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20 Abstract

21 Health literacy is essential for individuals to navigate the healthcare system and make informed decisions about their health. 

22 Low health literacy levels have been associated with negative health outcomes, particularly among older populations and those 

23 financially restricted or with lower educational attainment. Plain language summaries (PLS) are an effective tool to bridge the 

24 gap in health literacy by simplifying content found in biomedical and clinical documents, in turn, allowing the general audience 

25 to truly understand health-related documentation. However, translating biomedical texts to PLS is time-consuming and 

26 challenging, for which they are rarely accessible by those who need them. We assessed the performance of Natural Language 

27 Processing (NLP) for systematizing plain language identification and Large Language Models (LLMs), Generative Pre-trained 

28 Transformer (GPT) 3.5 and GPT 4, for automating PLS generation from biomedical texts. The classification model achieved high 

29 precision (97·2%) in identifying if a text is written in plain language. GPT 4, a state-of-the-art LLM, successfully generated PLS 

30 that were semantically equivalent to those generated by domain experts and which were rated high in accuracy, readability, 

31 completeness, and usefulness. Our findings demonstrate the value of using LLMs and NLP to translate biomedical texts into 

32 plain language summaries, and their potential to be used as a supporting tool for healthcare stakeholders to empower patients 

33 and the general audience to understand healthcare information and make informed healthcare decisions.

34 Keywords

35 Health literacy, Plain Language, Large Language Models, Analytics, Natural Language Processing, Natural Language 

36 Generation, Biomedicine

37 Introduction

38 Health literacy refers to an individual's capacity to access, understand, and use health information [1]. It empowers patients and 

39 their families to navigate healthcare systems, comprehend and act upon a diagnosis or medical instruction, adhere to medication 

40 regimens, and make informed decisions, otherwise considered daunting, regarding participation in clinical trials, treatment 

41 options, or medical procedures [2-4]. Low health literacy levels have been consistently associated with higher mortality rates, 

42 increased instances of preventable hospitalizations, and poor treatment adherence [3]. Paradoxically, while health literacy is 

43 crucial for positive health outcomes, the 2015 European Health Literacy Survey revealed that almost half of the respondents 

44 had inadequate health literacy, particularly among older populations, those who are financially restricted, or who have lower 

45 educational attainment [5-6]. 

46 With the growing expectation for individuals to participate in healthcare decisions, enhancing health literacy becomes a 

47 significant attribute in improving public health and reducing health disparities [1, 7-8]. 
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48 Improving health literacy in the population extend beyond actions taken to increase individual health literacy levels. In line with 

49 the General Data Protection Regulation (GDPR) principle of transparency, stakeholders such as healthcare providers, 

50 policymakers, and pharmaceutical companies should strategize to improve their organizational health literacy (OHL) by ensuring 

51 the clarity and comprehensibility of health documentation [9-10]. 

52 One strategy to do so is by simplifying clinical and scientific research language into lay-friendly summaries, known as plain 

53 language summaries (PLS).

54 There are different techniques and guidelines that can be used to translate complex scientific and biomedical concepts into PLS, 

55 for example, eliminating the use of technical jargon, replacing passive voice by active, or using short sentences and paragraphs 

56 [6, 11]. However, authoring a PLS can be time consuming and challenging, particularly in areas like clinical settings which 

57 typically involve documents with technical and domain-specific vocabulary. 

58 With the advancement of technology, new methods have been developed to automate the simplification of biomedical texts. In 

59 2022, a review by Oldov et al. analyzed 32 tools or methods using either rule-based approach or Natural Language Processing 

60 (NLP) and concluded that NLP methods offer more promising outputs but were limited by scarcity of training data, resulting in 

61 continued reliance on rule-based methods [12]. Large Language Models (LLMs) with their immense data training potential and 

62 text generation capabilities, present a promising solution to tackle this challenge and automate the generation of PLS from 

63 technical documents. 

64 With the objective of bridging the gap in health literacy by facilitating the translation of biomedical texts to comprehensible 

65 summaries designed for patients, our study demonstrates the potential of NLP to develop a classification system to identify if a 

66 text is written in plain language, and LLMs to automate the generation of accurate, complete, and comprehensible PLS. 

67 Materials and Methods

68 Our methodology, outlined in Figure 1,  consisted of 3 main steps: collecting and processing of sample texts in technical and 

69 plain language, conducting a quantitative analysis of the texts to generate a plain language classification model and a qualitative 

70 analysis to generate the prompts for the LLMs, and using the LLMs to generate PLS and test them.

