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Abstract11

Reliable estimation of the relationship between COVID-19 antibody levels at the time of12

exposure and the risk of infection is crucial to inform policy decisions on vaccination regimes.13

We fit a joint model of anti-spike IgG antibody decay and risk of COVID-19 infection to data14

from a randomized efficacy trial of the ChAdOx1 nCoV-19 vaccine. Our model improves15

upon previous analyses by accounting for measurement error, decay in antibody levels and16

variation between different individuals. We estimated correlates of protection, antibody17

decay, and vaccine efficacy waning. Increased anti-spike IgG antibody levels at the time of18

exposure correlate with increased vaccine-induced protection. We estimated vaccine efficacy19

against symptomatic COVID-19 infection of 88.1% (95% CrI: 77.2, 93.6) at day 35, waning20

to 60.4% (44.6, 71.0) at day 189 since the second dose. We report that longer intervals21

between the first and second vaccine dose give lasting increased protection, and observe22

lower efficacy in individuals aged ≥70 years from around 3 months after second dose. Our23

methods can be used in future vaccine trials to help inform the timings and priority of24

vaccine administration against novel diseases.25

Introduction26

Correlates of protection, i.e. immune markers which relate to the risk of a disease outcome, are27

crucial to understanding the biological mechanisms for protection against infection after a given28
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treatment. Most studies consider how immune responses at a fixed time soon after treatment29

correlate with risk of a disease outcome. However, it is the immune markers present at the time30

of exposure which protect against infection. Modelling immune levels over time and relating31

these to vaccine-induced protection, allows a clearer understanding of the relationship between32

immune responses and protection, and avoids potential biases due to waning of immune levels33

between the measurement and exposure. This further provides a natural framework to investi-34

gate the effect of factors such as age, comorbidities and dose schedules on immune response and35

protection, and to estimate changes in levels of protection over time.36

In response to the COVID-19 pandemic, the (Oxford-AstraZeneca) ChAdOx1 nCoV-19 (AZD1222)37

vaccine has been widely administered in the UK and worldwide, alongside other COVID-19 vac-38

cines. Binding and neutralising antibodies have been shown to be correlates of protection for39

ChAdOx1 nCoV-19 [1, 2] and other COVID-19 vaccines [3, 4, 5, 6, 7]. These studies all considered40

how initial peak antibody responses correlate with the risk of future COVID-19 infection, as this41

is the timepoint most relevant for vaccine licensure. If used to understand how antibody levels42

at the time of exposure relate to risk of infection, the above approaches may be biased, as they43

do not account for the waning of antibody levels between the time of the antibody measurement44

and exposure [8]. Other studies focussed on the relationship between antibody levels at exposure45

and the risk of subsequent infection [9, 10, 11]. Wei et al. (2022, 2023) used observational data46

to estimate how risk of infection after vaccination relates to a recent antibody measurement47

[9, 10]. However the use of observational data may cause their results to be biased. Follmann et48

al. (2023) modelled antibody decay over time after vaccination, relating the risk of infection to49

the predicted antibody level at the time of exposure [11]. However, Follmann et al. assume the50

same rate of decay for all individuals, which may decrease power and lead to bias. Further, all51

the above studies on correlates of protection use only one antibody measurement per individual.52

This means they are unable to account for measurement error, which will likely introduce bias53

to the results [12].54

Vaccine efficacy (VE) has been shown to wane over time after two doses of the ChAdOx1 nCoV-55

19, BNT162b2, and mRNA-1273 vaccines in the UK and elsewhere, against the Alpha variant56

[13] and the Delta variant [13, 14, 15, 16, 17, 18]; as well as after a third booster dose [18, 19].57

These studies all use observational data, in test-negative or cohort designs, which may intro-58

duce bias due to unmeasured confounders affecting both the probability of vaccination and of59

the clinical outcome (e.g. infection) [20, 21]. Randomised controlled trials are free of such bias,60

however sample sizes tend to be much smaller, restricting power for analysis of efficacy waning.61

Including antibody data in a model for vaccine efficacy waning may increase the power of the62

analysis [22, 8].63

Joint models of longitudinal and time-to-event data are a powerful tool to investigate how lon-64

gitudinal biomarker trajectories relate to the risk of health- or disease-related events [8]. The65

method has been applied to data on various diseases, especially disease progression in HIV/AIDS66

