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Abstract 

Background: In the midst of the emerging climate crisis, healthcare providers lack locally 

validated, disease-specific surveillance models. Stroke, a significant contributor to the global 

disease burden, has been linked to climate change. Therefore, we developed and benchmarked 

machine learning (ML) models based on locoregional weather systems to forecast the number 

of daily acute ischemic stroke (AIS) admissions. 

Methods: AIS patients diagnosed between 2015 and 2021 at the tertiary University Medical 

Center (UMC) Mannheim, Germany were extracted from the local data integration center and 

geospatially matched to weather data from the German Weather Service (DWD) based on the 

clinic’s, patients’ home and closest tower’s locations at the time of admission. Statistical- 

(Poisson), boosted generalized additive model (GAM), support vector machines (SVR), and 

tree-based models including random forest (RF) and extreme gradient boosting (XGB) were 

evaluated in regression settings within time-stratified nested cross-validation setup (training-

validation: 2015-2020, test set: 2021) to predict the number of daily AIS admissions. 

Findings: The cohort included 7,914 AIS patients (4,244 male, 53·6%). XGB showed the best 

test performance with lowest mean absolute error (MAE) of 1·21 cases/day. Maximum air 

pressure was identified as the top predictive variable. Shapley additive explanations analyses 

revealed that temperature extremes of extended cold- (lag-3 minimum temperature <-2 °C; 

minimum perceived temperature <-1·4 °C) and hot stressors (lag-7 minimum temperature >15 

°C), as well as stormy conditions (lag-1 and lag-2 maximum wind gust >14 m/s and speed 

>10·4 m/s), increased stroke incidences substantially with distinct seasonal associations. 

Interpretation: ML models can sufficiently forecast AIS admissions based on weather 

patterns allowing for improved resource allocation and preparedness. 
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Introduction 

The intensifying climate crisis poses a severe threat to ecosystems and human well-being, 

particularly to aging populations.1–3 Stroke is a major contributor to the global burden of 

cardiovascular disease, requiring prompt treatment for effectiveness.1 However, current 

healthcare systems struggle to dynamically adapt to weather related fluctuations in demand.2,3 

This study leverages machine learning (ML) to develop predictive models using 

meteorological data to forecast acute ischemic stroke (AIS) admissions, aiming to enhance 

healthcare planning and accelerate responses to weather-related health incidents. 

In addition to individual risk factors, various weather conditions have been linked to stroke 

occurrences, including extremes of ambient temperature,4–8 atmospheric pressure,9–11 wind 

speed,12,13 and ambient particulate matter with a diameter of <2.5 μm (PM2.5) pollution.14,15 

Nonetheless, the results from these investigations have been inconclusive. Some studies have 

found a positive association between higher temperatures due to heat stress,7,8 higher air 

pressure,10,11 and higher wind speed12 leading to an increase in stroke occurrences. In contrast, 

other studies have established a negative link between AIS admissions and cooler 

temperatures,4–6  lower air pressure,9 as well as lower wind speed.13 While certain studies 

found no relevant association between weather conditions and the occurrence of stroke.7,16 

Although ML models have been previously used to predict the number of admission counts 

for various diseases based on weather data, such as heat strokes, cerebrovascular, and overall 

emergency room visits17,18, none of these studies concerned with ischemic stroke admissions. 

Furthermore, they were neither intended for forecasting nor did they fully exploit the 

extensive array of weather features and lagged parameters to develop an open-source 

comprehensive predictive framework. 

Therefore, this study aimed to develop and benchmark ML-based predictive models for AIS 

admissions using geospatially matched locoregional weather parameters for the clinically 

relevant daily time resolution. We employed a time-stratified 5x5-fold nested cross-validation 

setup over a seven-year period for a tertiary university clinic with a catchment area of 600,000 

population. Our results underscore the potential of ML algorithms to forecast AIS admissions 

based on weather patterns, enabling improved resource allocation in the midst of climate 

change and providing a generalizable open-source framework applicable to various diseases. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.24309252doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309252
http://creativecommons.org/licenses/by-nd/4.0/


Materials and Methods 

Patient selection 

This single-center retrospective cohort study entitled “Weather-based Stroke event and 

Outcome Risk Modelling (WE-STORM)” was approved by the local use- and access- (UAC) 

and ethics committees (Medical Ethics Commission II, Medical Faculty Mannheim, 

Heidelberg University, approval nr.: 2022-800R-MA). All methods were carried out following 

institutional guidelines and regulations. The ethics committee waived written informed 

consent due to the retrospective nature of the analyses. All patients admitted with suspected 

acute ischemic stroke between 2015-01-01 and 2021-12-31 at the University Medical Center 

(UMC) Mannheim, Germany, were retrieved from the local data integration center (DIC) 

using the core data set of the Medical Informatics Initiative (MII), which was based on 

standardized Health Level Seven International Fast Health Interoperability Resources (HL7 

FHIR) specifications.19 Patients were identified using the International Classification of 

Diseases, Tenth Revision, German Modification (ICD-10-GM) codes: I63.0-9. Besides 

hospital diagnoses, general demographic information such as age, sex, admission date and 

patients’ home address (postal codes) were also extracted.  

