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 22 

Abstract 23 

The potential of decoding handwriting trajectories from brain signals for use in brain-to-24 

text communication has yet to be fully explored. Here, we developed a novel brain-25 

computer interface (BCI) paradigm that tried to fit the trajectories of imaginary 26 

handwriting movements from intracortical motor neural activities and translate them into 27 

texts using machine learning approach. The trajectories for handwriting of digits and 28 

multi-stroke characters were decoded using a diverse array of neural signals, achieving an 29 

average correlation coefficient of 0.75. We developed a speed profile identifier based 30 

handwriting recognition algorithm, which accomplished a recognition rate of around 80% 31 

within an extensive database of 1000 characters. Additionally, our research uncovered a 32 

notable distinction in the neuronal direction tuning between writing strokes and cohesions 33 

(air connections between strokes), leveraging which a dual-model approach could exploit 34 

to enhance performance by up to 11.7%. Collectively, these findings demonstrated a new 35 

approach for BCIs that could possibly implement a universal brain-to-text communication 36 

system for any written languages. 37 

Teaser 38 

Handwriting trajectory was successfully decoded from brain signal for direct brain-to-text 39 

translation of any written languages.  40 

  41 
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MAIN TEXT 42 

 43 

Introduction 44 

Over the past two decades, intracortical brain-computer interfaces (BCIs) have emerged as 45 

revolutionary tools that enable direct communication between the human brain and 46 

external devices (1-5). Initially conceptualized for assisting individuals with severe motor 47 

impairments, BCIs have since expanded into various applications, ranging from restoring 48 

speech (6, 7) to walk (8). By translating motor-related neural signals into actionable 49 

commands, either by classification or trajectory fitting, BCIs have opened new avenues 50 

for individuals to interact with their environment, offering a means to overcome physical 51 

limitations and engage with technology in unprecedented ways (9). 52 

The introduction of Handwriting paradigm into BCIs represents a significant leap 53 

forward in the field, allowing users to convert imagined handwriting movements—a more 54 

natural mode of expression—into textual output. A seminal work in this domain is done 55 

by Willett et al. (10), which demonstrated the feasibility of translating neural activity into 56 

English letters then into text. A recurrent neural network was trained to convert the neural 57 

activity into letter probabilities, which were then thresholded to emit discrete characters 58 

for real-time decoding. Remarkably, the participant achieved typing speeds of 90 59 

characters per minute with an impressive 94.1% raw classification accuracy within a 30-60 

character scope. The system demonstrated the potential of BCIs to facilitate complex, 61 

intuitive interactions that closely resemble the fluidity and nuance of human writing. 62 

Building on this progress, more recent studies have explored the classification of 63 

handwritten characters using neural activity recorded from scalp-based electrodes (11, 12).  64 

Despite these advancements, the current state of handwriting BCIs presents several 65 

challenges and limitations. A principal concern is that the classification-based decoding 66 

scheme utilized in previous studies is tailored for Latin-based languages, which require the 67 

discrimination of only a few dozen letters to construct text. In contrast, non-Latin 68 

languages, such as Chinese, demand the classification of thousands of distinct characters, 69 

a task that is currently beyond the scope of neural signal-based classification for BCIs. 70 

Moreover, while neuroimaging and lesion studies have successfully identified the brain 71 

regions associated with handwriting (13, 14), the underlying neural mechanisms of the 72 

handwriting process remain poorly understood. This gap in knowledge may impede the 73 

advancement and broader application of handwriting BCIs, as it limits the ability to refine 74 

algorithms and develop systems that can effectively interpret the complex neural activity 75 

associated with writing movements across strokes. 76 

Here, we present a novel paradigm for BCI that that shifts the focus from classifying 77 

the identities to reconstructing the very trajectories of imagined handwriting, to realize a 78 

universal brain-to-text system by translating the trajectories into any forms of text. 79 

Concurrently, our approach allows for a detailed examination of neuronal tuning 80 

mechanisms for handwriting to facilitate the decoding of trajectories. We have achieved 81 

high-fidelity reconstruction of the trajectories and attained an approximate 80% 82 

recognition rate within a vast character database. These advancements hold profound 83 

implications for the field of assistive technology, offering a potential new avenue for 84 

communication and expression for broad population. 85 

 86 

Results  87 

We surgically implanted two Utah arrays into the left motor cortex of a patient, 88 

specifically targeting the region surrounding the hand 'knob' area, as depicted in the inset 89 

of Fig. 1A. The patient, a right-handed individual in his 70s, had experienced a C4-level 90 

spinal cord injury resulting in total sensory and motor loss below the shoulders. The 91 
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subject was instructed to attempt to handwrite characters with his right-hand using chalk 92 

on a blackboard, following a video displayed on a screen (as illustrated in Fig. 1A). The 93 

video presented handwriting sequences of strokes and cohesions—representing the air 94 

connections between strokes—of a single character at a consistent speed (Fig. 1B). Fig. 95 

1C illustrates the smoothed velocity profiles in the x- and y-direction during the writing of 96 

a character that comprised three strokes and two cohesions, with each stroke or cohesion 97 

exhibiting a bell-shaped velocity curve. 98 

We recorded raw neural signals during the imagined handwriting process. From these 99 

signals, we extracted features from both low and high-frequency bands (as shown in Fig. 100 

1D), encompassing a range of measurements such as local field potential (LFP), single and 101 

multiple unit activity (SUA and MUA), entire spike activity (ESA), etc. (see Methods). 102 

Fig. S1 presents examples of SUA recorded across all 192 electrodes during a single 103 

session, providing a glimpse into the neural activity associated with the motor imagery of 104 

handwriting. 105 

 106 

Neuronal tuning during handwriting 107 

To examine the directional tunning properties of individual neurons, we initiated our 108 

investigation by requesting the subject to perform a center-out handwriting task, which 109 

involved tracing eight directional paths from the center and two circular paths both 110 

clockwise and counterclockwise. A raster plot of a well-isolated example neuron is 111 

displayed in Fig. 2A, from which, we inferred that the preferred direction (PD) of this 112 

neuron is predominantly downward and toward the lower right, as illustrated in Fig. 2B. 113 

