating characteristic (ROC) curve (AUC) 232 

was used to assess the model performance in discriminating the positive results from 233 

the negatives 50. AUC values range from 0 to 1, and, empirically, values between 0.7 234 

and 0.9 are a sign of good predictive performance. Values greater than 0.9 represent an 235 

excellent performance 51.  236 

We first fitted a multivariate model using the data collected from the first period 237 

and tested if it was a good fit for the second period data. If not, a separate model was 238 

built for the second period, and effects of the covariates between two periods were 239 

evaluated. All the statistical analyses were performed using R version 4.1.1 52. 240 

Spatial Autocorrelation Test 241 

Spatial autocorrelation refers to the correlation within variables across different 242 

spatial units 53. If the values of a particular variable in nearby locations tend to be 243 

similar, a positive spatial autocorrelation exists in this variable, while negative spatial 244 

autocorrelation occurs when the values of a variable are more dissimilar than expected 245 

with their spatial neighbors. If spatial autocorrelation exists in the residuals of a 246 

regression model, it violates the assumption of independent errors and may result in an 247 

underestimation of the standard errors of the coefficient estimates of the model 54. To 248 

test the spatial autocorrelation in the residuals of the logistic models fit in this study, we 249 

performed Moran’s I test on the residuals using spdep package in R 55. 250 

Results 251 

Demographics and Socio-economic Status 252 

Among the 106 enrolled children, 51.9% were male and 48.1% were female 253 

(Table 1). The mother’s age at baseline ranged from 17 to 43 years, with a median age 254 

of 27 years. A high proportion of mothers reported not attending school at any level; 255 
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only 28% had some primary education. For livestock ownership, 49%, 57%, 45%, and 256 

50% of households owned cattle, goat, sheep, and chicken, respectively. Accordingly, 257 

the indicator of tropical livestock units (TLU) kept by the household ranged from 0 to 258 

5.54, with a median value of 0.62. 259 

Cumulative Campylobacter Burden 260 

The calculated cumulative Campylobacter burden for infants in the first period 261 

ranged from 0.77 to 3.75 log genome copies per 50 ng of DNA with a median value of 262 

2.10, while the minimum and maximum of cumulative Campylobacter burden for the 263 

second period were 1.95 and 5.06 log genome copies per 50 ng of DNA, respectively. 264 

The Campylobacter burden in the second half year of life (M = 3.52, SD = 0.75) was 265 

significantly higher than in the first half year of life (M = 2.14, SD = 0.62); t(210) = 14.7, 266 

p < .01 (Figure 2).  267 

Univariate Analysis 268 

Based on the p-value of likelihood ratio test with a cut-off of 0.25, 13 and 8 269 

variables were selected as candidate variables for the first and second period, 270 

respectively (Table 2). Among the candidates, three variables, namely, cattle 271 

ownership, sheep ownership, and consumption of any solid food in the past 24h, were 272 

included in the multivariate analysis for both periods. Though child sex was not 273 

significant at the alpha level of 0.25 in the first period, we still included it in the 274 

multivariate analysis given the confounding effect of child sex in Campylobacter 275 

infection reported in previous studies 4,7,39,56.  276 

Multivariate Analysis 277 

Period One 278 
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The final logistic regression model for the first period showed that contact with 279 

animals, mouthing of soil or animal feces, and drinking from a bottle with nipple in the 280 

past 24h were statistically significant at the 0.05 level (Table 4). The direction of the 281 

estimated coefficients indicated children in the first period who had more physical 282 

contact with animals and more mouthing of soil or animal feces had greater odds of high 283 

cumulative Campylobacter burden, while drinking from a bottle with nipple was found to 284 

be a protective factor for high Campylobacter burden. Sheep ownership was marginally 285 

significant in the model and had a negative coefficient estimate. Through the purposeful 286 

selection of covariates process, child sex, pre-lacteal feeding, elevation, and soil pH 287 

were identified as potential confounding factors for Campylobacter burden. 288 

The Nagelkerke R2 of the logistic regression model was 0.40, which fell into the 289 

benchmark values (0.32 – 0.58) for good model fit (Table 4). Hosmer & Lemeshow test 290 

also showed there was no evidence of poor model fit. The model also had a relatively 291 

good predictive performance with an AUC of 0.79 (95% CI: 0.70 – 0.88) (Figure 3A). 292 