Postal codes were used to link local weather patterns to the admission date and time. In case 

of missing values, it was replaced with that of the clinic’s location (postal code). This 

information was then used to perform weather data extraction and geospatial matching for 

downstream analyses. If patients had multiple visits to the emergency department or 

outpatient ambulance, only the inpatient visit to the hospital was considered. 

 

Weather data  

Weather data were retrieved from the open data server of the German Weather Service 

(DWD) using the rdwd package. It comprised 440 weather stations covering Germany. The 

stations measured various parameters, such as air temperature, relative humidity, pressure, 

wind speed, wind direction, sunshine duration, precipitation, and cloud cover, with different 

parameters being sampled at different temporal resolutions between 2015 and 2021. Because 

not all stations had all measurements, weather parameters with hourly and daily resolutions 

were collected from stations with full parameter coverage and based on the patients’ home 

locations (135/440, 30·7%) to optimize the balance between sufficiently detailed temporal 

resolution and data processing requirements (Supplementary Fig. S1). Weather features 

averaged over multiple days were represented as lagged variables, such as a 3-day average 

indicated by lag-3 or a 7-day average indicated by lag-7.  
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Additionally, we calculated well-established human biometeorological parameters such as 

perceived temperature (PT).20 PT is an index that jointly considers factors like air 

temperature, humidity, wind velocity, and radiation fluxes to quantify human thermal 

perception. It is derived from the Klima-Michael model, which uses an energy balance 

approach to describe the complex interactions of meteorological components on the body's 

thermal equilibrium (German Weather Service, Glossary: K-Climate-Micheal model). PT was 

defined as the equivalent air temperature in an outdoor environment for a male reference 

subject (35 years, 1·75 m, 75 kg) with an internal heat production of 135 W/m2 (walking at 4 

km/h on flat ground) in specific conditions (50% of relative humidity) and a reduced wind 

velocity (slight breeze).20 It is assumed that clothing is adapted to achieve thermal comfort. 

PTs between 0 and 20 °C mean comfort, <0 °C create a cold, and >20 °C a warm feeling, 

respectively. 

 

Geospatial matching 

We assumed that patients were either at home or near their homes when the ictus occurred. To 

counteract this potential dependency, we performed a geospatial matching by assigning each 

patient to two weather stations, one closest to their home location and one closest to the 

clinic’s (UMC) location. This approach allowed us to identify three different patient types 

(Supplementary Fig. S1): 1) those with weather stations matched to their home location that 

were not the closest station to UMC 2) those that had the same station closely matched 

(<20km) both to their home and the clinic’s location, 3) like 2) but this station was situated 

further away (>20 km). Weather features were extracted from these respective stations for the 

admission date and time, and the previous seven days (lag-1 to lag-7) and were transformed 

into daily, two-day, weekly, and monthly resolutions (Supplementary Table S1). To adjust 

for seasonal- and long-term trends, we have also incorporated calendar-based variables such 

as weekdays or -ends, year, week number and holiday indicators based on public and school 

holidays in the state of Baden-Wuerttemberg as additional features in the feature space. 

 

Machine learning setup  

The entire ML workflow was implemented using the caret package in the open-source R 

language (v.4.1.1, R Core Team, Vienna, Austria). All ML and statistical analyses were 

reported in accordance with the recently updated guidance for reporting clinical prediction 

models that use regression or machine learning methods (Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis, TRIPOD+AI 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.24309252doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309252
http://creativecommons.org/licenses/by-nd/4.0/


statement).21 We investigated well-established shallow ML algorithms, including support 

vector regressors (SVR) using linear kernel (e1071 package) and tree-based models including 

random forest (RF; randomForest package) and extreme gradient boosting (XGB; xgboost 

package) to predict the number of ischemic cases for the respective time resolution in a 

regression setting. Both ML- and statistical models were comprehensively evaluated within 

the same time-stratified 5x5-fold nested cross-validation (CV) setup with a training-validation 

set ranging from 2015 to 2020 and 2021 serving as the hold-out test set. (Fig. 1). In each fold, 

an additional year was incrementally added to the training set (sliding window approach). For 

consistency, each year was standardized to 365 days by excluding the leap year days (i.e. 

