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Abstract 
 
Background 
Due to its late stage of diagnosis lung cancer is the commonest cause of death from cancer in 
the UK. Existing epidemiological risk models in clinical usage, which have Positive Predictive 
Values (PPV) of less than 10%, do not consider the temporal relations expressed in sequential 
electronic health record (EHR) data. Machine learning with deep ‘transformer’ models can 
learn from these temporal relationships. We aimed to build such a model for lung cancer diag-
nosis in primary care using EHR data. 
 
Methods 
In a nested case-control study within the Whole Systems Integrated Care (WSIC) dataset, lung 
cancer cases were identified and control cases of ‘other’ cancers or respiratory conditions. GP 
EHR data going back three years from the date of diagnosis less the most recent one months 
were semantically pre-processed by mapping from more than 30,000 terms to 450. Model 
building was performed using ALBERT with a Logistic Regression Classifier (LRC) head. 
Clustering was explored using k-means. We split the data into 70% training and 30% valida-
tion. An additional regression model alone was built on the pre-processed data as a comparator. 
 
Findings 
Based on 3,303,992 patients from January 1981 to December 2020 there were 11,847 lung 
cancer cases of whom 9,629 had died. 5,789 cases and 7,240 controls were used for training 
and a population of 368,906 for validation. Our model achieved an AUROC of 0·924 (95% CI 
0·921– 0·927) with a PPV of 3·6% (95% CI 3·5 – 3·7) and Sensitivity of 86·6% (95% CI 85·3 
– 87·8) based on the three year’s data prior to diagnosis less the immediate month before index 
diagnosis. The comparator regression model achieved a PPV of 3·1% (95% CI  3·0 – 3·1) and 
AUROC of 0·887 (95% CI  0·884 – 0·889). 
 
Interpretation 
Capturing temporal sequencing between cancer and non-cancer pathways to diagnosis enables 
much more accurate models. Future work will focus on external dataset validation and integra-
tion into GP clinical systems for evaluation. 
 
Funding 
Cancer Research UK 
 
Keywords 
Deep Learning, Transformers, Machine Learning, Cancer Prediction, Primary Care, Artificial 
Intelligence. 
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RESEARCH IN CONTEXT  

Evidence before the study 
Predictive models for early detection of cancer are a priority as treatment intensity and cancer 
outcomes and survival are strongly linked to cancer stage at diagnosis. We searched PubMed 
and Embase for research on lung cancer prediction, using the search terms “lung cancer”, “di-
agnos$”, and “prediction model” between Jan 1, 2000 and Dec 31, 2023, to look into the con-
temporary research on prediction models for lung cancer. The QCancer Lung model has been 
recommended for prediction of lung cancer in primary care. However, classic regression mod-
els do not consider the rich relationships and dependencies in the electronic health record 
(EHR) data, such as cough followed by pneumonia rather than just cough in isolation. Since 
2018, with advances in the natural language processing (NLP) domain, transformer-based mod-
els have been applied on large amounts of EHR data for clinical predictive modelling. We 
searched Google Scholar and PubMed for studies using transformer-based models on EHR 
data. We used the terms ("transformer" OR "bert" OR “pretrain” OR “prediction” OR “predic-
tive modelling” OR “contextualised”) AND ("ehr" OR "health records" OR "healthcare" OR 
"clinical records" OR “cancer” OR “disease”) in free text, published from Jan 2019 to Dec 
2023. We found these studies were limited to diagnosis and medication concepts/codes in pa-
tients’ records in secondary care, omitting symptom, test, procedure, and referral codes. The 
early detection of lung cancer requires the improvement in the prediction performance of deep 
learning models. We updated the literature review when writing this paper (Apr 2024) to in-
clude the latest published studies. 

Added value of this study 

We pretrained a transformer-based deep learning model, MedAlbert, for learning deep patient 
pathway representations from coded EHR data in primary care. This ‘Pathway to Diagnosis’ 
for each patient is defined to contain the most possible elaboration of the coded medical records 
appearing over three years before diagnosis. To our knowledge, we are the first to build models 
on such detailed clinical records in primary care without data aggregation. Developed and val-
idated based on the pretrained MedAlbert, the prediction model, MedAlber+LRC, shows im-
proved prediction performance for diagnosis of suspected lung cancer as well as one- and two-
year lung cancer early detection compared with a classic machine learning model (a single 
Logistic Regression Model), MedAlbert+LRC performed better in terms of sensitivity, speci-
ficity, PPV and AUROC. The explainability of the model discovered a series of symptoms, 
comorbidities and procedures associated with lung cancer diagnosis and identified six groups 
of patients related to COPD, diabetes, other cancers, etc. The prediction model we developed 
could be applied to the UK primary care population for early diagnosis of lung cancer.  