Concurrently in the same session, the subject was also tasked with handwriting the digits 114 

from 0 to 9, and the resulting raster plot for the same neuron was presented in Fig. 2C. 115 

Upon plotting the spikes back onto the digit numbers as shown in Fig. 2D, it was observed 116 

that the majority of spikes occurred during the writing downward strokes (such as in digits 117 

of 0, 1, 7, etc.) or those inclined toward the lower right (such as in digits of 5 and 8). This 118 

is in well coincidence with the results obtained from the center-out task. We exhibited 119 

additional example neurons of one session in Fig. S2A, which displayed a variety of 120 

tuning directions and profiles. The spike-on-digit plots in Figures S2B and S2C depicted 121 

the firing patterns of another two example neurons from Fig. S2A with preferred 122 

directions of leftward and upward, respectively. Once again, the directional tuning 123 

observed between the center-out task and the digit-handwriting task was found to be 124 

highly congruent. 125 

In order to assess the impact of visual stimuli on neural activity, we conducted 126 

handwriting tasks both with and without video guidance within the same session. Several 127 

example neurons under both conditions are showcased in Fig. S3, where it is evident that 128 

the neural activity in the absence of video guidance maintained clear distinguishability 129 

among different digits. Most importantly, it retained a significant resemblance to its 130 

counterpart with video guidance. However, due to the issue of alignment, the initiation 131 

and termination points of each handwriting strokes or cohesions could not be accurately 132 

identified, thereby hindering more detailed subsequent analysis. 133 

To scrutinize the population activity patterns, we utilized principal component 134 

analysis (PCA) to diminish the dimensionality of neural activity data, followed by 135 

visualization using t-distributed stochastic neighbor embedding (tSNE) as presented in 136 

Fig. 2E. The neural activities corresponding to different digits were well-separated; digits 137 

with similar writing styles, like 6 and 0, 4 and 9, etc., were found in close proximity to one 138 

another, suggesting analogous population dynamics. A simple classifier (support vector 139 

machine, SVM) with bin size of 200 ms achieved an average accuracy of 96.7%±2.21%, 140 

as depicted in Fig. 2F. Furthermore, we engaged an artificial neural network in an attempt 141 
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to model and fit the trajectory of digit writing based on the population neural activities. 142 

The outcomes demonstrated human-recognizable reconstructions on a single-trial basis, as 143 

portrayed in Fig. 2G. These findings suggest that the neural representation of imagined 144 

handwriting is distinct and likely supports the decoding of more intricate handwriting 145 

patterns, such as Chinese characters. 146 

 147 

Trajectory fitting of handwriting Chinese characters 148 

To test if the neural activity during imaginary handwriting could be used to fit more 149 

complex trajectories, we asked the subject to write 180 Chinese characters in 6 sessions. 150 

These characters, illustrated in Fig. S4A, are commonly used in daily life. Meanwhile, 151 

these characters are complex, with an average of 7.06±2.78 strokes per character. First of 152 

all, the neural activity patterns for each character were highly distinct; SVM classifier 153 

based on SUA and MUA achieved nearly perfect discrimination (98.2%±2.29% and 154 

97.2%±2.30%) among 30-character in each session (Fig. 3B).  155 

Next, we tried to fit the neural activities into the velocity of the handwriting, and 156 

reconstruct the trajectory by performing an integration along the path, as depicted in 157 

Figure 3C. We trained both linear Kalman filter and nonlinear long short-term memory 158 

(LSTM) network using leave-one-character-out cross-validation for trajectory fitting. The 159 

decoding correlation coefficient (CC) and mean square error (MSE) with various types of 160 

low- and high-frequency signals were presented in Fig. 3D and S4C, respectively. Across 161 

all scenarios, the LSTM demonstrated superior fitting outcomes compared to the Kalman 162 

filter. Notably, ESA yielded significantly better results than all other signal types, with an 163 

average CC of 0.753±0.18.  164 

We further investigated the optimization of parameters for ESA extraction, as shown 165 

in Figures S4E-4H, and discovered that the outcomes were not particularly sensitive to 166 

parameter variations within a specific range. Finally, a bidirectional LSTM (bi-LSTM) 167 

yielded even more improved decoding results (Fig. S4I), but the decoding was not causal 168 

and thus unsuitable for online use. Additionally, the computational load was much higher 169 

than that of a standard LSTM.  170 

To provide a qualitative illustration of how the reconstructed trajectories varied with 171 

different CC values, we showcased five example reconstructions in Figure 3E, with CC 172 

values ranging from 0.1 to 0.9. Generally, a reconstruction with a CC exceeding 0.5 would 173 

result in a human recognizable shape. Further quantitative results are detailed below. 174 

 175 

Stroke and cohesion decoding during handwriting 176 

The act of handwriting characters, whether they are Latin or Non-Latin words, is 177 

composed of strokes and cohesions, which possess distinct movement features and are 178 

likely encoded differently at the neural level. Upon close examination of the trajectory 179 

fitting outcomes for more rudimentary characters, it became evident that the decoding 180 

accuracy for individual strokes consistently surpassed that of cohesions. As illustrated in 181 

Fig. 4A, the four representative characters highlighted that incorrect cohesion decoding—182 

primarily concerning the orientation of each cohesion—resulted in the misplacement of 183 

well-decoded strokes. This misplacement led to dissimilar profiles and, consequently, 184 

trajectories that were unrecognizable. 185 

We then conducted a detailed examination of the neuronal tuning for strokes and 186 

cohesions in isolation. Fig. 4B showcased the tuning curve of one example neuron. For 187 

strokes, the curve peaked at a preferred writing direction of 135°, yet remained flat for 188 

cohesions across all directions. When combined, the tuning curve was biased toward 189 

strokes due to their predominance. For comparative purposes, we also assessed the 190 

neuronal tuning of strokes that were randomly divided in half. As depicted in Fig. 4C, the 191 
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same example neuron from Fig. 4B exhibited consistent tuning properties between the two 192 

stroke groups. Additional example tuning curves contrasting strokes versus cohesions are 193 

displayed in Fig. S5A, with comparisons to tuning curves of stroke halves in Fig. S5B. We 194 

quantified the differences by calculating the delta PD and CC between the two tuning 195 

curves (Fig. 4D). The results demonstrated a significantly higher delta PD (39.1 vs. 91.4, p 196 