2016, 2020; n=2). Weather input variables utilized in all the models underwent 

standardization through scaling and centring. Hyperparameters were tuned using predefined 

set of parameters within a grid search for the respective ML models. The root mean square 

error (RMSE) was used as loss function. All details regarding the training-validation setup 

and hyperparameter settings are available in the companion GitHub repository of the paper 

(https://github.com/MIDorAI/Machine-learning-based-forecasting-of-acute-ischemic-stroke-

admissions-using-weather-data). Performance metrics of the tuned models reported on the 

test set (2021) were the RMSE, median absolute error (MAE), and mean absolute percentage 

error (MAPE). Feature importance rankings were calculated for RF using the built-in VarImp 

function of the caret  package with the robust permutation-based variable importance setting 
22 and for XGB using gain-based importance. Additionally, SHapley Additive exPlanations23 

(SHAP) values were calculated and plotted using the kernelshap package to aid visual 

interpretation of the results. 

 

Statistical baseline models and analyses 

As baseline statistical models, Poisson regression with a log-link distribution and boosted 

generalized additive models (GAM; mboost package) with a negative binomial distribution 

were fitted with the same set of input features and evaluated the same metrics (MAE, MAPE, 

RMSE) as the previously described ML models within R (v.4.1.1). However, the time-

stratified nested cross-validation setup was applied only for GAMs. For this, the selection of 

specific basis functions for each variable was determined by the count of unique values 

present within them. We used the default (reduction score) variable importance for GAM 

provided in the mboost package. Reduction score quantifies the individual contribution to risk 

reduction of each base-learner and can thus be used to compare the importance of different 

variables in the model. Higher scores [0-1] indicate a greater impact on error reduction. The 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.24309252doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.03.24309252
http://creativecommons.org/licenses/by-nd/4.0/


autocorrelation- (ACF) and partial autocorrelation function (PACF) plots of daily AIS cases 

were also evaluated to quantify longitudinal dependencies in the data (Supplementary Fig. 

S2a & S2b). Normally distributed variables were summarized as mean and standard deviation 

(SD), while non-normally distributed features were described with their median and 

interquartile range (IQR). Categorical variables were reported as proportions. Statistical 

significance was defined as two-sided p<0.05 and p-values were provided with their 95% 

confidence intervals (CI). Due to the explorative nature of our study, we did not adjust for 

multiple testing.24 Figures were created using the ggplot2 and leaflet R packages using colour-

blind safe palettes. 
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Results 

Study cohort 

A single-center retrospective cohort of 7914 (4244 male, 53·6%) patients admitted with AIS 

between 2015 and 2021 at the UMC Mannheim, Germany was retrieved from the local DIC. 

The average age of patients was 71 years (range: 7-98 years, SD=14 years). The descriptive 

statistics for stroke admissions in the cohort and the distribution of the weather parameters 

such as temperature [°C], relative humidity [%], pressure [hPa], and windspeed [m/s] in the 

feature space (overall n=133 variables) were summarized in Table 1.  

The ACF and PACF plots (Supplementary Fig. S2a & S2b) of daily AIS cases showed no 

significant autocorrelation (lags 1-3: ACF: plag1= 0·31; plag2= 0·06; plag3= 0·071; PACF: plag1= 

0·084; plag2= 0·093; plag3= 0·12). This indicated that time series data could be considered 

sufficiently stationary, therefore, suggesting the applicability of classical shallow ML models. 

 

Yearly and seasonal trends  

Yearly trends in AIS admissions displayed a significant increase in 2015 with subsequent 

declines in 2018 and 2020 (Fig. 2a). Analysis of aggregated monthly data over the seven-year 

period revealed pronounced seasonal variations with peak incidences occurring in March 

(mean=88·85, 95% CI: 75·47-102·24, p=3·46�10-6) and a decrease in September 

(mean=74·71, 95% CI: 62·64-86·78, p=5·21�10-6, Fig. 2b) followed by a secondary peak in 

October (mean= 84·57, 95% CI: 76·65-92·48, p=2·06�10-7) and November (mean=83·71, 

95% CI: 77·18-90·24, p=6·89�10-6). In contrast, if the case count was averaged over the week 

(week 1 to 52) over the 7-year period, no consistent pattern could be observed (Fig. 2c) other 

than noticeable dips during the holiday season (50th-2nd weeks). 