Moran’s I statistics showed that no spatial autocorrelation existed in the model 293 

residuals, suggesting there was no need to consider a spatial regression model to 294 

account for the spatial autocorrelation. 295 

To test if one single model can be obtained for both periods, the second period 296 

data were plugged into the model for the first period as a testing data set. Hosmer & 297 

Lemeshow test checked the difference between observed data and predicted values 298 

and showed this difference was significant (p = 0.00), suggesting a poor fit of the model 299 

to the second period data. It was also supported by a low AUC of 0.57 (95% CI: 0.46 – 300 

0.69) (Figure 3B). 301 
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Period two 302 

Logistic regression models were then fitted using the candidate variables 303 

selected from the univariate analysis for the second period, and the final model included 304 

eight variables with child sex, cattle ownership, and population density (per 100m2) 305 

being statistically significant at the 0.05 level (Table 5). Children being female and living 306 

in households that kept cattle had greater odds of high cumulative Campylobacter 307 

burden, while population density showed protective effects on Campylobacter burden. 308 

Household food insecurity access score, proportion of clay particles in soil, consumption 309 

of any solid food in the past 24h, and sheep ownership were identified as potential 310 

confounding factors for Campylobacter burden in the second period. 311 

The Nagelkerke R2 for the second model was 0.34, and Hosmer & Lemeshow 312 

test showed there was no evidence of poor model fit (Table 5). This model had a good 313 

predictive performance with an AUC of 0.80 (95% CI: 0.71 – 0.89) (Figure 3C). Again, 314 

there was no spatial autocorrelation existing in the model residuals. 315 

Discussion 316 

From a One Health perspective, this study identified potential factors involved in 317 

the Campylobacter transmission pathways between humans, animals, and the 318 

environment in a low-resource setting. Child age-specific behaviors and other factors 319 

that may increase the risk of children’s exposure to animal feces are largely missing 320 

from previous interventions that aimed to mitigate the burden of Campylobacter 321 

infection or other enteric illnesses among infants and young children in LMICs 57. Risk 322 

factors of Campylobacter infections that have been commonly identified in previous 323 

studies conducted among CU5 in low-resource settings are primarily limited to maternal 324 
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educational level, feeding practices, WaSH indicators, and ownership of domestic 325 

animals 4,58–60. However, fewer studies have delved into infant-specific behaviors and 326 

the interactions between infants and livestock, which could also contribute to the risk of 327 

Campylobacter infections 61. Considering the dynamic effects of age, particularly 328 

distinguishing between infants aged less than six months and those aged six to twelve 329 

months, on biological risk and environmental interaction, our study introduces a novel 330 

approach. By fitting models and identifying risk factors separately for the first and 331 

second six months of infancy, we aim to capture the nuanced variations in infection 332 

dynamics during these critical developmental stages. This innovative methodology, 333 

coupled with the exploration of previously overlooked factors using longitudinal data, 334 

sets our study apart from existing research on Campylobacter infection risk factors.  335 

At an early stage of life, infants and young children put non-food objects in their 336 

mouths as one way to explore the surrounding environment 62. However, this 337 

exploratory behavior could put children at higher risk of contracting zoonotic pathogens 338 

if they live in an environment contaminated by livestock and poultry feces. Our results 339 

identify mouthing of soil or animal feces as a significant risk factor contributing to a 340 

higher cumulative Campylobacter burden during the first half of the first year of life. This 341 

association can be attributed to the high prevalence of Campylobacter spp. in the feces 342 

of animals, including domestic livestock and poultry. Results from the laboratory showed 343 

that the prevalence of Campylobacter in the fecal samples of cattle, sheep, goats, and 344 

chicken collected from the CAGED longitudinal study were 99%, 98%, 99%, and 93%, 345 

respectively 37. In rural areas of LMICs, infants and young children are frequently placed 346 

on the ground sharing space with free-ranging livestock 57. As animals defecate in the 347 
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homestead, or sometimes even inside the homes, enteric pathogens harbored in 348 

livestock feces or the soil contaminated by the feces may be ingested by infants through 349 

their routine mouthing behaviors while they are on the floor. Ingestion of soil and 350 

livestock feces is therefore a point of exposure specific to infant and young child 351 

behavior. This infant-specific transmission pathway needs to be considered in the future 352 

design of intervention strategies for preventing children from fecal exposure. This 353 

finding echoes the collective conclusion from the WASH Benefits and the Sanitation, 354 