[23] and cancer trials [8]. See Ibrahim, Chu and Chen (2010) [8] for an introductory review, and67
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Gould et al. (2015) [24] for a review with more detail on implementation methods and packages.68

Joint modelling has been shown to reduce bias and increase power in estimating the relation-69

ship between a longitudinal biomarker and clinical event [8, 25], when compared with methods70

which use observed biomarkers directly to predict risk. This is because the approach accounts for71

biomarker measurement error, as well as changes in the biomarker over time. Joint models have72

been applied to understand how viral load [26] and changes in biomarkers [27] relate to risk of73

mortality in COVID-19 patients, and to predict their risk of mortality from biomarker data [28].74

They have also previously been used to understand how vaccine-induced immune responses relate75

to risk of AIDS/death in HIV patients [29], and risk of relapse/death in cancer patients [30]. We76

are not aware of any previous work applying joint modelling to understand how vaccine-induced77

responses relate to risk of infection with COVID-19 or any other infectious disease.78

We implement a two-stage joint model for COVID-19 antibody decay and risk of COVID-19 in-79

fection after vaccination using multiple imputation [31]. Our model accounts for antibody decay80

over time, individual differences in decay rates and antibody measurement error. We apply our81

model to data from a randomised vaccine efficacy trial of two doses of the ChAdOx1 nCoV-1982

vaccine [32, 33] to investigate three main outcomes (COV002). Firstly, we model the waning83

of anti-spike IgG antibody levels over time. Secondly, we estimate correlates of protection -84

the relationship between anti-spike IgG antibody levels at the time of exposure and the risk of85

COVID-19 infection. Thirdly, we estimate waning vaccine efficacy over time, and investigate86

covariate effects on antibody and vaccine efficacy waning.87

Results88

We used data from the COV002 trial [32, 33] to assess antibody waning, vaccine efficacy (VE)89

waning, and correlates of protection against any COVID-19 infection and symptomatic COVID-90

19 infection at the time of exposure. COV002 is a randomized single-blind vaccine efficacy trial of91

the ChAdOx1 nCoV-19 vaccine, conducted in the United Kingdom. Participants were considered92

at risk of infection from 21 days after their second dose of vaccine, over a period from 18 July93

2020 to 30 June 2021. This analysis includes 4605 ChAdOx1 nCoV-19 vaccinated individuals94

(vaccine arm) and 4423 individuals who received a MenACWY control vaccine (control arm).95

Supplementary Table 1 summarises baseline characteristics for the vaccine and control arm.96

Supplementary Fig. 1 summarises exclusions for the two groups. In the vaccine and control arm,97

207 (4.5%) and 377 (8.5%) tested positive for COVID-19 respectively, and 71 (1.5%) and 21798

(4.9%) were primary symptomatic COVID-19 cases respectively (Supplementary Table 1).99

Waning anti-spike IgG antibody levels100

Blood samples were taken at study visits in windows centred at 28 days, 90 days and 182 days101

after the second dose. We refer to these as the PB28 (post-boost + 28 days), PB90 and PB182102

study visits respectively. Samples were sent for anti-spike IgG antibody testing by case-cohort103
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sampling. Samples taken after a reported COVID-19 infection were excluded from analysis. Ob-104

served antibody responses differed between those who did not return a positive COVID-19 test105

during the at risk period (non-cases), all who later tested positive (cases) and those who tested106

positive with primary symptoms (symptomatic cases). At the PB28, PB90 and PB182 study vis-107

its, antibody observations were available from 1155 (26.3%), 519 (11.8%), 58 (1.3%) non-cases,108

173 (83.6%), 64 (30.9%), 1 (0.5%) cases, and 59 (83.1%), 23 (32.4%), 1 (1.4%) symptomatic109

cases respectively (Supplementary Table 2). At the PB28, PB90 and PB182 study visits, ob-110

served antibody levels had a median (interquartile range (IQR)) of 219 (119, 383), 115 (66, 206),111

65 (45, 117) BAU/mL among non-cases, 197 (103, 322), 93 (47, 168), 30 (NA – only one measure-112

ment) BAU/mL among cases and 165 (100, 276), 78 (62, 178), 30 (NA – only one measurement)113