= 6.93e-8) and lower CC (0.03 vs. 0.65, p = 8.87e-14) for stroke vs. cohesion compared to 197 

stroke vs. stroke, indicating markedly different tuning property between strokes and 198 

cohesions. 199 

Subsequently, we developed two decoding models, one trained exclusively with 200 

stroke data and the other with cohesion data, to evaluate whether this dual-model approach 201 

would outperform the single model trained with a mix of strokes and cohesions. The 202 

strokes and cohesions of the same four example characters were decoded using their 203 

respective models (Fig. 4E), showing improved fitting quality for both strokes and 204 

cohesions over the single-model depicted in Fig. 4A. It is important to note that the more 205 

precise orientation decoding for cohesions facilitated the correct placement of strokes, 206 

which is essential for character recognition. Quantitative results from a dataset of 30 207 

characters (Fig. 4F) revealed significantly improved decoding similarity for both 208 

cohesions (0.79 vs. 0.87, p = 4e-07) and strokes (0.76 vs. 0.87, p = 2.3e-22). 209 

Encouraged by these findings, we applied the dual-model scheme to the 180-210 

character dataset and demonstrated that the dual-model achieved a significantly lower 211 

MSE (99.0±56.9 vs. 67.4±41.2) and higher CC (0.753±0.18 vs. 0.841±0.11) for overall 212 

trajectory fitting than the single model, as depicted in Fig. 4G, which was around 11.7% 213 

improvement.  However, for practical application of this dual-model approach, it was 214 

necessary to first distinguish whether a particular part was a stroke or a cohesion. We then 215 

employed a LSTM classifier to classify strokes and cohesions bin-by-bin using ESA, SUA 216 

and local motion potential (LMP) signals. The ESA achieved highest classification 217 

accuracy of 83.72%±5.83%, indicating a promising discriminatory capability (Fig. 4H).  218 

We then constructed a decoding model by cascading the stroke/cohesion classifier 219 

and dual-model fitting decoder. That is, for each bin, the classifier first determined 220 

whether the current bin corresponded to a stroke or a cohesion, followed by velocity 221 

fitting using the appropriate model accordingly. However, this cascading model did not 222 

outperform the single model in terms of either CC or MSE, as shown in Figure 4I. 223 

Although we demonstrated that the encoding structures for strokes and cohesions were 224 

distinct during handwriting, the decoding method by combining two stages of 225 

classification and fitting did not enhance the trajectory reconstruction. Further study could 226 

be done to explore more sophisticated algorithms, but single LSTM model is strong 227 

enough for current study. Consequently, we continued to utilize a single LSTM model 228 

with ESA signal for trajectory fitting in subsequent analyses. 229 

 230 

Translate decoded trajectories into text  231 

To objectively assess whether the decoded trajectories could be recognized as legible text, 232 

we initially utilized a generic handwriting recognition software to discern the continuous 233 

trajectory for each character. In this scenario, we used ESA, SUA and LMP for decoding 234 

and compared both speed and position decoding schemes. ESA velocity decoding yielded 235 

the highest recognition rate; however, only around a quarter (27.6%) of the trajectories 236 

could be recognized as correct Chinese characters (Fig. 5A). This was not surprise because 237 

the trajectory for each character was essentially a single continuous stroke, which 238 

significantly deviates from conventional stroke-by-stroke handwriting patterns (see 239 

Discussion section). 240 
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To recognize the trajectories correctly, we devised an innovative method aimed at 241 

finding out standard character that has the most similar speed profile with the decoded 242 

trajectories. The underlying concept was that each character would generate a unique and 243 

distinctive speed profile identifier along the writing process. To that end, we first built a 244 

library that encompassed the speed profiles for writing the standard 180-character. Then 245 

each decoded trajectory was z-score normalized and matched with the most similar 246 

standard character using dynamic time warping (DTW) algorithm. Once again, ESA with 247 

velocity decoding achieved the highest recognition rate, and this time approximately 248 

87.2% of the trajectories could be correctly recognized (Fig. 5B). Given that the speed 249 

profiles were highly unique for each character, only a slight decrease in recognition rate to 250 

79.8% was observed when the library expanded to 1000 characters (Fig.5C). Comparing 251 

to CC based method, DTW permits temporal sequences to exhibit certain degrees of delay 252 

or stretching along the time axis, thereby enabling a more precise capture of the inter-253 

sequence similarity. This suggested that the recognition method was sufficiently robust for 254 

recognizing a large number of characters. 255 

Ultimately, we examined the consistency of decoded trajectories for the same 256 

character across different days. The same set of 30 characters was repeatedly written four 257 

times over the course of eight days. Despite variations in neural activity, the decoded 258 

trajectories maintained a high degree of similarity; even after intervals of up to eight-day, 259 

all cross-day correlation coefficients exceeded a high value of 0.84 (Fig. 5D). This 260 

indicated that the imaged handwriting trajectory could possess certain stability, which 261 

could further improve the recognition rate (e.g., using the trajectory that decoded in 262 

previous days as the template). Collectively, these findings suggest that the trajectories of 263 

complex characters can be decoded and recognized as text, offering a universal brain-to-264 

text communication solution applicable to any written language. 265 

 266 

Discussion  267 

In this study, we recorded intracortical neural activity from a human patient during video-268 

guided imagined handwriting. Our findings revealed that neurons exhibit tuning properties 269 

during the handwriting process akin to the classical motor directional tuning theory (15). 270 

Additionally, we discovered that writing strokes and cohesions are encoded with distinct 271 

rules. Leveraging these insights, we engineered decoders capable of accurately 272 

reconstructing the trajectories of imagined handwriting for complex Chinese characters. 273 