Hygiene, Infant Nutrition Efficacy (SHINE) trials; that more effective interventions are 355 

needed to reduce the exposure to fecal contaminations in the domestic environments 356 

other than the traditional WaSH interventions 63.  357 

 Similarly, physical contact with animals was identified as another risk factor 358 

existing in the child-livestock interaction in the first period (before six months of age) 359 

that increases the exposure of children to animal feces. It is very common that people in 360 

rural areas share living and sleeping quarters with their livestock, which frequently 361 

exposes young children in the household to direct contact with livestock. Keeping 362 

animals inside human living spaces has been associated with Campylobacter-positive 363 

child stools in another study in rural Ethiopia 57, highlighting the need to design 364 

interventions creating adequate separation of domestic animals from the human living 365 

spaces to block the transmission pathway through direct contact.  366 

The risks and benefits of raising livestock in smallholder families on child health 367 

are intertwined 23. On one hand, livestock raised in the household can provide animal 368 

source foods, which are seen as the best source of nutrition-rich food for infants and 369 

young children. Livestock production is also a source of household income. Increased 370 
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income from livestock sales can grant families more purchasing power for food, which 371 

further helps improve child nutritional status. However, livestock ownership can 372 

potentially increase the risk of children’s exposure to animal feces, as discussed above. 373 

In this study, we didn’t find a significant association between consumption of animal 374 

source food and Campylobacter burden, but cattle ownership was identified as a 375 

significant factor associated with increased odds of having higher cumulative 376 

Campylobacter burden during the second half of the first year of life. In our study 377 

population, when cattle were kept either inside the homes or on the homestead but 378 

outside the home during the day, 100% (27/27) and 93.3% (28/30) of households, 379 

respectively, confined those cattle. During the night, almost all cattle were kept and tied 380 

inside the home. Regarding the purposes of raising cattle, households reported selling 381 

livestock for income (44.2%; 23/52) and consumption of milk (51.9%; 27/52) as the two 382 

major purposes. These data support other findings indicating a strong cultural focus on 383 

milk consumption in this area, which may correspond with an underlying risk in the 384 

consumption of raw/unpasteurized milk which has been associated with reported 385 

outbreaks of campylobacteriosis in HICs 64,65. A recent Ethiopian study showed a higher 386 

prevalence of C. jejuni (16%) in raw milk compared to other dairy products 66. Though 387 

consumption of raw milk was not identified in our models as a significant risk factor of 388 

Campylobacter burden in our study population, further work is still needed to unpack 389 

this association among children in low-resource settings. 390 

Appropriate infant and young child feeding practices could improve child 391 

nutritional status, growth, and development 67. For infant aged from 0 – 5 months, 392 

exclusive breastfeeding is strongly recommended by WHO, while, bottle feeding, using 393 
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a bottle with a nipple/teat to feed any liquid or semi-solid food, is discouraged at this 394 

early stage of life due to global concerns that include excessive weight gain, iron 395 

depletion, etc. 68. In addition, a bottle with a nipple is more likely to be contaminated in 396 

low-resource settings where inadequate cleaning and disinfection of bottles is more 397 

common, which increases the risk of enteric infections 69. Lengerh et al. showed that 398 

bottle feeding was associated with increased odds of Campylobacter infection among 399 

diarrheic children in northwest Ethiopia 60. However, in this study, drinking from a bottle 400 

with nipple was shown to be a protective factor for higher cumulative Campylobacter 401 

burden in the first time period. Our results should not be interpreted as an 402 

encouragement of bottle feeding. One potential explanation could be that this practice is 403 

linked to other socio-economic factors that contribute to reducing the risk of 404 

Campylobacter infections. A previous study using Ethiopian Demographic and Health 405 

Surveys data (EDHS) to examine the determinants of bottle feeding suggested that 406 

women who had a higher education, came from a richer household, and lived in urban 407 

areas were more likely to bottle feed 68. The role of mother’s education level and 408 

household wealth status in Campylobacter burden was not clear in our analysis with a 409 

relatively small sample size, and further work is needed to unpack these potential links.  410 

Influences of environmental and climatic factors have been rarely reported in 411 

studies investigating risk factors of Campylobacter infections among children in LMICs. 412 