71 Data Collection and Processing

72 We collected biomedical texts, both in technical and plain language (see the data sources in Supplementary Table 1) and 

73 assembled them into a dataset of 14,441 texts. This “main dataset” was then divided into training and testing sets, consisting of 

74 4,596 plain and 6,721 technical texts for training, and 1,149 plain and 1,975 technical texts for testing.
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75 We enlarged each dataset by treating each paragraph of a minimum of 250 words as a distinct unit, while excluding texts with 

76 fewer than 250 words. As a result, our "augmented dataset" had 61,354 texts, divided into 16,731 plain and 31,740 technical for 

77 training, and 5,090 plain and 7,793 technical for testing. 

78 Analysis of Plain Language

79 We conducted qualitative and quantitative analysis of the texts to identify unique linguistic traits and variables that classify a text 

80 as plain language.

81 Qualitative Analysis

82 Driven by the varying and broad-scope guidance on creating high-quality PLS [13], we analyzed a subset of our plain texts and 

83 created a 'criteria checklist' (see Supplementary Table 2) with the linguistic attributes most commonly present in plain texts.  Key 

84 resources used in this process were guides and reviews, such as: Your Guide to CLEAR WRITING by CDC [11], Federal Plain 

85 Language Guidelines [14], Health Literacy Universal Precautions Toolkit by Agency for Healthcare Research and Quality 

86 (AHRQ) [15], Just Plain Clear Glossary by United Health Group [16], EU 536/2014 Summary of Clinical Results for Laypersons 

87 [17], and results presented by Stoll et al, in their systematic review of theory, guidelines, and empirical research on PLS [13]. 

88 We used the resultant checklist to complement the qualitative findings described in the next section and aid in developing the 

89 prompt detailed in the section LLM Prompt for Plain Language Summary Generation.
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Figure 1. Methodology. Our methodology involved three steps: 1) collection and processing of biomedical texts (technical documents and plain language documents) into datasets for training and testing, 
2) quantitative analysis of the texts to create a plain language classification model, and qualitative analysis to identify linguistic traits in plain texts to guide the engineering of a prompt that could translate 
biomedical text into Plain Language Summaries (PLS) using Language Learning Models (LLMs; and 3) testing the effectiveness of the LLMs in generating PLS quantitatively with our classification model 
and with semantic equivalence (BERTScore) and qualitatively with domain experts’ evaluation.
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90 Quantitative Analysis

91 We computed readability metrics and language variables for each text in the augmented dataset using the Readability library 

92 [18] and SpaCy [19], respectively. This resulted in 64 variables presenting each text's readability and linguistic traits (see 

93 Supplementary Table 3).

94 We analyzed the language variables in our dataset to identify their potential to classify a text as technical or plain. We used 

95 statistical hypothesis test for each of the variables of the main dataset. For each variable, we created a random sample of size 

96 𝑛 from the plain texts (𝑋1, 𝑋2…𝑋𝑛 ~ 𝑃𝑋) and a random sample of size 𝑛 from the technical texts (𝑌1, 𝑌2…𝑌𝑛 ~𝑄𝑌), and tested if our 

97 data supported either of the following hypotheses:

98  𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠,  𝐻0:𝑃 = 𝑄, the distributions of the proportion of the variable of interest for both samples (text and 

99 technical) are the same.

100  𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠,  𝐻0:𝑃 ≠ 𝑄, the distributions of the proportion of the variable of interest for both samples (text 

101 and technical) are different.

102 We evaluated the null hypothesis by comparing our 2 distributions using non-parametric tests: Wilcoxon, Kolmogorov-Smirnov 

103 (KS), and Mann–Whitney U. Given the multiple hypothesis tests, one for each variable, we adjusted the significance levels to 

104 control the probability of Type I errors by using the Bonferroni correction to lower the alpha value by dividing the desired 

105 significance level ∝= 0·05 by the total number of tests 𝑚 = 6418.