Moreover, we developed a novel matching algorithm that translates these trajectories into 274 

legible text. This approach contrasts with previous classification methods (10) which 275 

introduced a pioneering brain-to-text methodology that were suitable for letter-based 276 

languages. Specifically, our method involves reconstructing handwriting trajectories and 277 

subsequently recognizing these trajectories as text, a technique that holds promise for 278 

application across universal languages. This innovative strategy advances the field of 279 

BCIs and paves the way for individuals with limited mobility to communicate through 280 

written language. 281 

Movement trajectory fitting is a well-established technique within the realm of BCIs. 282 

Prior research has predominantly concentrated on decoding straight movements in arm-283 

reach distances with both monkeys and humans, demonstrating control capabilities for 284 

computer cursors (3, 16) or prosthetics (2, 17). Preliminary trials have also explored the 285 

decoding of simple curved drawings in monkeys (18, 19). However, the ability to 286 

reconstruct the intricate handwriting trajectory, which occurs within a significantly smaller 287 

range but encompasses complex spatial and temporal dynamics, remained unexplored. 288 

Willett et al. provided an illustration of trial-averaged activity to reconstruct the trajectory 289 

of handwriting of single letters (10). Our study first confirms that incorporating temporal 290 
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variability induced by handwriting significantly enhances classification accuracy (10), as 291 

evidenced by the perfect discrimination of up to 30 characters. More notably, due to the 292 

precise alignment between neural activity and handwriting kinematics, we have been able 293 

to reconstruct complex writing trajectories as human recognizable characters on a single-294 

trial basis. To the best of our knowledge, this research marks the inaugural attempt to 295 

reconstruct complex handwriting movements for brain-to-text communication. This novel 296 

strategy extends the application of handwriting BCIs to encompass any written language, 297 

be it Latin-based or non-Latin, as it enables the decoding of any written trajectory as it is, 298 

thereby broadening the horizons for individuals seeking enhanced communication 299 

capabilities. 300 

Handwriting serves as a pivotal motor task for investigating motor control (20) and 301 

assessing motor diseases (21). However, previous studies have predominantly focused on 302 

the analysis of written trajectories, often overlooking the distinct characteristics of strokes 303 

and cohesions. In reality, the execution of strokes and cohesions in handwriting exhibits 304 

fundamental differences, both from kinematic perspectives—such as cohesions involving 305 

an additional movement dimension perpendicular to the paper plane—and kinetic 306 

aspects—like the significantly reduced force applied to the pen during cohesions 307 

compared to strokes. While the neural substrates and mechanisms of handwriting have 308 

been primarily examined through lesion studies and neuroimaging (13, 14), our research 309 

delves into the single-neuron level investigation of both stroke and cohesion handwriting. 310 

We discovered markedly different tuning properties between the two at the individual 311 

neuron level, a finding underscored by the superior performance of a dual-model approach 312 

over a single mixed model when the labels for strokes and cohesions were identifiable. 313 

Nevertheless, our attempt to integrate a classification model with trajectory fitting did not 314 

surpass the performance of the single model. This was primarily attributed to the 315 

inappropriate assign of strokes and cohesions, despite achieving a bin-by-bin classification 316 

accuracy exceeding 85%. Further exploration into the population neural dynamics (22) 317 

may yield more effective discrimination between strokes and cohesions, thereby 318 

facilitating more precise trajectory fitting and enhancing our understanding of the intricate 319 

processes underlying handwriting. 320 

Handwriting recognition and Optical Character Recognition (OCR) have reached a 321 

high level of sophistication and are widely utilized in contemporary applications (23, 24). 322 

However, these standard recognition techniques are not well-suited for the handwriting 323 

trajectories reconstructed from neural signals in our study, primarily for two reasons. 324 

Firstly, generic handwriting recognition systems are trained on normal handwriting 325 

patterns, which are notably distinct from the continuous one-touch-writing trajectories we 326 

decoded here. Secondly, the single-model decoding approach used in our study, was prone 327 

to inaccuracies particularly for cohesions, which led to the misplacement of otherwise 328 

correctly decoded strokes. Therefore, a recognition program tailored to account for these 329 

specific characteristics would likely achieve a higher recognition rate. In addition, one 330 

interesting finding was that the reconstructed trajectories of the same character exhibited a 331 

high degree of similarity across different days, indicating a consistent, person-specific 332 

signature would exist. To account for that, a personalized recognition program could be 333 

more effective in accurately decoding imagined handwriting. The consistency of these 334 

trajectories over time underscores the potential for developing individualized algorithms 335 

that can reliably interpret the unique handwriting patterns derived from neural activity. 336 

Our study, while illuminating, has several limitations that warrant acknowledgment. 337 

Firstly, although visual guidance was instrumental in synchronizing neural activities with 338 

handwriting kinematics, it also risked contaminating or even amplifying the handwriting-339 

related signals, potentially leading to false positive detections. Nonetheless, this approach 340 
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remains a valuable starting point for constructing an initial decoder, which can be further 341 

refined during online testing as reliance on visual cues diminishes. Another limitation is 342 

that our study still considered handwriting as a 2D plane movement, rather than 343 

employing a 3D or multi-dimensional model. Future research should integrate these 344 

additional dimensions to more fully account for the variations observed in neural data, 345 

particularly for the nuanced differences between strokes and cohesions. 346 

The application of our findings in the near future seems highly plausible, especially 347 

considering that fully implantable electronics are now accessible in both academic (25) 348 

and industrial (26) spheres. This advancement will expedite the translation of our research 349 

into practical human applications, broadening the potential impact of our work in the field 350 

of BCIs and motor control studies. 351 

 352 

Materials and Methods 353 

Participant and surgery 354 

The participant enrolled in this study was a right-handed individual, who had experienced a C4-level 355 

spinal cord injury and resulted in total sensory and motor loss below the shoulders. The microelectrode 356 

implantation surgery was conducted about 3 years after the injury in his 70s and data collection for this 357 

study was at around 2.5 years after the surgery. All clinical and experimental procedures received approval 358 

from the Medical Ethics Committee of the Second Affiliated Hospital of Zhejiang University and were 359 

registered in the Chinese Clinical Trial Registry (chictr.org.cn; registration number: ChiCTR2100050705). 360 