Implications of all available evidence 

In order to progress beyond simple ‘red flag’ driven referral guidance and to develop more 
accurate prediction models for early diagnosis of lung cancer, it is necessary to use more so-
phisticated machine learning methods. Additionally, the framework we designed for deriving, 
modelling, and analysing the patient pathways could be used for the prediction of other cancers 
or diseases. The improvement in early diagnosis of lung cancer could contribute to better cancer 
outcomes and survival rates. Deep learning for diagnosis could provide more efficient care 
delivery and more accurate decisions faster, reducing costs and suffering across societies in the 
UK and worldwide. 
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Introduction 

Each year more than 45,000 UK patients are diagnosed with lung cancer,1 with only one third 
of patients diagnosed at early stage (I – II),2 contributing to an age standardised five-year cancer 
survival  of only 21%.3 Only 4% of patients present in primary care with ‘red flag’ symptoms 
such as haemoptysis, most presenting with less specific features including cough or weight loss 
and more than a third presenting three or more times before referral.4-6 Robust evidence on the 
predictive value of combinations of symptoms and signs is limited, and based on models that 
do not consider the temporal evolution of codes in the electronic health record (EHR).7,8 Given 
the large volume and high dimensionality of data becoming available via integrated care sys-
tems in the UK, it is possible that Deep Learning and Natural Language Processing (NLP) 
approaches to EHR data analysis may provide more predictive models for early cancer diag-
nosis.9 A recent machine learning (ML) study using EHR data from 9 million patients was able 
to predict pancreatic cancer diagnosis within 36 months with reasonable accuracy via changes 
in patterns of clinical codes from the EHR. 10 Predictive models for lung cancer either identify 
prevalent risk factors such as age and smoking history for identifying at risk populations for 
screening,11,12 or add incident symptoms for use in the diagnosis of suspected cancer for refer-
ral.8 A systematic review of the latter found 13 studies, with haemoptysis found to have the 
greatest diagnostic value, diagnostic odds ratio (DOR) 6·39 (3·32 – 12·28), followed by dysp-
noea 2·73 (1·54 – 4·85) then cough 2·64 (1·24 – 5·64) and chest pain 2.02 (0·88 – 4·60). Other 
studies have identified weight loss, anaemia, and thrombocythemia as potential predictors.13,14 
Of the population studies, age, sex, sociodemographic factors, smoking history (recorded in a 
variety of ways), family history, occupational exposure, COPD, alcohol and body mass index 
have been included in models. 
 
EHR data is not only noisy and heterogenous but also sparse, since typically only one or two 
codes are chosen by the clinician and the text note is not usually available on account of the 
risks to privacy. 15,16 The sequential relationships among presenting symptoms, referrals and 
tests will differ between patients with lung cancer and without and this can be used to derive 
an ML model. Treating sequences of structured medical data (codes) as an NLP problem un-
locks more powerful ML tools. Learning context requires the model to have a long-term 
memory. Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) and gated 
recurrent neural networks are designed for sequence modelling and have been used to model 
the temporal evolution of EHR data for disease-prediction problems.17  However, RNNs are 
incapable of handling long-term dependencies because they are biased by most recent inputs 
in a sequence, and the sequential nature of RNN and LSTM models makes them computation-
ally inefficient for handling large data sets. BERT (Bidirectional Encoder Representations from 
Transformers) uses a multi-layer bidirectional transformer encoder which enables pre-trained 
deep bidirectional representations by jointly conditioning on both left and right context in all 
layers.18 Furthermore, the multi-layer Transformer based architecture with a multi-head self-
attention mechanism not only enables parallel computation which facilitates long-range de-
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pendency learning, but also gives the model greater power to encode a broad range of relation-
ships and nuances for each token, for example the order of a sequence by embedding the spe-
cific position of each token in the sequence. The above properties make the model very pow-
erful in encoding linguistic regularities and patterns and capturing precise syntactic and seman-
tic word relationships. BERT-based models have been applied on large amounts of EHR data 
for clinical predictive modelling but limited to diagnosis and medication codes in patients’ 
records, omitting symptom, test, and referral codes. 10,19,20 We propose a novel framework for 
deriving, modelling, and analysing the entire coded patient pathways leading to the point of 
diagnosis with lung cancer. This allows us to discover lung cancer progression patterns and 
clinical investigation patterns and results in a state-of-the-art prediction model for diagnosis of 
lung cancer. 

Methods 

Data 
We used the primary care dataset of Whole Systems Integrated Care (WSIC) Northwest Lon-
don EHR data, consisting of primary care coded EHR data of patients from 400 GP practices. 
The records include demographic data, date of birth, gender and ethnicity, as well as episode 
data, patient visits to GPs, clinics, and hospitals, including medication history, diagnosis, symp-
toms and signs, tests and procedures coded using Read CT v2 (as shown in  1A). Owing to the 
lack of a standard to define whether an item is missing or not, imputation of missing data was 
not possible. The WSIC data was first partitioned at random into 70% for training and 30% for 
validation. To create a balanced dataset to train the model, we created a nested case-control 
study within the training set. The control subjects were over-selected to include both cancers 
other than lung, and respiratory conditions, to ensure the model was built to maximise its ability 
to detect differences between patient pathways in these conditions. 