Here, we included several environmental covariates previously used to model the 413 

prevalence of enteric diseases globally and regionally. Due to the small geography of 414 

our study area, most environmental covariates have less heterogeneity to show signals 415 

in their association with Campylobacter infections. This is one of the limitations in this 416 
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study. Evaluating these environmental effects on Campylobacter infections at a larger 417 

scale in LMICs would be a future direction. 418 

We tested the spatial autocorrelation in the model residuals during the model-419 

building process, a step that has seldom been taken in previous work on identifying risk 420 

factors of Campylobacter infections. We did so not only because we included 421 

environmental covariates in the models, but to consider the potential spatial effects (i.e., 422 

spatial dependence and spatial heterogeneity) introduced by georeferenced data 70. 423 

Neglecting the spatial effects could lead to an inflation of variance in regression 424 

estimates and, consequently, a less reliable regression model 71. Therefore, it would be 425 

appropriate for future studies to consider including the spatial autocorrelation test as a 426 

core component of the modeling-building process to ensure the reliability and accuracy 427 

of the regression model. 428 

Another innovative aspect of this study involves the adoption of bacterial load-429 

based cumulative burden, departing from traditional prevalence measures when dealing 430 

with longitudinal data. By calculating the cumulative burden, we gain insight into the 431 

persistent impact of Campylobacter infections over time, offering a nuanced perspective 432 

on disease dynamics. This method enables a comprehensive assessment of 433 

Campylobacter burden over a certain period and holds promise for advancing 434 

longitudinal studies on Campylobacter infections. 435 

In conclusion, our study reveals that factors involved in the interactions between 436 

human (infants), livestock, and home environment impacted the presence of higher 437 

cumulative Campylobacter burden among infants in eastern Ethiopia. For young infants 438 

aged less than 6 months, being reported to have physical contact with animals and 439 
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have mouthing of soil or animal feces were identified as risk factors of higher 440 

Campylobacter burden. And drinking from a bottle with nipple was shown to be a 441 

protective factor. This result requires additional research to understand and should not 442 

be interpreted to encourage bottle feeding; additional information is required to 443 

understand whether there is a direct causal mechanism or whether underlying factors or 444 

confounders, such as socio-economic status or overall household hygiene, might 445 

explain the finding. While older infants (aged between 6 and 12 months) being female 446 

and living in households with cattle had increased odds of higher Campylobacter 447 

burden. High population density (potentially linked to urban residency) was identified as 448 

a protective factor for this age group. Future interventions should pay more attention to 449 

the infant-specific transmission pathway and create adequate separation of domestic 450 

animals from humans to prevent infants and young children from potential fecal 451 

exposures. 452 
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Tables 744 

Table 1. Demographics and socio-economic status of the households enrolled in this 745 
study. 746 

Variable N = 106$ 

Sex  

     Female 51 (48%) 

     Male 55 (52%) 

Mother’s age 27.0 (22.0, 32.0) 

     Unknown 1 

Mother’s education  

     No primary education 76 (72%) 

     Some primary education 29 (28%) 

     Unknown 1 

Livestock ownership  

     Cattle 52 (49%) 

     Goat 60 (57%) 

     Sheep 48 (45%) 

     Chicken 53 (50%) 

Tropical livestock unit 0.62 (0.20, 1.40) 
$n (%); Median (IQR) 747 
  748 
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Table 2. Variables used for regression modeling and univariate analysis results. 749 

Variable First period  Second period 

OR (CI)& p OR (CI) p 

Child sex 0.8 (0.4, 1.7) 0.56 2.3 (1.1, 5.1) 0.03 
Mother’s age 1.3 (0.6, 2.8) 0.55 0.8 (0.4, 1.7) 0.55 

Mother’s education 1.2 (0.5, 2.9) 0.49 1.1 (0.4, 2.6) 0.49 
Cattle ownership  0.6 (0.3, 1.4) 0.24* 2.1 (1.0, 4.7) 0.05 
Goat ownership 1.4 (0.6, 3.0) 0.43 0.9 (0.4, 1.9) 0.70 

Sheep ownership 0.6 (0.3, 1.4) 0.24 0.5 (0.2, 1.2) 0.12 
Chicken ownership 0.8 (0.4, 1.7) 0.56 1.5 (0.7, 3.2) 0.33 