106 Figure 2 illustrate examples of the comparison of the distributions of some of the variables in technical and plain texts. Out of 

107 the 64 variables, only ‘Interjections’ and ‘Passive Voice’ did not provide sufficient evidence to reject the null hypothesis (𝜌-value 

108 > 0·0008).  The other 62 variables were significantly distinct between the types of text and were included in our classification 

109 model. 
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a. Interjections. These are words or phrases used to express a 
feeling (eg., Wow! or Uh-oh). It is uncommon in biomedical settings 
and is not present in either our technical or plain texts.

b. Passive Voice: when the subject undergoes the action of the verb 
(eg, ‘The cells were counted by the scientist’). According to our 
qualitative analysis, the use of passive voice can make sentences 
more complex, less direct, and harder to understand. As evidenced 
in our quantitative analysis, it is avoided both scientific/biomedical 
settings, both in plain and technical texts.

c. Stopwords. The proportion of words such as ‘a’ ‘the’ are’ is higher 
in plain texts, most likely as they aid in the fluency and 
comprehension of a text by acting as connectors between words, 
enhancing the coherence and naturalness of sentences for readers.

d. Complex Words. The proportion of words with three or more 
syllables is higher in technical texts, consistent with our qualitative 
assessments and plain language guidelines.

110 Figure 2. Comparison of the distribution of a sample of readability metrics or language variables between plain and technical texts.

111 Plain Texts Classification Model

112 We used the augmented dataset - train and the 62 distinct variables between text types (Section Quantitative Analysis), to build 

113 the classification model. We used Gradient Boosting (GB) and Random Forest (RF) machine learning models.

114 LLM Prompt for Plain Language Summary Generation

115 Our objective was to design a prompt for LLMs capable of translating biomedical technical documents into PLS.

116 Beginning with a clinical trial protocol from ClinicalTrials.Gov (see data sources in Supplementary Table 1), we used a simple 

117 initial prompt: ‘Using the following clinical trial protocol text as input, create a plain language summary’. We tested this prompt 
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118 using both GPT3.5 and GPT4, analyzed the generated output, and iteratively refined the prompt by adding details and 

119 instructions.

120 We aimed to produce a PLS that met the following qualitative criteria: (1) Accuracy: the content is clinically and scientifically 

121 accurate.  (2) Readability: the content is comprehensible by a lay person, as defined by the plain language criteria checklist 

122 (Supplementary Error! Reference source not found.). (3) Completeness: the content adheres with the expectations of a 

123 Protocol Plain Language Summary (PPLS) as specified by EU CTR No 536/2014 [16]. (4) Usefulness: the generated PLS can 

124 be used as a first version to draft the study PPLS.

125 Our final prompt, provided in Supplementary Table 4, was designed specifically to generate a PLS of a clinical trial protocol. It 

126 includes the following elements:

127  Context: a clear rationale on why a PLS is needed for the given clinical trial protocol.

128  Output: the desired structure and format for the generated summary, including the specific sections of the output.

129  Content: the expected content within each section, with examples and rules to guide the generation process.

130  Restrictions: limitations of the output (e.g., word count limitations, the inclusion of only the information provided in the 

131 original protocol, and adherence to the criteria checklist for plain language as set out in Supplementary Error! 

132 Reference source not found.).

133 After finalizing the prompt for generating a PPLS, we used the same approach to create a prompt to generate Cochrane Reviews 

134 PLS (see the description of this data source in Supplementary Table 1, and the prompt in Supplementary Table 5).

135 We used our prompts with GPT 3.5 and GPT 4 to translate technical biomedical texts, Cochrane Reviews and Study Protocols, 

136 into their respective PLS: Cochrane PLS and Protocol PLS. We quantitatively tested the generated PLS for plainness and 

137 semantic equivalence. For PPLS, we also performed a qualitative assessment of the outputs by three experts in Clinical Trial 

138 Operations and Regulatory Medical Writing, who rated each GPT 3.5 and GPT 4 text on a 5-point Likert Scale (1-Strongly 

139 Disagree to 5-Strongly Agree). They evaluated the texts for accuracy, readability, completeness, and usefulness as defined in 

140 the section: LLM Prompt for Plain Language Summary Generation.

141 Results

142 Plain Text Classification Model

143 The classification models accurately distinguished whether an input text was plain or technical. The Gradient Boosting model 

144 showed slightly superior results with a precision rate of 97·2% (See Table 1).
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145 Table 1. Comparison of tested classification models in terms of F1 Score or predictive performance, Accuracy, Recall, and Precision.

Model F1 Score
(Predictive Performance) Accuracy Recall Precision

Random Forest 0·971 0·980 0·973 0·969
Gradient Boosting 0·975 0·982 0·977 0·972

146

147 LLM Prompt for Plain Language Summary Generation

148 Cochrane Reviews: Plain Language Summaries

149 We randomly selected a sample of 600 Cochrane texts from the main dataset: 300 technical abstracts and the corresponding 

150 300 plain summaries.  We then used our prompt in both GPT 3.5 and GPT 4 to generate the plain language summary from the 

151 technical abstracts resulting in 300 Plain-GPT 3.5 and 300 Plain-GPT 4 summaries.