Defining patient level pathways to diagnosis 

Lung cancer patients were identified from the data using codes in Table S1. We defined a 
patient pathway to diagnosis as the sequence of medical codes appearing over three years be-
fore diagnosis with a temporal order ( 1D).  For a patient diagnosed with lung cancer, the end-
point of the pathway was the date of the first lung cancer diagnostic code in the EHR.  Lung 
cancer diagnoses took precedence if the patient was diagnosed with multiple cancers. We de-
rived a pathway for each patient by working backward from the diagnosis date, listing all med-
ical events in the EHR over three years prior to the diagnosis in an order of time, as shown in 
Figure 1B. To construct the control group, patients were selected based on sets of codes for 
‘cancers not lung’ with the date of the first cancer diagnostic code and ‘other diagnostic codes’ 
using the most recent date as the endpoint of the pathway. 
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Figure 1 Conceptual framework of our proposed method for the diagnosis of suspected lung cancer. 
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Curating and grouping medical codes 

Amongst the 8,416 patients with lung cancer and 1,221,270 patients with other conditions there 
were 31,312 unique Read codes collected from their pathways. Efficient modelling requires 
dimension reduction in the code space. This was accomplished by clinically guided mapping 
up of codes to higher terms in the Read hierarchy and removal of purely administrative terms, 
resulting in 450 Read code groups (as shown in Figure 1C). See supplementary Material.  

Machine learning approach 

A deep contextualised pathway representation model: MedAlbert 

We designed a deep pathway representation model, MedAlbert, based on a state-of-the-art NLP 
model, A Lite BERT (ALBERT), 21 with fewer parameters and lower memory consumption 
than BERT. Our model, MedAlbert, uses a six-layer Transformer with twelve attention heads 
to learn the representations for each medical code at each layer by integrating long range (left 
and right) contextual information in a pathway (Figure 1E). Multi-head attention allows the 
attention module to repeat its computation multiple times. Therefore, there are at least 6×12 
Attention calculations. Through this repeated composition of medical code embeddings, our 
model can learn different aspects of representations which capture a wide variety of relation-
ships and dependencies between medical codes and form very rich representations. The final 
hidden state corresponding to the first input token is used as the aggregate pathway represen-
tation for Lung cancer prediction. We subsequently fine-tuned the model with a Logistic Re-
gression Classifier to create a model for lung cancer prediction. 
 

Input/Output Representations 

The input and its embedding from our model are distinct from previous published work using 
NLP approaches to diagnostic prediction (). The input is the sequence of N medical codes pre-
sent in a three-year pathway prior to diagnosis date for each patient with the temporal order, 
starting with a special token ([CLS]).  Unlike previous approaches utilising the hierarchical 
nature of structured EHR data, being a sequence of visits over time for each patient and each 
visit containing multiple medical codes,19,20 we flattened the structured EHR into a single di-
mensional sequence in order to retain to the largest extent the causal relationships between 
medical codes recorded during a patient’s medical history. The input embedding is constructed 
by combining the corresponding token and position embeddings. Position embeddings encode 
the specific position of each medical code in the input pathway to capture the sequential rela-
tionships among codes.  
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 BHERT Med-BERT DNPR model  Foresight MedAlbert 

Type of input 
codes 

Caliber code for 
diagnosis 
developed by a 
college in London 
 

ICD-9 + ICD-
10 code for 
diagnosis 
 

ICD-8 + ICD-10 
code for diagnosis 

 Snomed for        
disorder, substance, 
finding, and 
procedure 

Read codes v2 for 
symptoms, 
diagnoses, 
medications, 
procedures, sites 
of encounter, and 
medical tests 

Input 
embeddings 

Code + visit + age 
embeddings 
 

Code + visit + 
code 
serialisation 
embeddings 
 

Code +Age 
embeddings 

 Code +Age   
embeddings 

Code embeddings 

Training 
sample unit 

Patient’s visit 
sequence 

Patient’s visit 
sequence 

Patient’s code 
sequence 

 Patient’s code 
sequence,  
prepending age, sex, 
and ethnicity, 
appending [SEP] 
between codes of 
each day 

Patient’s code 
sequence 

Vocabulary 
size 

301 82,000 2997 19,5416  
 

450 

Average 
number of 
visits for each 
patient for 
pretraining 

Not reported 
but >5 

8 18-121  Not reported 
 but < 256 

170 

Minimum 
visits per 
patient 

3 5 5 10 10 

Table 1 Comparison of modelling approach of MedAlbert with BEHRT, 20 Med-BERT , 19 DNPR model, 10 and 
Foresight. 22 DNPR = Danish National patient Registry 

Pre-training MedAlbert 

We pre-trained MedAlbert using masked language model (MLM) based on the original imple-
mentation described in the BERT paper  to enable the representations to fuse the left and the 
right context and, as a result, pre-train a deep bidirectional representation model. 18 As sug-
gested in the BERT paper,18 we masked 12% of the medical codes in each input pathway at 
random and replaced them by [MASK], 1·5% of codes are replaced with random codes. Then, 
the final hidden vectors corresponding to the masked codes are used to predict the original 
codes. We used three-year pathways of the patients in the training dataset to pre-train MedAl-
bert with each pathway ending by the diagnosis code (Figure 1E). We used the default hyperpa-
rameter setting of ALBERT. 
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Lung Cancer Predictive Model 

To predict the probability that an individual patient might develop lung cancer given his/her 
historical pathway data, we formalised lung cancer prediction as a binary classification task.  
We developed a deep predictive model by fine-tuning the pretrained MedAlbert with a logistic 
regression classifier. In addition, as a comparator, we also created a Logistic Regression (LR) 
classifier using the medical codes directly as input features (instead of learnt sequence repre-
sentations) (see Supplementary material). 