 

Spatial distributions 

The UMC Mannheim is located in the state of Baden-Wuerttemberg (Fig. 2d & 2e) in the 

largest city of the metropolitan region Rhine-Neckar. Postal code-based geospatial analyses of 

patients’ home locations showed that the top three contributing areas were within a <11 km 

radius of the clinic and contributed to 29·2% of the total patient count. Over the span of seven 

years, patient counts from these regions ranged between 400-600 admissions/year (Fig. 2f). 

Similarly, when assessing the prevalence of the condition on a standardized rate per 100,000 

population, these three postal codes consistently emerged as the top contributors. Overall 

~96·2% of admissions came from within 50 km radius of the clinic supporting our 

locoregional approach and assumptions.
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Baseline statistical models 

The baseline Poisson model estimated (Table 2) the lag-5 mean cloud cover (OR=0·97, 95% 

CI: 0·93-0·98, p=0·0032) and lag-1 mean pressure (Pmean_lag1; OR=0·45, 95% CI: 0·24-0·81, 

p=0·0076) to be negatively correlated with AIS admissions. Conversely, lag-2 minimum 

temperature (Tmin_lag2; OR=1·10, 95% CI: 1·01-1·20, p=0·025) and maximum wind gust (Vmax; 

OR=1·02, 95% CI: 1·00–1.04, p=0·017) were positively associated with increased daily cases 

counts.  

The GAM identified maximum- (Pmax) and mean pressures (Pmean) as the two most influential 

variables with a reduction score with respect to RMSE in percentages of 0·85 and 0·53, 

respectively (Supplementary Fig. S3a). The third most influential variable was found to be 

minimal PT (PTmin) with a reduction score of 0·13. Weekends were selected as one of the top 

ten features. 

 

Machine learning models 

Among the ML models tested, XGB demonstrated the highest performance in predicting daily 

AIS cases, with the lowest MAE of 1·21 cases/day and RMSE of 1·49 cases/day in the test set. 

This represented a reduction of ~29% in MAE and a 44% decrease in RMSE compared to the 

baseline Poisson model (Table 3). Notably, similar performance was observed when the 

model was exclusively trained with weather variables only (Table 3). 

The XGB model effectively captured the variability of daily AIS case counts, especially for 

counts between 2 and 5 in the hold-out test set (Fig. 1). However, the model encountered 

limitations when predicting days with either extremely low (0, 30/365, ~8·5%) or high (>5, 

12/365, ~3·3%) case counts in the test set (2021). This performance pattern mirrored the 

distribution of the training set from 2015-2020 wherein low (0, 147/2190, ~6·7%) and high 

(>5, 129/2190, ~5·9%) AIS admissions were also infrequent. Additionally, 67.4% of the cases 

in the hold-out test set and 69·4% of the training dataset cases fell within the 2-5 case count 

range. 

 

XGB-based variable importance of weather parameters 

Pmax consistently emerged as the top variable for forecasting daily AIS case admissions across 

all deployed ML models. The XGB model distinguished itself by identifying lag-3 minimum 

temperature (Tmin_lag3) as the second most relevant variable (Fig. 3a); while SVR and RF 

models selected mean pressure (Pmean) for this position (Supplementary Fig. S3b & S3c). 

Interestingly, PTmin emerged as the third-ranked predictor in both the XGB and RF models. 
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The top 10 most important variables for XGB focused on temperature- and wind speed-related 

features, while RF emphasized temperature- and vapor pressure-based features. Besides 

weather variables, weekends also emerged among the top ten variables in the XGB model. 

The SHAP-based analyses provided insights into how the top six meteorological parameters 

of XGB influenced the prediction of daily AIS admissions (Fig. 3b). Pmax values were 

categorized into four ranges in post hoc analyses for a more detailed interpretation. During 

low pressure conditions (<961 hPa), the SHAP was -0·95, indicating a reduction in AIS cases 

(Fig. 3b), which occurred on ~1·4% of the training days (31/2190) over a span of 24 weeks 

(Fig. 3c). The second range (961-974 hPa), also exhibited a protective effect, reducing 

ischemic cases by -0·55, despite being observed on only 2·5% of the days (56/2190). 

Conversely, high-pressure (ranging 974-1013 hPa) conditions were positively associated with 

an increase in AIS case counts (SHAP=0·04), occurring on 76% (1664/2190) of the training 

days without seasonal preference (Fig. 3c). 