BAU/mL among symptomatic cases respectively. Fig. 1a shows the observed antibody levels114

against time, plotted on a log scale. The figure indicates (i) log antibody levels decay linearly,115

(ii) different individuals have different levels of initial log antibody response and (iii) may have116

different rates of decay.117

In total, 923 antibody observations were available from 853 (18.5%) control participants. Among118

control participants, antibody levels had a median (IQR) of 0.3 (< 0.21 (lower limit of quantifica-119

tion (LLOQ)), 0.5) BAU/mL (Supplementary Fig. 2, Supplementary Table 2). In our subsequent120

modelling we did not model antibody levels in the control arm, nor include an antibody effect121

on risk for control participants.122

We modelled the decay in antibody levels over time among the vaccinated participants, allowing123

different initial antibody responses and rates of decay for different individuals (Methods). Pre-124

dicted median anti-spike IgG levels at day 28, 90 and 182 were 217 (95% credible interval (CrI):125

208, 227), 119 (113, 126), 49 (45, 54) BAU/mL respectively. The median half-life of the anti-spike126

IgG antibody levels was 74 days (95% CrI: 69, 79). Fig. 1b shows the predicted antibody levels127

over time for each individual in the study on a log-scale.128

Predicted antibody levels and rates of decay varied among individuals. The estimated 25% and129

75% quartiles for the antibody response at day 28 were given by 124 (95% CrI: 117, 130) and130

378 (359, 398) respectively (Supplementary Fig. 9). The half-life of the antibody levels among131

individuals in the study had an estimated 25% and 75% quartile of 62 days (95% CrI: 58, 67)132

and 87 days (79, 96). Among non-cases, the median (IQR) predicted anti-spike IgG level at day133

28 was 219 (95% CrI: 209, 229), among cases 192 (175, 209) and among symptomatic cases 169134

(146, 196). The median half-life was 74 (95% CrI: 70, 79) among non-cases, 60 (52, 69) among135

cases and 54 (45, 69) among symptomatic cases.136

Correlates of protection137

We modelled how the protective effect of the vaccine relates to the modelled antibody levels138

over time. The instantaneous risk of COVID-19 infection for a given individual in our model139

depends on: (i) the current background levels of COVID-19, (ii) covariates which may affect risk140

of COVID-19 infection (iii) the modelled level of antibody 7 days prior, and (iv) a non-antibody141
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Figure 1: Observed and estimated anti-spike IgG antibody levels over time since
vaccination. (a) Observed anti-spike IgG antibody levels over time since vaccination. Each
point represents an observation, and consecutive observations from the same individual are con-
nected by a line. Black, blue and red points represent observations taken at the PB28, PB90 and
PB182 study visits respectively. The dashed horizontal line shows the lower limit of quantifica-
tion (LLOQ), 0.21 BAU/mL. (b) The posterior mean estimate of the latent true antibody levels
over time for each individual. Note 1b represent estimates of the latent true antibody levels
which are free from measurement error, whereas the observed antibody levels in 1a are measured
with error, so show higher variability.
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effect due to vaccination (Methods). We assume a 7 day gap between initial exposure to COVID-142

19 and a positive test being reported.143

Supplementary Fig. 3-6 show an estimate of the baseline hazard of infection during the trial144

period, the number of participants at risk over time since vaccination, the timings of antibody145

samples, and the timings of COVID-19 infections in the study respectively. Differences in baseline146

risk of infection due to different covariates are reported in Supplementary Fig. 7 and Supplemen-147

tary Table 6.148

We assessed how predicted antibody level at the time of exposure correlates with protection149

against COVID-19 infection. Predicted anti-spike IgG titer was correlated with protection. Fig.150

2 shows the relationship between VE and anti-spike IgG antibody level predicted by our model.151

Anti-spike IgG values of 10, 100 and 1000 BAU/mL represent the 0.0%, 17.7% and 97.1% quan-152

tiles of predicted antibody levels at day 28 post second dose, and the 5.4%, 78.1% and 100%153

quantiles of predicted levels at day 182 respectively. At anti-spike IgG levels of 10, 100 and154