Deep Predictive Model: MedAlbert+LRC 

The deep predictive model for lung cancer diagnosis was created by layering a Logistic Re-
gression Classifier (LRC) on top of the output of the pre-trained Deep Contextualized Pathway 
Representation Model for the special [CLS] token (Figure 1F). All parameters were then jointly 
fine-tuned for the lung cancer prediction task. The final layer representation of [CLS], 𝐶 ∈ ℝ! , 
is used as the aggregate pathway representation and passed to a LRC for lung cancer prediction 
(binary 0 or 1). 23 The additional parameters introduced for fine-tuning are classifier layer 
weights 𝑊 ∈ ℝ!. We computed a Binary Cross Entropy loss with BCELoss(Sigmoid(CW"). 
The parameters of MedAlbert+LRC were fine-tuned using labelled three-year pathways (from 
the training set excluding the lung cancer diagnosis codes as shown in Table S1) with each 
pathway labelled with a respective cancer diagnosis, “1” for lung cancer diagnosis and “0” for 
non-lung cancer (Figure 1F). We trained with batch size of 8 pathways and 4 epochs, and other 
hyperparameters are the same as in pre-training. We used 600 pathways randomly selected 
from the training dataset as the evaluation dataset. The above optimal hyperparameter values 
were selected on the Eval set. Additionally, as fine-tuning was sometimes unstable, we ran 
several random restarts with the same pre-trained checkpoint but different training data shuf-
fling and classifier layer initialization and selected the model that performed best on the eval-
uation set. 18 To examine the sensitivity of the models we developed to the length of the path-
way, we predicted the diagnosis of lung cancer using three different types of pathways: (1) 
three-year pathways; (2) the first two years of the three-year pathways; (3) the first one year of 
the three-year pathways. (see Supplementary material) We compared the results with the clas-
sic ML model, Logistic Regression classifier (LR). 

 

Evaluation Metrics 

The validation metrics we used are precision, recall, and area under the ROC curve (AUROC). 
“Precision” shows the proportion of the patients with predicted lung cancer that are correctly 
predicted as lung cancer by the model as proportion of predicted +ve cases, in medical diag-
nostic studies this is termed, Positive Predictive Value (TP/(TP+FP). “Recall” shows the pro-
portion of actual lung cancer patients that are correctly predicted as lung cancer as a proportion 
of lung cancer cases, in other words, correct diagnoses or Sensitivity (TP/(TP+FN). 
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Exploration of the impact of bias in pathway representations 

When using EHR data from primary care it is possible the diagnosis dates were recorded with 
some delay because of the time taken to receive an email or postal communication from a 
hospital clinic and miss-coding of the diagnosis date in the GP record. Although it is best prac-
tice to code this on the clinic date rather than the date received, this relies on human interven-
tion at coding. Being aware of the cancer diagnosis may affect the coding of symptoms post-
diagnosis as symptoms are more likely to be coded (as opposed to being entered as free text) 
when they support an existing or presumed diagnosis than when their significance is uncertain. 
16 The effect of this potential bias would be to overestimate the performance of the model. In 
addition, results of definitive diagnostic investigations taken after referral from primary care 
may also appear in the record. Potential bias can be explored by removing data for the period 
immediately before the diagnosis index date. To determine the appropriate number of months 
of data to remove, whilst still generating the optimal model we constructed a set of test datasets 
with removal of none, one month, and three months of data.  The selected model was chosen 
on the prior specified criteria of being the data cut before any steep change in model prediction. 

Cluster Analysis of Lung Cancer Patient Pathways 
We aimed to investigate clinical interpretability of the MedAlbert + LRC model by using k-
means clustering to examine the outputs of the trained model (Figure 1H) and exploring the 
attention scores.  The outputs of the trained MedAlbert + LRC included the embedding of 
[CLS] which we use as the representation for each pathway (Figure 1G) and the attention scores 
for [CLS] token which show how much the model attends to each medical code present in a 
pathway when predicting lung cancer. We extracted the attention scores of each medical code 
for [CLS] in a pathway by averaging the scores over 12 attention heads at the sixth layer and, 
as a result, form a 1 × 𝑁 vector (𝑁 is the number of medical codes in the pathway) which 
shows how much one code is related to each of the other codes for lung cancer prediction (as 
shown in Figure 1I).  
 