Temperature extremes played a dual role on AIS admissions, with both cold and hot stressor 

days positively associated with higher ischemic stroke counts. Especially, prolonged cold 

stressor periods with Tmin_lag3<-11 °C were been strongly linked (SHAP=1·47) with a surge in 

AIS admissions (Fig. 3b). While such weather conditions were observed on only five days in 

the entire dataset, stroke admissions peaked between 7-9 cases exclusively on these days, 

specifically during January in the years 2017 and -18 (Fig. 3c), however, AIS counts were 

generally lower on days surrounding these extreme cold periods. Additionally, PTmin<-1·4°C 

underscored the positive impact of cold stress with an increased SHAP value of 0.05 (Fig. 

3b). Such conditions were prevalent during the winter months (in the 1st and 4th quarters) and 

affected 36% (788/2190) of the training days (Fig. 3c). Similarly, prolonged hot stressors 

were also identified as triggers that increased ischemic stroke occurrences, with the 7-day 

lagged Tmin (Tmin_lag7) ranked as the 5th most important variable by XGB (Fig 3a). When 

Tmin_lag7 exceeded 15 °C (256/2190, 11·6%), the SHAP values steeply increased in a quasi-

linear fashion from 0 to ~0·08 (Fig. 3b). If Tmin_lag7 reached 19 °C, the SHAP value escalated 

punctually to 1·18 (Fig. 3b). This phenomenon had a seasonal preference during the 3rd 

quarters, especially during the months of August and September in the years 2018-2020 (Fig. 

3c). 

Wind-related variables exhibited a distinct pattern indicating short-term effects on AIS 

admissions, particularly for lag-2 maximum wind speed (Vmax_lag2) and lag-1 maximum wind 

gust (Vgust_lag1), which were associated with an increase in AIS cases (SHAP=0·45 at 

Vmax_lag2=10·4 m/s and SAHP=0·11 at Vgust_lag1=14 m/s; Fig. 3b). These windy conditions 
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occurred primarily during the first quarter, aligning with periods of cold stress and high-

pressure stormy conditions (Fig. 3c).  
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Discussion 

We developed and benchmarked a set of well-established ML and statistical models to 

investigate the association between locoregional weather systems and the number of AIS 

admissions over a seven-year period to enable better planning of clinical resources. We found 

that shallow ML models were sufficient and outperformed baseline statistical models by 20-

40% in terms of MAE and RMSE. XGB performed the best with an average MAE of 1·21- 

and RMSE of 1.49 cases/day, making it potentially useful for real-time forecasting.  

Regarding weather conditions, both cold and hot stressors days increased the number of daily 

stroke admissions, with prolonged colder conditions having a more prominent effect. 

Additionally, high pressure and stormy conditions tended to increase daily AIS admissions. 

Our results highlight the potential application of ML models to forecast stroke occurrences 

based on weather- and seasonal patterns in real-time for optimal clinical resource allocation 

and patient care. Furthermore, our time-stratified, nested cross-validation setup provides a 

general framework that can be used for various diseases in both single- or multi-center 

applications.  

We observed a dual impact of temperature as both cold and hot stressors, especially over 

multiple days (>3 or 7 days), were associated with an increase in AIS counts, with a slight 

predominant effect of cold stress. This was consistent with findings from previous studies 

across diverse climatic zones globally.4–6,25–27 A retrospective analysis of hospital data in the 

United States revealed a surge in stroke admissions during winter, accompanied by increased 

mortality rates.4 Ambulance dispatches for ischemic stroke cases in Japan exhibited a similar 

seasonal pattern and were observed to be more common during lower temperatures.5 

Likewise, a retrospective study in China over a two-year period reported that 1·57% of 

ischemic strokes could be attributed to extreme cold temperatures, particularly in the 0-7 day 

lag period.6 This aligns with our findings that prolonged cold stressors with Tmin<-11 °C on 

three consecutive previous days substantially increased stroke incidence. Furthermore, both 

tree-based models (RF and XGB) identified PTmin as one of the top three predictors of daily 

AIS admissions, thereby emphasizing the importance of key human biometeorological 

features. PTmin showed a bimodal distribution of the estimated effects with higher weights 

given for cold days (PTmin<-1·4°C).  

Heat stress has also been observed to increase the incidence of AIS.7,8,28 In a single-center 

retrospective study in Korea, Han et al. found that the seasonal AIS incidence in summer was 

significantly higher than in winter, and the mean temperature was positively associated with 

ischemic stroke with an RR of 1·006.7 In accordance with this, the baseline Poisson model in 
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our study identified a positive association between the minimum lag-2 temperature and daily 

stroke cases, with an increase of ~11% for every 1 °C increase. Ma et al. utilized a universal 

thermal climate index to quantify the weather conditions in Beijing8 and identified that the 

risk of suffering an AIS increased with heat stress, especially in the 45-65 years age group.  