Two 96-channel Utah microelectrode arrays (Blackrock Microsystem, USA) were implanted into the 361 

left precentral gyrus, specifically targeting the hand 'knob' area of motor cortex (Fig. 1A inset). The location 362 

of implantation was identified using functional magnetic resonant imaging (fMRI) prior to surgery when the 363 

participant imaging reaching and grasping movement. 364 

 365 

Video-guided handwriting paradigm 366 

To guide the motor imaginary process for the patient, a handwriting video was played on the computer 367 

monitor. The video consisted of stroke-by-stroke writing animation of a specific character, leading by a hand 368 

with chalk (Fig. 1A). The patient was asked to attempt to write the same character with chalk on a 369 

blackboard following the guidance. We also asked the patient to write on a paper with pen, basically the 370 

classification results were similar. We kept using chalk on blackboard paradigm based on the patient’s 371 

preference. A typical trial started by showing the character (in dark green) on the screen (500 ms) followed 372 

by an auditory prompt of the character’s pronunciation (1000 ms). After a short delay (300 ms), a sound cue 373 

was issued and the writing animation started. The writing consisted of both strokes and cohesions, i.e., air 374 

connection between strokes. The written strokes were highlighted as light green and the cohesions were 375 

simplified as a direct line between the end of current stroke and the start of next stroke. The duration of 376 

writing depended on the length of the character, ranging from 4 to 8 seconds, which is a little bit longer than 377 

normal writing speed to adapt to the patient. The speed for each character and cohesion was constant, i.e., 378 

the duration of each stroke or cohesion is proportional to their lengths. 379 

The handwriting videos were artificially synthetic. Firstly, the sequences of two-dimensional coordinate 380 

for writing each character were extracted from standard font of that character using ‘GetData Graph 381 

Digitizer’ software. Secondly, each segment, defined as a straight line or an approximation of a straight line 382 

before sharp inflections, was labeled as stroke or cohesion and converted the coordinates into velocity 383 

sequences. The duration for each segment was proportional to the ratio of the segment length to the total 384 

length, and the velocity profiles in x- and y-direction were defined as: 385 

𝑣𝑥,𝑦(𝑡) = {
𝑎𝑡, 0 ≤ 𝑡 < 𝑇/2

𝑎𝑇 − 𝑎𝑡, 𝑇/2 ≤ 𝑡 ≤ 𝑇
 386 

Where T represents total duration of that segment, and a is the scaling factor to fit the duration of the 387 

segment. Lastly, the handwriting animations were created frame-by-frame according to the velocity profile 388 

above using MATLAB. The video had a black background, and there was a static dark trace of the entire 389 

character before the actual writing starts. The strokes are represented by light green lines with thick width 390 

over the static dark characters (Fig. 1B). The position and velocity data used for decoding were 5-point 391 

smoothed version of the actual traces (sampled at 20 Hz), which resembled a bell-shaped profile (Fig. 1C). 392 

 393 

Data collection sessions 394 

Neural data were recorded when the subject attempted to write various characters during 1-2 hours 395 

sessions on scheduled days. During the experimental sessions, the patient was seated in a wheelchair with 396 

hands resting on a table. A computer monitor was setup in front of the patient for task visualization. Two 397 
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cables were connected from the patient’s head connectors to the NeuroPort data acquisition system 398 

(Blackrock Microsystem, USA), which recorded both neural signals and task timings (through serial port) 399 

simultaneously. The character dataset used in this study included:  400 

(1) 8 directional paths from the center and 2 circular paths both clockwise and counterclockwise, which 401 

resembled a center-out task commonly used to examine directional tuning of neurons. Each direction was 402 

repeated 10 times in pseudorandom order (Fig. 2);  403 

(2) 10-digit number from 0-9, which was repeated 10 times in pseudorandom order in each session. In 404 

some sessions, both center-out and digit writing were conducted to examine the tuning property for the same 405 

neuron (Fig. 2). In this case, only 5 repeats for each digit/direction were performed;  406 

(3) 30 simple Chinese characters (usually 3-stroke) that were used to investigate the difference of 407 

tuning property between stroke and cohesion (Fig. 4). For each character, 2 blocks and 3 repeats/block were 408 

conducted per session.;  409 

(4) 270 complex Chinese characters. 180 of them (average 7-stroke) were recorded with raw data and 410 

various signal features could be extracted and used for decoding analysis (Fig. 3). For each character, 2 411 

blocks and 3 repeats/block were conducted per session.;  412 

(5) The same 30 Chinese characters were repeated in another separate 5 sessions to examine the 413 

stability of the decoded trajectories (Fig. 5). For each character, 2 blocks and 3 repeats/block were conducted 414 

per session. 415 

 416 

Neural signal preprocessing 417 

Neural signals from each channel were amplified, filtered (0.3-7500 Hz) and digitized at a sample rate 418 

of 30 kHz using NeuroPort. Various signal features were then extracted, including: 419 

(1) Single-unit activity (SUA), which was extracted online after further filtering (250-5000 Hz) with a 420 

threshold of -6.25 times root mean square (rms). Single units were isolated offline using Offline 421 

Sorter (Plexon, USA). 422 

(2) Multi-unit activity (MUA), which was extracted offline from the further filtered data (250-5000 423 

Hz) using different threshold at -4.5 and -6.25 rms. No further spike sorting was applied. 424 