Results 

In the period from January 1981 to December 2020 there were in total 3,303,992 patients in 
WSIC, where in December 2020, 1,980,821 were registered, 224,681 had died, and 1,098,490 
had left the area. Among all the patients, 11,847 were diagnosed with lung cancer where 9,629 
died, 1,306 were still registered, and 912 had left the area. To train our deep model effectively, 
we required a minimum number of ten medical codes we have curated in the three years before 
diagnosis, leaving 8,416 lung cancer patients in which 981 patients were still registered. 
1,221,270 patients consulted a GP in the time period of the study with a reason other than lung 
cancer. The nested case-control population consisted of 5,789 lung cancer patients (44·4%), 
and 7,240 controls made up of 2,932 (22·5%) patients with chronic respiratory conditions, 
2,030 (15·6%) patients with other cancers, and 2,279 (17·5%) patients with a wide range of 
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other conditions (as shown in Figure S3). We pre-trained MedAlbert with batch size of 2 path-
ways for 390,870 steps, which is approximately 60 epochs over the 13,029 patient pathways. 
The clinical characteristics of the training and validation sets are shown in Table 2. The mean 
age at lung cancer diagnosis was 71·5 while the mean age in the whole study population was 
51·4 and in the control group was 58·5. 
 

 

 
 
 
 

WSIC whole population 
n (%) 

Training cases n (%) 
(lung cancer) 

Training controls n (%) 
(non-lung cancer) 

Validation set n (%) 
 

Dataset size 1229686 5789 (0·5%) 7240 (0·6%) 
368906 (30·0%) 

Lung cancer cases 
8416 (0·7%) 

5789 (0·5%) NA 2627 (0·2%) 

Age groups 
  
  

  
  

  
  

  
  

<25 137185 (11·2%) 9 (0·2%) 985 (13·6%) 40994 (11·1%) 

25-34 152168 (12·4%) 25 (0·4% 292 (4·0%) 46100 (12·5%) 

35-44 212612 (17·3%) 51 (0·9%) 549 (7·6%) 63825 (17·3%) 

45-54 179059 (14·6%) 358 (6·2%) 699 (9·7%) 53614 (14·5%) 

55-64 178166 (14·5%) 971 (16·8%) 1135 (15·7%) 53623 (14·5%) 

65-74 154934 (12·6% 1832 (31·7%) 1350 (18·6%) 46195 (12·5%) 

75-84 125505 (10·2%) 1834 (31·7%) 1273 (17·6%) 37260 (10·1%) 

85-94 74763 (6·1%) 673 (11·6% 857 (11·8%) 22650 (6·1%) 

95-104 12489 (1·0%) 32 (0·6%) 87 (1·2%) 3721 (1·0%) 

>105 2770 (0·2%) 3 (0·1%) 7 (0·1%) 853 (0·2%) 

  
  
  

  
  

  
  

  
  

Gender 
  
  

  
  

  
  

  
  

Female 750781 (61·1%) 2859 (49·4%) 4087 (56·4%) 225533 (61·1%) 
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Male 478863 (38·9%) 2930 (50·6%) 3153 (43·6%) 143536 (38·9%) 

  
  
  

  
  

  
  

  
  

Ethnicity 
  
  

  
  

  
  

  
  

White-British 324576 (26·4%) 2527 (43·7%) 3378 (46·7%) 99757 (27·0%) 

White-Irish 28869 (2·3%) 454 (7·8%) 191 (2·6%) 9019 (2·4%) 

White-Other 248506 (20·2%) 1260 (21·8%) 1054 (14·6%) 76782 (20·8%) 

Indian 181586 (14·8%) 418 (7·2% 1051 (14·5%) 55771 (15·1%) 

Pakistani 42059 (3·4%) 81 (1·4%) 201 (2·8%) 12999 (3·5%) 

Bangladeshi 11208 (0·9%) 28 (0·5%) 43 (0·6%) 3358 (0·9%) 

Other Asian 102650 (8·3%) 199 (3·4%) 452 (6·2%) 31529 (8·5%) 

Caribbean 36431 (3·0%) 181 (3·1%) 131 (1·8%) 10930 (3·0%) 

Black African 51143 (4·2%) 73 (1·3%) 144 (2·0%) 15351 (4·2%) 

Chinese 10831 (0·9%) 54 (0·9%) 21 (0·3%) 3247 (0·9%) 

Other 163113 (13·3%) 391 (6·8%) 564 (7·8%) 50107 (13·6%) 

  
  
  

  
  

  
  

  
  

Alcohol and 
Smoking 

  
  

  
  

  
  

  
  

Drinker 506875 (41·2%) 2851 (49·2%) 2517 (34·8%) 150496 (40·8%) 

Non-drinker 84621 (6·9%) 381 (6·6%) 503 (7·0%) 25259 (6·8%) 

Drinking- 
Unknown 613 (0·0%) 0 (0·0%) 9 (0·1%) 184 (0·0%) 

Ex-drinker 6869 (0·6%) 57 (1·0%) 14 (0·2%) 2429 (0·7%) 

Non-smoker 638874 (52·0%) 1551 (26·8%) 3475 (48·0%) 205664 (55·7%) 

Ex-smoker 287932 (23·4%) 3130 (54·1%) 2551 (35·2%) 84076 (22·8%) 

Smoker 213579 (17·4%) 2748 (47·5%) 1383 (19·1%) 63806 (17·3%) 

  
  
  

  
  

  
  

  
  

Cancers 
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Oral cancer 1568 (0·1%) 69 (1·2%) 43 (0·6%) 415 (0·1%) 

Gastric- 
oesophageal cancer 2279 (0·2%) 57 (1·0%) 70 (1·0%) 602 (0·2%) 

Colorectal cancer 6865 (0·6%) 262 (4·5%) 183 (2·5%) 1840 (0·5%) 