1000 BAU/mL, the VE against symptomatic infection was 36.1% (95% CrI: −20.7, 63.0), 76.1%155

(64.4, 88.7), 100% (97.3, 100) respectively. We observe lower efficacy against any COVID-19156

infection at the same antibody levels, 14.3% (95% CrI: −22.5, 38.1), 55.3% (44.4, 66.3), 99.9%157

(96.2, 100) respectively. Vaccine efficacy of 50%, 70%, and 90% against symptomatic infection158

was achieved at anti-spike IgG levels of 32 (95% CrI: 0, 57), 78 (51, 139), 182 (105, 507) BAU/mL159

respectively (Supplementary Table 7). Against any COVID-19 infection higher antibody levels160

were required for the same efficacy, 84 (95% CrI: 59, 125), 156 (109, 285), 311 (194, 662) BAU/mL161

respectively.162

Waning vaccine efficacy163

As the antibody levels decayed over time, the vaccine efficacy waned. Fig. 3 shows the mean VE164

over time since the second dose, averaged over all individuals in the study. We report efficacy 7165

days after the planned study visits. The efficacy at day 35 after the second dose was estimated166

to be 88.1% (95% CrI: 77.2, 93.6) against symptomatic infection and 76.0% (64.3, 83.7) against167

all COVID-19 infection. The efficacy waned to 77.7% (68.5, 84.1) and 60.8% (51.4, 68.4) at day168

97 and 60.4% (44.6, 71.0) and 39.6% (26.1, 50.2) at day 189 against symptomatic infection and169

all COVID-19 infection respectively.170

Levels of protection varied based on individual antibody responses. At day 28, the predicted 25%,171

50% and 75% antibody quantiles were 124 (95% CrI: 117, 130), 217 (208, 227), 378 (359, 398)172

BAU/mL respectively (Supplementary Fig. 9). The corresponding VE quantiles at day 35 against173

symptomatic infection were 81.4% (95% CrI: 68, 93.7), 93.1% (76.6, 99.4), 98.8% (85.2, 100), and174

against any COVID-19 infection were 62.1% (49.7, 75.1), 80.5% (63.1, 92.7), 93.8% (77.1, 99.1)175

(Supplementary Fig. 8). At day 182, the respective antibody quantiles were 26 (23, 29), 49176

(45, 54), 91 (82, 102) BAU/mL, and corresponding VE quantiles were 46.3% (16.1, 65.3), 58.8%177

(44.9, 69.5), 73.9% (62.6, 85.6) against symptomatic infection, and 23.6% (−0.8, 41.5), 35.5%178

(21.6, 47.1), 52.5% (42.1, 62.3) against any COVID-19 infection.179
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Figure 2: Vaccine efficacy as a function of anti-spike IgG levels. VE (%) plotted
against anti-spike IgG antibody levels (BAU/mL) on a log scale. The red and blue curves and
shaded regions show the posterior median and associated 95% credible intervals for VE against
primary symptomatic COVID-19 infection, and against all NAAT+ positive tests respectively.
The vertical dotted line shows the lower limit of quantification (LLOQ), 0.21 BAU/mL. The blue
histogram shows the distribution of the predicted anti-spike IgG antibody levels in the study at
28 days since the second dose, and the green histogram at 182 days post second dose. The two
histograms overlap. The heights of the histograms are not to scale.
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Figure 3: Vaccine efficacy as a function of time since second dose vaccination. The
red curve and shaded region shows the posterior median and associated 95% credible interval for
VE against symptomatic COVID-19 infection, and the blue curve and shaded region shows the
posterior median and 95% credible interval for VE against all positive COVID-19 tests.
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Covariate effects on antibody levels and vaccine efficacy waning180

We report the estimated effects of different covariates on initial antibody response, subsequent181

antibody decay, and vaccine efficacy over time. Our model predicts a large decrease in antibody182

levels for those with shorter intervals between the first and second dose (Fig. 4, Supplementary183

Table 5). Compared with participants with dose intervals of ≥12 weeks, participants with dose184

intervals of 9-11 weeks, 6-8 weeks and <6 weeks have predicted anti-spike IgG antibody levels185

83% (95% CrI: 74, 93), 70% (61, 81), 51% (43, 61) as high respectively, at 28 days after the186

second dose. We also predict a larger antibody response due to receiving a low dose as the187

first dose compared with a standard dose, although 95% credible intervals contain a null effect.188