Tropical livestock unit 1.1 (0.5, 2.3) 0.85 1.3 (0.6, 2.7) 0.56 

Asset 1.3 (0.6, 3.0) 0.44 0.8 (0.4, 1.8) 0.70 
Pre-lacteal feeding 2.3 (1.0, 5.5) 0.06 NA NA 
Time of introduction of 
complementary foods (days) 

0.6 (0.3, 1.3) 0.17 NA NA 

Drinking from a bottle with nipple 
in the past 24h 

0.6 (0.3, 1.3) 0.17 1.0 (0.5, 2.1) 1 

Consumption of unpasteurized 
animal milk in the past 24h 

1.0 (0.2, 4.4) 1 1.4 (0.6, 2.9) 0.44 

Consumption of any solid food in 
the past 24h 

4.5 (1.1, 31.1) 0.04 1.8 (0.9, 4.0) 0.12 

Consumption of animal source 
food in the past 24h$ 

NA NA 0.9 (0.4, 1.9) 0.70 

Minimum dietary diversity$ NA NA 0.8 (0.4, 1.7) 0.56 

Household food insecurity 
access score 

1.3 (0.6, 2.7) 0.56 2.3 (1.1, 5.1) 0.03 

Vitamin-A supplementation in the 
past month# 

NA NA 1.2 (0.5, 2.6) 0.69 

Being treated with antibiotics in 
the past month 

1.6 (0.7, 3.7) 0.22 0.8 (0.4, 1.7) 0.55 

Contact with animals 3.2 (1.4, 7.7) 0.01 1.3 (0.6, 2.7) 0.56 

Crawling in areas with animal 
feces 

3.0 (0.8, 14.2) 0.11 1.5 (0.7, 3.2) 0.33 

Mouthing of soil or animal feces 12.1 (2.2, 226) 0.00 1.5 (0.7, 3.2) 0.33 

Preventive actions (mother) for 
mouthing behavior 

1.1 (0.5, 2.4) 0.77 0.9 (0.4, 2.0) 0.84 

Elevation (m) 0.6 (0.3, 1.3) 0.17 0.7 (0.3, 1.5) 0.33 
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Table 2. Continued     

Variable First period Second period 

OR (CI) p OR (CI) p 

Maximum daily land surface 
temperature, 2021 (°C) 

1.3 (0.6, 2.7) 0.56 1.1 (0.5, 2.3) 0.85 

Mean daily land surface 
temperature, 2021 (°C) 

0.9 (0.4, 2.0) 0.85 0.8 (0.4, 1.7) 0.56 

Minimum daily land surface 
temperature, 2021 (°C) 

1.3 (0.6, 2.7) 0.56 1.5 (0.7, 3.2) 0.33 

Maximum 16-day NDVI‡, 2021 1.5 (0.7, 3.2) 0.33 0.9 (0.4, 2.0) 0.85 

Mean 16-day NDVI, 2021 1.3 (0.6, 2.7) 0.56 0.7 (0.3, 1.5) 0.33 

Minimum 16-day NDVI, 2021 0.8 (0.4, 1.7) 0.56 0.5 (0.2, 1.1) 0.08 
Population count 100m x 100m, 
2020 

1.2 (0.5, 2.5) 0.70 0.3 (0.1, 0.6) 0.00 

Slope (degree) 0.4 (0.2, 0.9) 0.03 1.3 (0.6, 2.7) 0.56 

Proportion of clay particles in the 
fine earth fraction (g/kg) 

1.3 (0.6, 2.7) 0.56 2.3 (1.1 to 5.1) 0.03 

Soil organic carbon content in 
the fine earth fraction (0.1g/kg) 

0.9 (0.4, 1.8) 0.70 1.2 (0.5, 2.5) 0.70 

Soil pH 0.5 (0.2, 1.3) 0.16 0.8 (0.3, 2.0) 0.64 
& Odds ratio (confidence interval) 750 
* Bold script represents the p-value is less than 0.25, and the corresponding variable 751 
was included as a candidate for the multivariate analysis. 752 
$ Data were not available for the first period as the minimum dietary diversity (MDD) 753 
survey was administered after 6 months of age. 754 
# Only one child had vitamin-A supplements for the first period. This variable was 755 
excluded from the univariate analysis for the first period. 756 
‡ Normalized difference vegetation index 757 
  758 
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Table 3. Environmental variables used in this study and their sources. 759 

Variable Median Data source 

Elevation (m) 2083.0 WorldPop (https://www.worldpop.org/) 