Pancreatic cancer 1637 (0·1%) 34 (0·6%) 46 (0·6%) 420 (0·1%) 

Skin, bone, 
connective tissue 
cancer 2662 (0·2%) 102 (1·8%) 61 (0·8%) 693 (0·2%) 

Breast cancer 10097 (0·8%) 402 (6·9%) 199 (2·7%) 2170 (0·6%) 

Uterine cancer 1971 (0·2%) 55 (1·0%) 47 (0·7%) 530 (0·1% 

Ovary cancer 1299 (0·1%) 21 (0·4%) 44 (0·6%) 350 (0·1%) 

Cervical cancer 506 (0·0%) 27 (0·5%) 11 (0·2%) 133 (0·0%) 

Prostate cancer 11398 (0·9%) 220 (3·8%) 392 (5·4%) 3217 (0·9%) 

Renal cancer 4451 (0·4%) 162 (2·8%) 90 (1·2%) 1198 (0·3%) 

Brain cancer 627 (0·1%) 25 (0·4%) 24 (0·3%) 159 (0·0%) 

Thyroid cancer 949 (0·1%) 28 (0·5%) 26 (0·4%) 264 (0·1%) 

Blood cancer 7560 (0·6%) 124 (2·1%) 260 (3·6%) 2818 (0·8%) 

Table 2 Demographic and clinical characteristics of the training + evaluation, and validation cohorts for 
MedAlbert and MedAlbert + LRC 
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Deep representations of patient pathways improve lung cancer prediction 

Sensitivity analysis to determine the amount of data to be removed immediately prior to the 
index date was conducted. The results are shown in . The performance of the model increased 
steadily when more medical codes before the diagnosis date are included in the pathways. After 
the time point of three months, and again at one month, the ROC AUCs rose. This might result 
from two reasons, bias, or the possibility that the symptoms and attendances of the patients 
become more predictive when approaching diagnosis. For a conservative approach to avoiding 
bias we selected to pretrain our deep pathway representation model, MedAlbert, and then fine-
tune MedAlbert with a LRC, using the three-year pathways excluding the one month of data 
immediately preceding the index diagnosis. 

 

Figure 2 The ROC AUCs of MedAlbert+LRC tested using the pathways excluding varied time periods of 
medical codes presented before diagnosis date. 

 

Extensive sensitivity analysis was conducted as to the impact of the amount of clinical data 
included before the index date and the impact of trimming the immediate period before the 
index diagnosis. Table 3 and Table S3 –Table S10 present the comparison of Precision, Recall, 
F1-score, and AUROC between the two predictive models (MedAlbert+LRC and LR) trained 
and tested on the nine combinations of years of data and number of months excluded before 
the end date. The ROC curves are shown in  Figure 4  and Figure S4 – Figure S6. Our chosen 
model was trained by the three-year data with one month removed. The selected MedAl-
bert+LRC always outperforms the single LR by a substantial margin, obtaining a 1% – 6% 
absolute improvement in Precision, Recall, F1 score, and AUROC. In particular, the selected 
model shows quite good performance in one- and two-year early diagnosis of lung cancer, 
achieving AUROC of 86·3% and 83·3% respectively.  
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 Precision 

 (95% CI) 

Recall  

(95% CI) 

F1-score  

(95% CI) 

ROC-AUC 

(95% CI) 

Logistic 
Regression 
Classifier 
(LR) 

Not 
Lung 
Cancer 

99·8% (99·8–99·8) 81·6% (81·6–81·7) 89·8% (89·8–89·9) 88·7% (88·4–88·9) 

Lung 
Cancer 

3·1% (3·0–3·1) 81·0% (80·4–81·6) 5·9% (5·8–6·0) 

MedAlbert 
+ LRC 

Not 
Lung 
Cancer 

99·9% (99·9–99·9) 83·4% (83·3–83·5) 90·9% (90·9–90·9) 92·4% (92·1–92·7) 

Lung 
Cancer 

3·6% (3·5–3·7) 86·6% (85·3–87·8) 6·8% (6·6–7·0) 

Table 3 Predictive performance using three-year pathways at the chosen cut point. Models are trained on three-
year pathways excluding the most recent one-month codes before diagnosis. 

 

 
Figure 3 ROC curve of MedAlbert+ LRC (left) and a single LR classifier (right) applied on three-year patient 
pathways before diagnosis. Models are trained on three-year pathways excluding the most recent one-month codes 
before diagnosis. 

 

 

Figure 4 ROC curve of MedAlbert+ LRC (left) and a single LR classifier (right) applied on three-year patient pathways before diagnosis. Models are trained on three-
year pathways excluding the most recent one-month codes before diagnosis.
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An additional factor is which cut point to take on the ROC curve to identify lung cancer pa-
tients. Table 4 shows the Sensitivity and PPV across the ROC.  shows that the model separates 
lung cancer and not lung cancer populations well. In the UK, NICE accept a PPV of 3% as a 
threshold for fast-track investigation of suspected cancer. We therefore report the predictive 
performance of our selected model at the cut point of 0·4 in Table 4. The performance of the 
model by gender and ethnicity are reported in Table S11 and S12. 
 