We predict lower antibody responses at 28 days after the second dose in older age groups, and189

among healthcare workers. Higher antibody responses are predicted in females than males, and190

in non-white participants. Shorter half-lives of antibody levels are predicted for females, and191

individuals with a BMI ≥ 30 (Fig. 4, Supplementary Table 5).192

To consider covariate effects on VE, we compare with reference values of age 18-55 years, female,193

white ethnicity, no comorbidities, BMI <30 kg/m2, ≥12 week interval between first and second194

dose, non-HCW (non-healthcare worker), and receiving a standard dose as their first dose. We195

then vary each of these covariates and plot VE for each covariate combination against symp-196

tomatic infection in Fig. 5 and against all COVID-19 infection in Supplementary Fig. 10. We see197

that shorter intervals between first and second dose predict a lower VE throughout the study.198

VE against symptomatic infection at day 35, 97 and 189 was 93.1% (CrI: 81.6, 97.6), 85.0%199

(72.1, 92.1) and 68.7% (53.2, 77.4) respectively for a reference individual (with ≥12 week inter-200

val), compared with 83.2% (71.6, 91.0), 71.7% (58.2, 80.4) and 55.0% (27.0, 69.2) respectively201

for an individual with <6 week interval. We also observe a lower efficacy after around 90 days202

in individuals aged 70 years or older compared with the 18-55 and 56-69 years age groups. VE203

for an individual aged 70 years or older at day 35, 97 and 189 was 90.7% (78.8, 96.4), 79.2%204

(67.5, 88.2) and 59.9% (35.2, 72.7) respectively, compared with a reference individual above.205
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Figure 4: Covariate effects on anti-spike IgG antibody levels. The multiplicative effects on (a) day 28 anti-spike IgG antibody
levels and (b) half-life of anti-spike IgG antibody decay for different covariates. The effects are plotted on a log scale. These results are
also given in Supplementary Table 5.
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Figure 5: Vaccine efficacy against symptomatic COVID-19 infection plotted against time since vaccination for different
covariate combinations. The black lines represent an individual with reference covariates: age 18-55, female sex, white ethnicity,
no comorbidities, BMI<30 kg/m2, ≥12 week interval between first and second dose, non-HCW (healthcare worker), and receiving a
standard dose as their first dose. All other coloured lines represent an individual with one of the above covariates changed from these
reference values. The solid lines show posterior medians and dashed lines 95% credible intervals. ”HCW < 1 COVID” refers to a
healthcare worker facing <1 COVID-19 patient per day, ”HCW ≥ 1 COVID” refers to a healthcare worker facing ≥1 COVID-19 patient
per day.
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Table 1: Comparison of methods and results with previous correlates of protection studies

Paper
Antibody
type

Vaccine Doses
Dominant
variant

Timing of
antibody
effect on
risk‡

Accounts for
measurement
error

Accounts for
antibody
waning between
measurement
and exposure

Accounts for
individual
variation
in slopes

Randomised
vaccine
/control
assignment

Unvaccinated
baseline
comparator

Location
of result
in paper

Endpoint
Antibody level
(BAU/mL unless
otherwise stated)

Vaccine
efficacy (%)

Our result

Feng et al.
(2021) [1]

Spike
nAb*
others*

ChAdOx1† Two doses
Pre-Delta
(Alpha B.1.1.7
and B.1.177)

Peak
(∼28 (14-42)
days post
second dose)

x x x ✓ ✓
Table 2
(Fig. 4a)

Symptomatic
Asymptomatic*

29 (NC, 83)
54 (NC, 143)
113 (NC, 245)
264 (108, 806)
899 (369, NC)§

50%
60%
70%
80%
90%

32 (0, 57)
52 (0, 82)
78 (51, 139)
117 (76, 266)
182 (105, 507)
BAU/mL

Benkeser et al.
(2023) [2]

Spike
nAb*
others*

ChAdOx1† Two doses
Pre-Delta
(B.1.2)

Peak
(∼28 days
post second
dose)

x x x ✓ ✓
In text and
Fig. 5a

Symptomatic

21
100
1000

21.1% (−361, 79.3)
62.9% (−55.0, 85.7)
88.1% (52.0, 97.0)