Multiple studies have shown that fluctuations in atmospheric pressure and temperature can 

promote arterial blood pressure instability and hemodynamic changes in the circulatory 

system.12,26 The association between atmospheric pressure and the incidence of stroke has 

been studied in multiple retrospective studies.9–11 Jimenez et al. reported that the drop in 

atmospheric pressure compared to the previous day can largely explain seasonal and daily 

variations of stroke incidence.10 Qi et al. also discovered that mean, minimum and maximum 

barometric pressures showed statistically significant positive associations with ischemic 

stroke occurrences and the colder season tended to be the more risk-prone.11 Our study also 

strongly supports these findings, as all ML models and the GAM identified pressure-related 

variables as the primary predictor of daily AIS admissions.  

Coupled with high-pressure, stormy phenomena, maximum wind speed, and wind gusts on 

previous two days were linked to an increased number of AIS cases in our cohort. Similarly, 

in a small, localized study comprised of 409 stroke patients admitted during a two-year period 

(2006-2007) on an island in South Korea, wind speed and wind chill index were identified to 

have positive associations with AIS cases, which was more pronounced in spring and winter.12 

This cumulative effect of cold and stormy conditions within the same seasonal window was 

also observed in our study, which implied a compounded effect. It is important to note, 

however, that air pressure measurements by the DWD towers are referenced back to the 

respective sea level. For our West-German region, it meant either the North Sea or the 

Atlantic Ocean. 

Most studies analysing the association between meteorological parameters and the onset of 

ischemic stroke have predominantly utilized classical statistical models, such as Poisson 

regression or its variations.11,14,25 Only few studies have employed ML-based models to 

develop a predictive framework using weather parameters, while these focused on conditions 

like heatstroke or general emergency room admissions.17,29 Ogata et al. developed predictive 

models to forecast heatstroke admissions for a three-year time period for sixteen cities in 

Japan using models such as GLM, GAM, and XGB.17 It is noteworthy that the number of 

daily heatstroke admissions in their study substantially outranged (up to 400+ cases/d) the 

daily AIS admissions in our cohort (0-10 cases/d). The conventional GAM model exceeded 

the performance of other models, registering the lowest RMSE of 2·47 cases on their test set 
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(2018) while XGB achieved an RMSE of 3·28. In contrast, XGB showed the best 

performance with an RMSE of 1.49 on the hold-out test set (2021) of our study for daily AIS 

admissions, despite predicting sparse values with lower variance, which is expected to be 

technically more challenging. 

A specialized feature selection approach was used by Tuominen et al. to select the most robust 

weather parameters to forecast the combined daily emergency department arrivals in Tampere, 

Finland.29 In their analyses, they considered 158 explanatory variables, which closely mirrors 

the 133 features incorporated into our daily forecasting model. Besides shallow ML 

algorithms, we also explored various deep learning architectures,30 including recurrent neural 

networks (RNN) and long short-term memory (LSTM) networks, and complex forecasting 

frameworks like NeuralProphet by Meta. However, the choice to use shallow ML models was 

justified by the missing higher-order autoregressive associations within the data set. This 

allowed us to opt for the less hardware-intensive CPU-bound modelling setup, not requiring 

GPUs, hence making our approach more widely applicable. 

This study has certain limitations, as it was a single-centre retrospective analysis. However, 

the substantial cohort size of ~8,000 patients with a catchment area of ~600,000 individuals 

supports the reliability of our results.5 Additionally, we utilized a fine-grained temporospatial 

matching method to select weather variables from various DWD stations corresponding to 

patients’ home locations and admission hours. The assumption that patients were in 

reasonable vicinity of their home address had to be made for downstream analyses. Over 

96·2% of the admitted patients' homes were located within a 50 km radius, wherein variations 

of weather patterns are expected to be minimal, thereby supporting the feasibility of this 

approach.27 It is noteworthy that we did not apply additional feature selection methods,29 but 

utilized the internal variable selection provided by the respective ML model during training 

and validation.17 Despite the established association of air pollutants with cerebral and 

respiratory diseases in previous studies, 14,15 we could not include this data in our analyses due 

to the very low density of monitoring stations in the area. Based on findings of the global, 

regional, and national burden of stroke and its risk factors study by Feigin et al., weather 

information can explain ~10% of the variance of AIS incidence.1 Regardless, we found that 

ML models can predict the number of daily admissions with an acceptable MAE and RMSE 

of <1·5 cases/day, particularly for the most common band of daily ischemic cases between 2-

5, covering ~70% of the investigated timeframe. 