152 We tested the LLM-generated texts with our best model, Gradient Boosting, for plain language classification, and BERTScore 

153 to test semantic equivalence against the original Cochrane plain summaries.

154 Our model classified 96% of GPT 3.5 texts and 99·6% of GPT 4 texts as plain. Hence, our prompt is effective in generating PLSs 

155 that meet quantitative plain language requirements as defined in our classification model, with GPT 4 showing higher adherence.

156 The semantic equivalence score, BERTScore, confirmed both GPT 3.5 and GPT 4 successfully retained the original message. 

157 However, GPT 4 produced plain summaries that outperformed GPT 3.5 in all parameters (Precision, Recall, and F1-Score) with 

158 a significant difference (𝜌-value < 0.05) (Table 2).

159 Table 2. Semantic equivalence score (BERT) between the GPT-generated plain summaries from Cochrane technical abstract vs. original 
160 Cochrane PLS. 

Semantic 
Equivalence

Plain_GPT 3.5 Plain_GPT4 p-value

Precision 0·790 ±0·010 0·791 ±0·015 0·027
Recall 0·772 ± 0·017 0·773 ± 0·016 0·003
F1-Score 0·780 ± 0·015 0·782 ± 0·014 0·001

161

162 Protocol Plain Language Summaries 

163 We randomly selected a sample of nine clinical trial protocols from ClinicalTrials.Gov.  Given that their corresponding PPLS 

164 were not yet publicly published, we used Trial Summaries by Citeline Regulatory to find the corresponding Results Plain 

165 Language Summaries (RPLS) and extracted four sections that are equivalent in a PPLS: ‘Why is this study needed?’: 

166 Background and hypothesis of the trial (Rationale), ‘Who will take part in this study?’ (Population), ‘How is this study designed?’ 

167 (Trial Design), and ‘What treatments are being given during the study?’ (Interventions).
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168 Quantitative Analysis

169 We used our prompt specific for PPLS with both GPT 3.5 and GPT 4 to generate the plain language summary from the technical 

170 protocols. We used our Gradient Boosting model to verify if LLM-generated texts were plain and BERTScore to check semantic 

171 equivalence to the content on the RPLS. All LLM-generated PPLS were classified as plain, and BERTScore confirmed semantic 

172 agreement with the content in the RPLS (Table 3). Consistent with Cochrane results, GPT 4 produced PPLS with higher semantic 

173 equivalence than GPT 3.5 (no statistical analysis due to small sample size).

174 Table 3. Semantic equivalence score (BERT) between the GPT-generated PPLS from clinical trial protocols vs. the original content written for 
175 the PLS.

Semantic 
Equivalence

PPLS_GPT 3.5 PPLS_GPT4

Precision 0·8040 ± 0.0068 0·8073 ± 0.0208
Recall 0·7940 ± 0.0138 0·7975 ± 0.0129
F1-Score 0·7989 ± 0.0076 0·8023 ± 0.0109

176

177 Qualitative Analysis

178 Ratings by 3 domain experts who evaluated each LLM-generated text, demonstrated that GPT 4 outperformed GPT 3.5 in all 

179 four criteria: accuracy, readability, completeness and usefulness, as indicated by an average score of 4·71 for GPT 4 texts as 

180 compared to 3·93 for GPT 3.5 (see Figure 3 and Table 4). 

181

182 Figure 3. Radar diagram comparing the qualitative assessment of the LLM-generated texts in 4 criteria: Accuracy, Readability, Completeness, 
183 and Usefulness.

Accuracy

Readability

Completeness

Usefulness 0.00
1.00
2.00
3.00
4.00
5.00
6.00

GPT 3.5 GPT 4
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184 Table 4. Ratings for GPT 3.5 and GPT 4 plain summaries in 4 criteria: Accuracy, Readability, Completeness, and Usefulness.

Accuracy Readability Completeness Usefulness Overall Score
GPT 3.5 4·52 3·59 3·96 3·63 3·93
GPT 4 4·81 4·44 4·81 4·78 4·71

185

186 In terms of accuracy, both GPT 3.5 and GPT 4 received high scores. Reviewers noted that both language models exhibited 

187 scientific accuracy and relied exclusively on the input text (study protocol). Notably, even when the content in the original RPLS 

188 contained inconsistencies (e.g. incorrect age limit or indication), both language models generated accurate PLS. This finding 

189 suggests that language models can be used to automatically generate a first draft of a PLS while minimizing data inaccuracies 

190 resulting from human error. 