(3) Local filed potential (LFP), which was obtained by low-passing (below 500 Hz) of raw signal and 425 

down sampled to 2000 Hz. To reduce sporadic outliers, extremes exceeding ±3 times the standard 426 

deviation from mean were clipped, followed by a third-order Butterworth lowpass filter. Then the 427 

mean powers for each frequency band (1-4, 3-10, 12-23, 27-38, 50-300 Hz) were calculated as 428 

signal features. 429 

(4) Local motor potential (LMP), which was the moving averaged of LFP in non-overlapping 50 ms 430 

windows (27). 431 

(5) Entire spiking activity (ESA), which was obtained by applying a first-order Butterworth high-pass 432 

filter (300 Hz) on raw signal, rectifying by taking the absolute value, first-order Butterworth low-433 

pass filtering (12 Hz), and finally down sampling to 1 kHz (28). 434 

(6) Spiking-band power (SBP), which was obtained by applying a second-order Butterworth bandpass 435 

filter (300-1000 Hz) to the raw signal, rectifying by taking its absolute value, and finally down 436 

sampled to 2 kHz (29). 437 

(7) Continuous multiunit activity (cMUA), which was obtained by applying third-order Butterworth 438 

bandpass filtering (300-6000 Hz) to raw signal, squared, low-pass filtering using a third-order 439 

Butterworth filter (100 Hz), clipping negative values, square rooted, and finally down sampled to 1 440 

kHz (30). We have found cMUA had high correlation coefficient (above 0.87, Fig. S4B) and 441 

similar decoding results with ESA and was not used for further analysis. 442 

To identify the actual timing of imaginary handwriting after animation start, we performed principal 443 

component analysis (PCA) and found a significant change of neural activity in PC1 and PC2 occurred at 444 

around 300 ms after the cue (Fig. S4C). Subsequent decoding analysis confirmed that a delay of 300 ms 445 

achieved the best results. Therefore, we aligned the writing kinematics with the 300-ms-shifted neural in all 446 

following analysis. The bin size to average the neural activities were also tested in a classification decoding 447 

task, ranging from 50 to 400 ms, and confirming that a bin size of around 200 ms yielded the best results 448 

(Fig. 2F). Thus, all the neural signal features above were binned with overlapping 200 ms window and 449 

shifted 300 ms to align with handwriting kinematics. 450 

 451 

Directional tuning and visualization 452 

During center-out task, the averaged firing rate in each direction was calculated and depicted as a radar 453 

plot for each neuron (Fig. 2B). The preferred direction (PD) was determined as the direction with highest 454 

firing rate. During digits writing task, each spike during writing was plotted back onto the trajectory (with 455 

little position jet depending on the width of the stroke) to illustrate where, during the writing, a spike fired 456 

(Fig. 2D).  During simple Chinese character writing, the tunning curve (i.e., firing rate vs. writing direction) 457 
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was plotted separately for stroke and cohesion (Fig. 4B). As a comparison, the strokes were randomly 458 

assigned into two equal groups and the tuning curves for each group were constructed separately (Fig. 4C). 459 

We used t-distributed stochastic neighbor embedding (t-SNE) to reduce the dimensionality of the trials 460 

of neural activity for visualization (Fig. 2E). The neural activity for writing digits was compiled into a 461 

matrix with dimension  T × UB, where T is the number of trials, U is the number of units and B is the 462 

number of bins in each trial. We applied t-SNE to these matrices using tsne function in MATLAB with 463 

default parameters. 464 

 465 

Classification and fitting models and metrics 466 

To classify the digits (10 in each session with 10 repeats each) or characters (30 in each session with 3 467 

repeats each) identities, we employed support vector machine (SVM) classifier in libsvm library with 468 

polynomial kernel. The classifier was cross-validated with leaving-one-trial-out scheme. 469 

To fit the trajectory of the imagined handwriting movement from the neural signal features, we utilized 470 

both Kalman Filter (KF) and long short-term memory (LSTM) as decoder (28). The KF uses linear system 471 

state equation and the input-output data observed to estimate the system's state optimally. The KF employs a 472 

recursive approach for state prediction and state updates as follows: 473 

�̂�𝑘
− = 𝐴�̂�𝑘−1

− + 𝐵𝑢𝑘 474 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 475 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 476 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘-H�̂�𝑘

−) 477 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− 478 

where �̂�𝑘
− is the predicted state value, �̂�𝑘 is the optimal estimate of the state, A is the state transition 479 

matrix, B is the control input matrix, H is the state observation matrix, Q and R represent the covariances, 480 

which respectively characterize the deviations of the state values and observation values. 481 

The LSTM is a type of recurrent neural network (RNN) designed specifically to solve the issue of long-482 

term dependencies in traditional RNNs. The core of LSTM is the cell state, which serves to stably preserve 483 

long-term memory in the model. LSTM utilizes gate mechanisms to control the removal or addition of 484 

information to the cell state. The forget gate determines which information should be discarded from the cell 485 

state, the input gate determines which new information should be added to the cell state, and the output gate 486 

determines the features of the cell state to be outputted. The description is as follows: 487 

ft = σ(Wfxt + Ufht−1 + bf )  488 

it = σ(Wixt + Uiht−1 + bi )  489 

c̃t = tanh(Wcxt + Ucht−1 + bc )  490 

ot = σ(Woxt + Uoht−1 + bo )  491 

ct  =  ft  ⊙ ct−1 + it ⊙ c̃t 492 

ht =  ot ⊙  tanh(ct)  493 

Where x represents the input, h represents the output, f represents the forget gate, i represents the input 494 

gate, o represents the output gate, c represents the cell memory. The symbols σ and ⊙ represent the sigmoid 495 

activation function and element-wise multiplication operator. The number of units in the LSTM was 512 and 496 

the network was trained with batch size of 1, dropout rate of 0 and learning rate of 0.001. 497 

We also tried bidirectional LSTM (Bi-LSTM) for trajectory fitting (10), which, contrasting with LSTM, 498 

considers both historical and future information to determine the output. The structure of Bi-LSTM consists 499 

of two LSTM units, one processing the input sequence from the past to the future, and the other processing it 500 

from the future to the past. Through this approach, Bi-LSTM can achieve a more comprehensive 501 

understanding of the sequence. However, this approach was not causal and thus could not be used for online 502 

applications. 503 

The fitting models were cross-validated using a leaving-one-character-out method, in which, all the 504 

repeats for the same character to be tested was excluded for training the model. Both velocity and position of 505 

the handwriting were used to decode the trajectory of characters. For velocity model, an additional step that 506 

integrating velocity along the path was calculated to reconstruct the position, i.e., trajectory. Finally, we used 507 