Prediction 
Threshold 

Number of 
patients 
with 
predicted 
lung 
cancer 

Number of 
patients 
with 
correctly 
predicted 
lung cancer 

Total number 
of Lung 
cancer 
patients in a 
validation 
dataset 

Sensitivity  Positive predictive 
value 

0.4 6879 241 278 86·6% 3·6% 

0.45 6145 234 278 84·0% 3·8% 

0·5 5431 234 278 84·0% 4·3% 

0·55 4799 221 278 79·4% 4·6% 

0·6 4297 206 278 74·2% 4·9% 

0·65 3758 210 278 75·7% 5·6% 

0·7 3331 193 278 69·5% 5·8% 

Table 4 Comparison of the prediction thresholds to identify patients with lung cancer diagnoses based on the 
validation cohort 

 

 

Figure 4 Prediction probability histogram of lung cancer prediction (normalised). T is the threshold between 
what is classified as Lung cancer and Non-Lung cancer 
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Unsupervised learning of patient pathways reveals clinically relevant lung cancer 
patient groups 

Clustering results are presented in Error! Reference source not found.. We chose the 6-clus-
ter partition for a combination of robustness and separation of clinically relevant concepts. By 
computing the distribution of medical codes across lung cancer patients in each cluster (as 
shown in Figure S7 (left) – S12 (left) in Supplementary material), we can explore the patterns 
of the different clusters. In Cluster 0, Over 98% of patients are under COPD and codes related 
to chronic respiratory condition monitoring, whereas in Cluster 4 over 47% of patients have 
diabetes and 27% obesity. In Cluster 5 over 62% of the patients attended A&E and over 47% 
have another cancer while in Cluster 1, the three-year patient pathways contain relatively fewer 
(20–50) medical events/codes. The remaining two clusters have some overlaps with the above 
four. Cluster 2 only contains 2·4% of the cohort and all of them are under chronic condition 
monitoring (except for COPD, Respiratory, Diabetes, Hypertension, cardiac diseases) while 
most patients in Cluster 3 present acute conditions. 
 

 
Figure 5 Six clusters obtained by clustering lung cancer patient pathways. A patient pathway representation is 
generated as a 768-dimensional vector by feeding the coded pathway to MedAlbert +LRC. To visualise the 
clustering of these pathways we use t-SNE algorithm for embedding high-dimensional data into a two-dimensional 
space. 

 

 

 

 

 

Figure 6 Six clusters obtained by clustering lung cancer patient pathways. A patient pathway representation is generated 
as a 768-dimensional vector by feeding the coded pathway to MedAlbert +LRC. To visualise the clustering of these 
pathways we use t-SNE algorithm for embedding high-dimensional data into a two-dimensional space.

Cluster 0 (11.2% of 
total lung cancer 
patients): COPD 
patient group

Cluster 4: (21.6% of 
total lung cancer 
patients): Over 47% of 
the Patients with 
Diabetes 

Cluster 5 
(17.8% of total 
lung cancer 
patients): A&E + 
other cancers  

Cluster 1 (24.0% ): 
Shorter pathways,  
(10-50) medical 
codes.

Cluster 2 ( 2.3%): Patients with the chronic 
condition monitoring (except for COPD, 
Respiratory, Diabetes, Hypertension, cardiac 
diseases)

Cluster 3 (23.1% ):  Patients 
with Acute conditions.
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Discussion 

Although population-based lung cancer risk models have been built using machine learning 
techniques such as random forests and vector boost, these are static models that do not account 
for temporal relationships between data elements in EHR data. In addition, population models 
of risk and predictive models for symptomatic patients are different and serve different clinical 
purposes. We focus on the latter here. Our model for lung cancer early detection, based on 
MedAlbert plus a LRC achieved an AUROC of 0·924(0·921, 0·927) with a Sensitivity of 
86·6%, Specificity 83·4%, PPV 3·6%, and NPV 99·9% based on the three year’s data prior to 
diagnosis less the one immediate month before. The current specific clinical model, QCancer 
Lung, has a PPV of 1.34% at its maximum sensitivity of 77.3%. 8 Capturing the subtle differ-
ences in presentations between cancer and non-cancer pathways to diagnosis enables much 
more accurate models.   As far as we are aware this is the first time ALBERT has been used to 
analyse EHR data coded in a rich terminology such as Read or SNOMED-CT. A recent publi-
cation has used NLP to extract clinical concepts from unstructured text EHR data in the US, 
but the final analysis was based on a multivariable regression model. 24 In that study finger 
clubbing, cough, haemoptysis, wheeze, weight loss, back pain, bone pain, shortness of breath, 
and fatigue were significant predictors of lung cancer but the model was not validated to pro-
vide an estimate of performance. Using MedAlbert for structured data enables the subtle dif-
ferences in presentations between cancer and non-cancer pathways to diagnosis to be captured. 
Using cluster analysis this can be interpreted in terms of what clinical concepts the model is 
fixing its ‘attention’ to, indeed, on account of fine tuning with a LRC explainability at individ-
ual patient level is also possible if the attention scores are extracted. Symptoms picked out in 
the clusters include breathlessness, chest pain, haemoptysis, cough, and ‘general symptoms’ 
(including in our analysis weakness and malaise). In addition, a number of ENT, lower GI, and 
musculoskeletal symptoms appear in the attention scores. This may be as they are either asso-
ciated but not causal, or temporally related in the patient’s care pathway. The cluster analysis 
shows other known risk factors; COPD and other respiratory conditions, age, gender, and 
smoking history.  Diabetes is known to be associated with a number of cancers, particularly 
liver and pancreas but hasn’t been associated with lung cancer previously.  25,26 Obesity on the 
other hand has previously been found to be associated with a lower risk of lung cancer, but the 
diabetes cluster shows obesity as a risk factor with the highest incident rate. It may be the strong 
association with diabetes that is bringing it into this cluster.  27 Alcohol has been linked with 
head and neck and upper GI cancers in particular but a recent study also suggests that lung 
cancer risk may also be increased, possibly by genetic differences in acetaldehyde production.28 
The association of other cancers with lung cancer are shown in cluster 5, specifically oral can-
cer, colorectal cancer, breast cancer, uterine cancer, cervical cancer, renal cancer, ovary cancer, 
prostate cancer and gastro-oesophageal cancer (Figure S13).  
 