191 Regarding readability, both GPT 3.5 and GPT 4 generated texts that were likely to be understood by a lay audience. This 

192 observation aligned with the results obtained through the classification model. However, GPT 3.5 occasionally employed 

193 complicated medical jargon (e.g., 'chronic', 'randomized', 'double-blind') and longer words and sentences (e.g., 'approximately 

194 640 adults' vs 'about 640 adults'). Similarly, GPT 4, despite its outstanding performance, occasionally prefered passive voice 

195 over active voice, compromising clarity and consice writing. This highlights the importance of quality control by a healthcare 

196 professional who should verify the content and style of the automatically generated PLS draft.

197 Completeness, which assessed the compliance of PPLS content and structure with EU CTR No 536/2014 guidelines, revealed 

198 inconsistencies in the outputs generated by GPT 3.5. These inconsistencies manifested as the creation of new, unrequested 

199 sections and summaries, with significant variation among the nine generated PLS. Conversely, GPT 4 consistently generated 

200 PLSs that adhered to the specified format and content expectations, and complied with the guidelines, showing a remarkable 

201 value in automating the time-consuming task of guaranteeing the content to be standardized and aligned with industry specific 

202 and rigorous guidelines.

203 The usefulness ratings, indicating the suitability of the generated PLSs as draft versions, correlated with the findings in other 

204 criteria. GPT 3.5 received moderate scores in generating draft PLS, while GPT 4 scored 4·78, indicating that the generated PLS 

205 were highly suitable as draft versions of the PLS.

206 Discussion

207 In this study, we used NLP and LLMs to improve health literacy by generating PLS from biomedical texts. Our two-part strategy 

208 involved creating a classification model for identifying if a text was written in plain language, and using LLMs (specifically GPT 

209 3.5 and GPT 4) for the automated generation of the PLS. 
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210 The classification model achieved over 97% accuracy, indicating its effectiveness in distinguishing between the text types: 

211 technical and plain. This is a very useful stand-alone strategy which could support authoring teams in identifying if their texts 

212 targeted for patients or the general audience are compliant with plain language guidelines.

213 The LLMs exhibited outstanding performance in generating PLS, with GPT 4 outperforming GPT 3.5 in creating content that was 

214 both plain and semantically similar. In a qualitative review by domain experts, GPT 4 also surpassed GPT 3.5 by generating 

215 high-quality drafts of PLS. These drafts were scientifically accurate, compliant with plain language requirements, and met 

216 expectations in content and structure. These results underlines the value of LLMs in supporting healthcare stakeholders to 

217 streamline the generation of plain documents, and with that, promote equitable access to biomedical information, engagement 

218 of the lay audience in health-related decision making, and improved health outcomes.

219 Our study highlights the importance of using well-designed, structured, and domain-specific prompts to guarantee the creation 

220 of high-quality, easily comprehensible PLS. This is particularly vital when accuracy in biomedical facts is essential. This requires 

221 the collection of feedback from stakeholders who are experts in the domain or field of interest. Such feedback would help to fine-

222 tune the prompts and guarantee that the output fullfils the purposes of different document types. Our study exemplified this with 

223 various document types (e.g., Cochrane reviews, PPLS), some of which adhere to strict industry standards.

224 While the findings of our study are promising, they also underscore opportunities for further research to fully harness the potential 

225 of NLP and LLMs in this context. Future studies could involve direct audience feedback in evaluating the understandability of 

226 PLS. This would ensure that the generated content aligns with the comprehension levels of the intended audience, such as 

227 patients in clinical settings, and would provide cues for ways in which the they could improve their interaction with biomedical 

228 content, improving adherence to treatment plans or educating them about a disease or diagnosis. Additionally, depending on 

229 the intended use and field of interest, refining the models could potentially account for specific linguistic nuances, exploring 

230 advanced techniques like Retrieval Augmented Generation (RAG) could enhance factual accuracy, and expanding the dataset 

231 to include a wider range of texts and languages could  enhance the generalizability of the classification model and applicability 

232 of the LLMs.  Different interesting opportunities to leverage NLP and LLMs to serve society by simplifying what would otherwise 

233 be daunting. 

234 In conclusion, by leveraging the capabilities of NLP and LLMs, we have taken a significant step towards bridging the gap between 

235 complicated biomedical texts and comprehensible summaries designed for the general audience. This framework paves the way 

236 for prospective innovations in the field of health literacy, which, in turn, holds the potential to enhance health outcomes and 

237 foster health equity.
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