In conclusion, using a detailed temporal and geospatial matching technique, this study 

systematically compared baseline statistical and ML models to forecast the number of acute 
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ischemic stroke admission based on weather patterns. ML models outperformed classical 

statistical models, demonstrating their potential for real-time healthcare resource allocation. 

The best-performing model (XGB) identified atmospheric pressure, lagged temperature, 

PTmin, and wind speed as most important predictors of stroke occurrence. Our results further 

emphasize the dual role of temperature for both hot and cold stressor days and the crucial 

effect of prolonged stormy conditions. We developed a generalizable framework that can be 

applied to various diseases and easly deployed as multi-centric applications in data integration 

centers nationally and around the world to determine the impact of locoregional weather 

conditions and seasonal variations. 
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Tables  

Table 1. Summary table of the study cohort including the distributions of ischemic 

stroke admissions and weather parameters. 

Time frame Variable Median; LQ-UQ (min-max) 

Overall Total # of ischemic case admissions 3; 2-4 (0-10) 

Female  1; 1-2 (0-6) 

Male  2; 1-2 (0-7) 

Age < 70 years  1; 1-2 (0-6) 

Age � 70 years 2; 1-3 (0-8) 

Daily Admissions on weekdays | weekends 3; 2-4 (0-10) | 2; 1-3 (0-7) 

Admission time:  

 07:00-16:30  2; 1-2 (0-6) 

 16:30-24:00 1; 1-1 (0-4) 

 24:00-07:00 1; 1-2 (0-5) 

Admissions from the top 3 postal codes  1721, (29.2%) cases 

Admissions from the top 10 postal codes  4173, (47.1%) cases 

Two-day Total # of admissions 5; 4-7 (0-15) 

Weekly Total # of admissions 18; 15-21 (1-32) 

Weather Air temperature [°C] 11·3; 5·7-17·4 (-8.2–30.2) 

Relative humidity [%] 76·1; 64·2-85·6 (31.5–100) 

Air pressure [Pa] 1003·5; 994·7-1008·9 (912·7–

1033·2) 

Windspeed [m/s] 2·7; 2·0-3·7 (0·9–18·1) 

#: number; LQ: lower quartile; UQ: upper quartile; min.: minimum; max.: maximum. 
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Table 2. Summary table of the top six predictor estimates of the Poisson regression 

model. 

Predictor variable OR 95% CI p-value 

Lag-5 Mean cloud cover [%] 0·97 0·93- 0·98 0·0032 

Lag-1 mean pressure [Pa] 0·45 0·24-0·81 0·0076 

Max. wind gust [m/s] 1·02 1·00-1·04 0·017 

Mean cloud cover [%] 0·96 0·94-0·99 0·018 

Lag-2 min temperature [°C] 1·10 1·01-1·20 0·025 

Min. relative humidity [%] 1·00 1·00-1·05 0·039 

95% CI: 95% confidence interval; OR: odds ratio; min.: minimum; max.: maximum. 

Table 3. Overview of baseline statistical and ML model performance metrics on test 

set (2021). 

  Weather features only Weather and calendar features 

Model type Model 

name 

MAE 

(Ncount/day) 

MAPE 

(%) 

RMSE 

(Ncount/day) 

MAE 

(Ncount/day) 

MAPE 

(%) 

RMSE 

(Ncount/day) 

Baseline 

statistical 

Poisson 1·72 58 2·73 1·69 57 2·68 

GAM 1·44 56 1·64 1·41 56 1·62 

Machine 

learning (ML) 

SVR 1·28 52 1·58 1·27 52 1·58 

RF 1·26 49 1·54 1·25 49 1·52 

XGB 1·25 48 1·52 1·21 47 1·49 

GAM: generalized additive model; MAE: median absolute error (Ncount/day); MAPE: mean absolute 

percentage error (%); RMSE: root mean square error (Ncount/day); RF: random forest; SVR: support vector 

regression using linear kernel; XGB: extreme gradient boosting. 
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Figures   

 
Figure 1. Setup for developing and benchmarking machine learning (ML) models to predict daily 

ischemic stroke admissions. Six years (2015 to 2020; n=2190 days) constituted the training set, wherein 5x5-

fold, time-stratified, nested cross-validation was performed to optimize hyperparameters of the benchmarked ML 

models. The optimized models were then applied to the hold-out test set (2021; n=365 days) in a regression 

setting. The investigated ML models (horizontal facet panels) included both well-established statistical models 

like Poisson regression (baseline) and boosted generalized additive models (GAM) as well as shallow ML 

algorithms such as support vector regression (SVR), random forest (RF) and extreme gradient boosting (XGB). 