A ‘Pathway to Diagnosis’ for a patient, as defined in our study, contains the most possible 
elaboration of the coded medical records of each patient. It consists of as many types of medical 
codes as possible (such as symptoms, diagnoses, medications, procedures, sites of encounter, 
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and medical tests) appearing during three years so that it possesses a wealth of information of 
disease progression from the perspective of patients and clinical investigation process from the 
perspective of clinicians and stands in contrast to most other statistical methods where data has 
to be aggregated, reducing its dimensionality to enable analysis. We view the pathways as a 
medical language for describing patients’ health details and medical experience where the vo-
cabulary is all the unique medical codes that make up each pathway and the grammar is how 
the codes relate to each other in the context of each pathway. We propose a novel model, 
MedAlbert, based on the state-of-the-art NLP techniques for learning deep pathway represen-
tations from large amounts of EHRs that capture rich medical code relationships and depend-
encies. This allows us to discover lung cancer progression patterns and clinical investigation 
patterns, as well as the associations of patient pathways with the underlying health status of 
patients and the corresponding diagnoses. 
 
Removing the one month of data before diagnosis may reduce the potential for ‘red flag’ symp-
toms to be picked up the model. In future, prospective data capture from primary care should 
enable ‘index consultations’ to be identified prior to cancer diagnosis excluding the impact of 
post-referral events. This better construction of the source records,29 along with direct linkage 
of secondary care data would enable distinguishing bias from signal in the immediate pre-di-
agnosis period. We took a conservative approach in excluding the one month prior to diagnosis 
in this study which may have underestimated the accuracy of the model. The observed lack of 
symptoms in the clusters and attention factors most likely reflect a lack of coding of symptoms 
and signs in UK primary care EHR data and additional means of coding these, or use of NLP 
to extract clinical concepts from text should be employed in future work. 
 
Although MedAlbert-based models of prediction using coded clinical pathways appear to have 
good validity and appear to be based around concepts with support in the medical literature, 
their use in clinical practice is constrained at present by several factors. Firstly, the model needs 
to be validated in an external clinical dataset rather than a 30% partition of the starting data. 
Secondly, the implementation of a model containing potentially most of the data points in a 
three-year patient history might be difficult to achieve technically in real time in consultations 
unless EHR data is pre-processed. Methods for improving the performance of HL7 FHIR Ap-
plication Programming Interfaces for extracting large medical records quickly or enabling se-
lective export as well as exploring local-ICT constraints on processing are required. However, 
the future of diagnosis in primary care will lie in the operation of AI supported clinical diag-
nosis and the technology and EHR systems will have to adapt to support that.30 The approach 
taken can be extended to predict other cancers and other diagnoses to provide a generic diag-
nostic support for primary care, however, methods for combining the non-independent risks of 
the potential diagnoses will have to be applied. 
 
MedAlbert is not a Large Language Model (LLM) in that it is many fold smaller than the 
models that have become commercially available since early 2022, proving to be a potentially 
powerful tool in NLP in particular. Further work in the area should explore to what extent a 
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pre-trained LLM is a more powerful tool for the approach adopted here compared with a pre-
trained ALBERT model, or simply an additional overhead. The area of explainability and com-
putational representation of explainability is a key area of research in diagnostic AI. Our ap-
proach offers individual patient level explainability, in addition to interpretability at population 
level that a general LLM does not. Trust and uptake of AI models in clinical settings are heavily 
influenced by explainability and much further work on learning and modelling predictions of 
the MedAlbert model to provide patient-level constructs such as knowledge graphs to drive 
explanations in the EHR is needed. In addition, LLMs are not currently able to be authorised 
as medical devices and their use is restricted to areas that can be claimed as not ‘directly’ in-
fluencing clinical care. Prediction of possible clinical diagnoses during a primary care encoun-
ter is without doubt a medical device, and our approach illustrates how the analytical power of 
transformers can be leveraged without running into the legal, ethical and regulatory issues 
posed by LLM such as ChatGPT. 
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