Mean Squared Error (MSE) and Pearson's Correlation Coefficient (CC) as evaluation metrics for decoding 508 

performance and paired Wilcoxon signed-rank tests to assess statistical differences in decoding performance 509 

between different features and decoding methods. 510 

 511 

Dual-model and similarity metrics 512 

The trajectory fitting model above were trained with mixed strokes and cohesions (single-model). We 513 

also trained stroke- and cohesion-model with exclusively the stroke and cohesion data, respectively, and 514 

tested in simple Chinese characters (dual-model, Fig. 4). To quantified the quality of reconstruction for the 515 

single- and dual-model, two similarity metrics were defined for stroke and cohesion, respectively. The 516 
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cohesions were always straight lines and the similarity was defined as weighted sum of angular and length 517 

similarity: 518 

𝑆𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = ∑ 𝑤 ·
1 + cos ∆𝜃𝑖

2
+ (1 − 𝑤) · (2 −

2

1 + 𝑒−∆𝐿𝑖/𝐿𝑖
)

𝑁

𝑖=1

 519 

where w is the weight and set to 0.6 in this study to emphasize the importance of angle of cohesion 520 

which is important for character reconstruction. ∆𝐿𝑖 and ∆𝜃𝑖 is the length and angle difference for i-th 521 

cohesion out of the total number of cohesions N. Similarity for strokes was defined as the weighted sum of 522 

pair-wise distance and the correlation between the trajectories: 523 

𝑆𝑠𝑡𝑟𝑜𝑘𝑒 = ∑ 𝑤 · (2 −
2

1 + 𝑒−𝑟𝑚𝑠(∆𝑑𝑗)/𝐿𝑖
) + (1 − 𝑤) · 𝐶𝐶𝑥,𝑦

𝑁

𝑖=1

 524 

where the weight w was set to 0.6 to emphasis the pair-wise distance ∆𝑑𝑗 between decoded trajectory 525 

and prompted trajectory. 526 

To classify the strokes and cohesions, another LSTM was trained with similar structure and parameters 527 

above. A cascading model with LSTM classifier and dual-model for fitting was constructed to decode the 528 

velocity bin-by-bin and reconstruct the trajectories by integration. 529 

 530 

Recognition of handwriting trajectories 531 

Decoded handwriting trajectories were recognized as text in two ways. Firstly, the trajectory for each 532 

character was fed into an online generic handwriting recognition software through their APIs (teshuzi.com). 533 

The first Chinese character output by the algorithm, which has the highest similarity score, was selected as 534 

the recognition outcome. Secondly, we recognized the decoded trajectories by matching them against a 535 

database of velocity profiles from standard characters. To accomplish this, we extracted trajectories for up to 536 

1000 commonly used characters (using methods above) and converted them into their corresponding 537 

velocity profiles. The 180 characters tested in this study were part of this library, but the velocity profiles in 538 

the library were not identical with the velocity prompted to the subject (due to different sampling). Dynamic 539 

Time Warping (DTW) and correlation coefficient (CC) were employed to quantify the similarity between 540 

the decoded velocity and velocity profiles in the library. DTW permits temporal stretch and delay, thereby 541 

enabling a more precise capture of the inter-sequence similarity. However, the computation load was high 542 

for DTW and the fastDTW algorithm was employed to compute the DTW distances. The character with the 543 

highest similarity score, as determined by DTW or CC, was selected as the final recognition result. 544 
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Figures and Tables 637 

 638 
Fig. 1. Experimental setup and neural signal recording. (A) The subject with recording 639 

cables connected was imaging handwriting with his right hand following the 640 

animation showed on the screen. Inset: illustration of implantation position for the 641 

two Utah array (orange) and two connectors (blue) in the left hemisphere. (B) 642 

Example frames of the animation video writing a Chinese character ‘大’ (big). The 643 

red arrow indicates the moving direction (not shown in the experiment). The 644 

number in the upper right indicates current frame/total frame number (not shown 645 

in the experiment). (C) Velocity profile (red lines) in x and y directions for the 646 

character ‘大’. The dash lines separate the three strokes and two cohesions, which 647 

are represented by red solid and dash arrows, respectively. (D) Example of neural 648 

signals when handwriting a character, including raw signal (30k sampling, 0.3-649 

7500 Hz) and other processed signal features, like LFP, SUA, MUA and ESA. 650 
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 651 
Fig. 2. Neuronal tuning and decoding of digit-number handwriting. (A) Raster plot of 652 

one example neuron (average waveform showed in the right panel) when the 653 

subject handwriting straight lines in 8 directions, clockwise and anti-clockwise 654 

circles. Five trials were repeated in each condition. The green line indicates the 655 

start of handwriting animation. (B) Radar plot of the tuning curve for the example 656 

neuron showed in (A). Each red dot represents one trial and the black line indicates 657 

the average firing rate. (C) Raster plot of the same neuron as in (A) but for 658 

handwriting of the ten-digit numbers (0~9). (D) The firing of the example neuron 659 

during handwriting of digit numbers was mapped onto the trajectories of the 660 

numbers. Each red dot represents the neuron fired once and five trials were 661 

overlapped. (E) tSNE plot of the dimension-reduced neural activity of handwriting 662 

the ten-digit numbers. (F) Classification accuracy of ten-digit numbers as a 663 

function of bin size for single unit activity (SUA). The curve peaked at 97% when 664 

the bin size is 200 ms. (G) Trajectory decoding (red line) of digit number 665 

handwritings in one example session. Each digit was repeated 10 times. 666 

  667 
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 668 
Fig. 3. Trajectory fitting of complex Chinese characters. (A) Distribution of the stroke 669 

number of 180 Chinese characters tested with various neural signals. (B) 670 

Classification accuracy for the 6 sessions (30 characters per session) with both 671 