For each year (vertical facet panels), the daily number of observed (blue lines) and ML-predicted (red lines) AIS 

cases were smoothed for a two-week period.  
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Figure 2. Combination figure of yearly, monthly and weekly acute ischemic stroke admission (AIS) and 

their geospatial distribution. (a) Yearly trend analysis of AIS case counts showed a pronounced increase from 

2015 to 2017, resembling hype cycles, potentially attributable to landmark clinical trials for the endovascular 

treatment of AIS.31 In contrast, during the early COVID-19 pandemic (2020-2021), a clearly decreasing trend 

was observed. (b) Monthly AIS admissions (averaged over the 7-year study period; red line) indicated seasonal 

peaks in March, October, and November (95% CI in shaded gray) with min-max ranges (dark blue dashed lines). 

(c) Weekly averages showed no apparent trends except for noticeable dips during the holiday season (50th-2nd 

weeks). (d) The University Medical Center Mannheim, Germany (UMC; is located in the state of Baden-

Wuerttemberg at (e) the corner of a German tri-state area (Rhineland Palatinate and Hesse; light blue bounding 

box). UMC is the primary tertiary care provider in Mannheim, the largest city of the region and the second 

largest in the state, with a population of 310,000 and a catchment area of over 600,000 people between Frankfurt 

( ) and Stuttgart. (f) Geospatial distribution highlighting the density of ischemic strokes per 100,000 

population in the catchment area of UMC using postal code-based distribution of patients’ home locations. The 

top three contributing areas were within an <11 km radius of the clinic and accounted for 29·2% of the total 

patient count, while 96·2% of all admissions arrived from a <50 km range. The selected weather stations are 

indicated with the icon ( ). 
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Figure 3. Composite figure of detailed analyses of the most important predictors of the best performing 

XGB model and their link to seasonal distribution of daily AIS admissions. (a) Horizontal bar charts of the 

top ten most relevant features using normalized gain-based variable importance ranking of the best XGB model. 

(b) Shapley additive explanations (SHAP) of the top six variables, including (upper-row) maximal air pressure 

(Pmax), lagged 1- and 2-days maximal wind speed (Vmax_lag2) and wind gust speeds (Vgust_lag1); and (lower-row) 
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minimal lagged 3-days temperature (Tmin_lag3), minimal perceived temperature (PTmin), and 7-days minimal 

temperature (Tmin_lag7). These variables (light grey bounding boxes) accounted for an overall sum of 0.84 gain-

based importance out of the 133 investigated weather and calendar features. Inflection points on the subplots 

indicate (grey dashed lines) when the respective variable's effect was associated with an increase or decrease in 

AIS counts. (c) Heatmaps indicating the seasonal distributions of specific weather conditions in the training data 

(2015-2020; n=2190 days), thresholded using respective values from SHAP inflection points (b); dashed grey 

lines and bounding box), and faceted as pressure, wind, and temperature features. The number of days that the 

respective condition has occurred was calculated by jointly aggregating at yearly and weekly levels (matrix: 7 

[years] x 52 [weeks] rows by 12 columns [respective conditions]). This matrix was then reduced to the weekly 

level to calculate the median number of days these conditions occurred across different years (matrix: 52 [week-

median] rows by 12 columns [respective conditions]). These protective (shades of blue) or harmful (red) median 

number of days were then color-coded based on the sign of the SHAP values. Additionally, the deltas of weekly 

AIS case counts (aggregated over the seven years) were compared against the respective quarterly medians 

(ordinal color key, lower-right corner: -3 to +6, from blue to red) and displayed with exact count values in the 

“overall” facet. Pmax showed a sigmoid-like link as (very) low pressures (Pmax<960) substantially decreased 

stroke admissions (SHAP=-0·95), while medium-high values (974-1013 hPa) were associated with an increased 

stroke incidence all year round (Q1-Q4). High-pressure (Pmax≥1013 hPa) conditions during winter (Q1, Q4) 

occurred less frequently and were only marginally protective. Also linked to high-pressure, cold stressor days 

(Q1, Q2, and Q4) and associated windy conditions (Vmax_lag2�10·4 m/s and Vgust_max_lag1�14 m/s) substantially 

increased AIS admissions (SHAPVmax=0·11 and SHAPVgust=0·45). Similarly, extended cold stressor periods 

during winter with Tmin_lag3<-2 °C or PTmin<-1·4°C were strongly linked to more strokes (SHAP up to 1·47). 

Conversely, PTmin in classical temperate ranges (-1·4<PTmin<20°C) were slightly protective (SHAP=-0·03), 

although these effects could be outweighed (SHAP up to 1·18) during extended heat stress periods 

(Tmin_lag7�15°C) of the summer (Q3). 
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