Maximum daily land surface 
temperature, 2021 (°C) 

44.18 MODIS Land Surface Temperature 
/Emissivity Daily (MOD11A1) Version 6.1 

Mean daily land surface temperature, 
2021 (°C) 

31.17 MODIS Land Surface Temperature 
/Emissivity Daily (MOD11A1) Version 6.1 

Minimum daily land surface 
temperature, 2021 (°C) 

16.58 MODIS Land Surface Temperature 
/Emissivity Daily (MOD11A1) Version 6.1 

Maximum 16-day NDVI*, 2021 0.68 MODIS Vegetation Indices (MOD13Q1) 
Version 6.1 

Mean 16-day NDVI, 2021 0.48 MODIS Vegetation Indices (MOD13Q1) 
Version 6.1 

Minimum 16-day NDVI, 2021 0.30 MODIS Vegetation Indices (MOD13Q1) 
Version 6.1 

Population count 100m x 100m, 2020 6 WorldPop (https://www.worldpop.org/) 

Slope (degree) 5.0 WorldPop (https://www.worldpop.org/) 

Proportion of clay particles in the fine 
earth fraction (g/kg) 

421.5 SoilGrids version 2.0 (https://soilgrids.org/) 

Soil organic carbon content in the 
fine earth fraction (0.1g/kg) 

328 SoilGrids version 2.0 (https://soilgrids.org/) 

Soil pH 7.4 SoilGrids version 2.0 (https://soilgrids.org/) 

* Normalized difference vegetation index 760 
  761 
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Table 4. Logistic regression model for the cumulative Campylobacter burden in the first 762 
period. 763 

Characteristic OR^ 95% CI* p-value 

Child sex 0.59 (0.22, 1051) 0.3 

Sheep ownership 0.40 (0.15, 1.01) 0.06 

Pre-lacteal feeding 1.77 (0.66, 4.87) 0.3 

Contact with animals 3.13 (1.11, 9.6) 0.04$ 

Mouthing of soil or animal feces 12.8 (1.80, 272) 0.03 

Drinking from a bottle with nipple in the past 24h 0.35 (0.12, 0.94) 0.04 

Elevation 0.61 (0.23, 1.60) 0.30 

Soil pH 0.43 (0.14, 1.29) 0.14 

Nagelkerke R2 0.40   

Hosmer & Lemeshow test   0.42 

AUC# 0.79 (0.70, 0.88)  

Moran’s I statistic -0.06  0.75 
^Odds ratio 764 
*Confidence interval 765 
$Boldness represents the p-value is less than 0.05.  766 
#Area under the receiver operating characteristic curve 767 
  768 
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Table 5. Logistic regression model for the cumulative Campylobacter burden in the 769 
second period. 770 

Characteristic OR^ 95% CI* p-value 

Child sex 2.85 (1.15, 7.47) 0.027$ 

Cattle ownership 2.87 (1.14, 7.70) 0.029 

Sheep ownership 0.49 (0.91, 1.21) 0.12 

household food insecurity access score 1.78 (0.69, 4.59) 0.2 

Consumption of any solid food in the past 24h 2.01 (0.79, 5.30) 0.15 

Minimum 16-day NDVI, 2021 0.43 (0.17, 1.05) 0.069 

Population count 100m x 100m, 2020 0.37 (0.15, 0.92) 0.033 

Proportion of clay particles in the fine earth 

fraction 
2.12 (0.84, 5.54) 0.12 

Nagelkerke R2 0.34   

Hosmer & Lemeshow test   0.47 

AUC# 0.80 (0.71, 0.89)  

Moran’s I statistic 0.014  0.37 
^Odds ratio 771 
*Confidence interval 772 
$Bold script represents the p-value is less than 0.05. 773 
#Area under the receiver operating characteristic curve 774 
  775 
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Figure Legends 776 

Figure 1. Study area and enrolled households in the Campylobacter Genomics and 777 

Environmental Enteric Dysfunction (CAGED) project. 778 

Figure 2. Frequency distribution of the cumulative Campylobacter burden for the first 779 

and second period in this study. 780 

Figure 3. Receiver operating curves (ROC) for logistic regression models fit in this 781 

study. A: model fit with the first period data; B: test of the fit of the first period model to 782 

the second period data; C: model fit with the second period data. 783 

 784 
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