SUA and MUA. (C) Example of a standard Chinese character ‘内’  (solid for 672 

strokes and dash line for cohesions, left panel) and the decoded trajectory (orange, 673 

right panel). The corresponding velocity profiles in x and y directions were showed 674 

in the middle panel. Green dots indicate the start of the handwriting. (D) The 675 

fitting correlation coefficients (CC) of the 180 characters for Kalman Filter (left 676 

panel) and LSTM (right panel) decoder with various kinds of neural signals. See 677 

text for the abbreviation. Asterisk (***) indicates significant difference between 678 

ESA and other signals (paired signed-rank test, p < 0.001). (E) Five more fitting 679 

examples (‘经’, ‘身’, ‘前’, ‘该’, ‘报’) with fitting CC ranging from 0.1 to 0.9. 680 
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 682 
Fig. 4. Trajectory fitting by stroke and cohesion dual-model. (A) Illustration of four 683 

example characters (‘大’, ‘于’, ‘川’, ‘万’) decoded by a single-model trained with 684 

both strokes and cohesions. The thin solid and black traces indicate strokes and 685 

cohesions of prompted characters, respectively. Thick red and blue line represents 686 

decoded trajectories for strokes and cohesions, respectively. (B) Tuning curve (i.e., 687 

firing rate as a function of writing direction) of two example units for strokes (red), 688 

cohesions (blue) and combined (gray). (C) Same as (B) but for stroke half 1 vs. 689 

stroke half 2. (D) The histogram of differences between preferred directions (delta 690 

PD, upper panel) and correlation coefficient of tuning curves (CC, lower panel) for 691 

strokes vs. strokes (blue) and strokes vs. cohesions (orange). Downward triangles 692 

indicate means of the distribution. (E) Same as (A) but the strokes and cohesions 693 

were separately decoded using stroke and cohesion models (i.e., dual-model), 694 

respectively. (F) Comparison of decoding similarity of cohesions (left panel) and 695 

strokes (right panel) using single-model and dual-model. (G) Comparison of MSE 696 

for the 180 decoded characters between single-model and dual-model. Each line 697 

represents one character. Asterisk (***) indicates significant difference between 698 

groups (paired signed-rank test, p < 0.001). (H) Averaged classification accuracy 699 

for stroke vs. cohesion using ESA, SUA and LMP signals. (I) Comparison of mean 700 

square error (MSE, left) and correlation coefficient (CC, right) for the 180 decoded 701 

characters between single-model vs. classification and dual-model cascade 702 

decoding. Each line represents one character and error bar illustrates the mean and 703 

standard deviation. Asterisk (***) indicates significant difference between groups 704 

(paired signed-rank test, p < 0.001). 705 
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 707 
Fig. 5. Recognition of decoded handwriting trajectory. (A) Recognition rate of the 180 708 

decoded characters using a generic handwriting character recognition API (from 709 

teshuzi.com). The decoding results for LMP, MUA, and ESA were illustrated. 710 

Decoding scheme for both velocity (black bar) and position (gray bar) was tested. 711 

(B) Same as (a) but for dynamic time warping (DTW) based recognition method 712 

which calculates similarity between the decoded trajectories and the standard 713 

Chinese character trajectories (180-character in library). (C) DTW- and CC-based 714 

recognition rate as a function of character number in the library. (D) The same set 715 

of 30-character was tested repeatedly in four days. Classification models were 716 

trained based on the decoded trajectories in each day and tested in all other days. 717 

The cross-day classification rates were all above 0.84. 718 
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 720 

Supplementary Fig. 1. Sorted single unit waveforms in one example session. A total of 721 

107 units were sorted from 62/192 channels in two Utah arrays. 722 

  723 
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 724 

Supplementary Fig. 2. Tuning property of single neurons. (A) Radar plot of the tuning 725 

curves for all the neurons with mean firing rate >5 Hz in one example session 726 

handwriting of straight lines in 8 directions. Each red dot represents one trial and 727 

the black line indicates the average firing rate. (B) and (C) The firing of the two 728 

example neurons showed in (A) (green and blue box) during handwriting of digit 729 

numbers was mapped onto the trajectories of the numbers. Each red dot represents 730 

the neuron fired once and five trials were overlapped. 731 

 732 
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 734 
Supplementary Fig. 3. Comparison of firing pattern when handwriting with or 735 

without video guidance. Raster plot of 5 example neurons (average waveform 736 

showed in the left panel) when the subject handwriting digit number 0~4. Ten 737 

trials were repeated for each number. The green line indicates the start of 738 

handwriting animation video. 739 
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 741 

Supplementary Figure 4. Chinese character handwriting trajectory decoding. (A) 742 

180 example Chinese characters tested with various types neural signals. (B) 743 

example traces for ESA, SBP and cMUA. Inset shows the cross-correlation 744 

coefficient. (C) The population neural activity was reduced by PCA and PC1 and 745 

PC2 from all trials are plotted in the upper panel. The red line indicates the change 746 

of neural activity pattern which is located around 300 ms after start of the 747 

animation video. The lower panel shows the same PC1 and PC2 but aligned 748 

around at the 300 ms. (D) The fitting mean square error (MSE) of the 180 749 

characters for Kalman Filter (left panel) and LSTM (right panel) decoder with 750 

various kinds of neural signals. See text for the abbreviation. Asterisk (***) 751 

indicates significant difference between ESA and other signals (paired signed-rank 752 

test, p < 0.001). (E-H) Optimization of parameters for ESA feature extraction, 753 

including lower cut frequency of bandpass filter (E), upper limit frequency of 754 

bandpass filter (F), upper limit frequency of lowpass filter (G) and window size 755 

(H). The red box indicates the optimal range. (I) The fitting MSE of bi-LSTM is 756 

significantly lower than LSTM (***, paired signed-rank test, p < 0.001). 757 
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 759 

Supplementary Figure 5. Tuning curves of stroke and cohesion. (A) Tuning curves of 760 

all the neurons in one example session for strokes (red), cohesions (blue) and 761 

combined (gray). (B) Tuning curves of all the neurons in the same session as in 762 

(A) for randomly assigned stroke group 1 (red) and group 2 (blue) and combined 763 

(gray). 764 

 765 
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