43.3% (6.6, 64.6)
76.1% (64.4, 88.7)
100% (97.3, 100)
VE (%)

Wei et al.
(2022) [9]

Spike
ChAdOx1†

BNT162b2*
Two doses

Delta
(B.1.617.2)

Exposure
(21-59 days
prior to
infection)

x x x x ✓ Fig. 4c
Symptomatic
Any infection*
Ct<30*

25
100
400

55% (40, 65)
68% (59, 75)
82% (74, 88)

45.8% (14.5, 65.2)
76.1% (64.4, 88.7)
99.0% (86.2, 100)
VE (%)

Wei et al.
(2023) [10]

Spike
ChAdOx1†

BNT162b2*

Two doses
plus booster
or infection

Omicron
BA.4/5
(B.1.1.529)

Exposure
(21-59 days
prior to
infection)

x x x x
Compared
with vaccine
non-responders¶

Supp.
Fig. 1 and
Fig. 1a

Any infection
Symptomatic*
Ct<30*

920 (766, 1092)
1740 (1502, 2331)
3680 (2831, 4500)

50%
70%
80%

32 (0, 57)
78 (51, 139)
117 (76, 266)
BAU/mL

Follmann et al.
(2023) [11]

nAb mRNA-1273 Two doses
Pre-Delta
period

Exposure
(7 days
prior to
infection)

x ✓ x ✓ ✓
In text and
Fig. 2

Symptomatic

100 IU50/mL
1000 IU50/mL
(Neutralising
antibody)

93% (91, 95)
97% (95, 98) No comparison

possible

Our analysis Spike ChAdOx1† Two doses
Pre-Delta
(Alpha B.1.1.7
and B.1.177)

Exposure
(7 days prior
to infection)

✓ ✓ ✓ ✓ ✓
In text and
Fig. 2

Symptomatic
Any infection*

10
100
1000

36% (−21, 63)
76% (64, 89)
100% (97, 100)

We include studies of the ChAdOx1 nCoV-19 vaccine, as well as studies which relate antibody levels at the time of exposure to risk of
infection, for comparison. Results are given with 95% confidence intervals or credible intervals, depending on the paper. Some results
show the antibody level required for a certain vaccine efficacy, others show the vaccine efficacy associated with a certain antibody
response. *We do not report these results here, see the original paper. †ChAdOx1 refers to the ChAdOx1 nCoV-19 vaccine in this
table. ‡Some studies relate antibody levels at the peak response after vaccination to risk of infection, others relate antibody levels at
exposure to infection. This column denotes the time at which the antibody measurement was taken which relates to risk of infection,
or the time at which the modelled antibody level relates to risk of infection (for analyses which use an antibody measurement directly
or model antibody levels over time respectively). §NC = not computed (beyond data range). ¶Wei et al. (2023) define vaccine
non-responders to be vaccinated individuals with a recent anti-spike IgG measurement of 16 BAU/mL.
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Discussion206

We estimated correlates of protection, vaccine efficacy waning and antibody waning after two207

doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine, against any COVID-19 infection and symp-208

tomatic COVID-19 infection. We fit a two-stage joint model using multiple imputation [31] which209

accounts for antibody waning and measurement error, allowing the risk of infection to depend210

on the estimated anti-spike IgG level at exposure. We found antibody levels are predictive of211

vaccine efficacy, which wanes over time, but continues to protect against the Alpha variant 209212

days after the second dose. We estimated mean VE against symptomatic infection to be 88.1%213

(95% CrI: 77.2, 93.6) at day 35, waning to 60.4% (44.6, 71.0) at day 189 (Results). There was214

noticeable variation in VE between individuals, depending on the strength of their antibody215

response. We reported that a longer interval between the first and second vaccine dose gives216

improved protection, adding to existing evidence [34, 35, 9]. VE after 3 months since second217

dose vaccination was also lower in individuals aged 70 years or older than in younger age groups.218

We estimated “exposure-proximal” correlates of protection by relating modelled antibody levels219

at the time of exposure to the risk of COVID-19 infection. This approach more closely matches220

the biological mechanism than relating peak antibody levels to risk of infection. Table 1 com-221

pares our methods and results with previous studies of COVID-19 correlates of protection. As222

outlined in the introduction, previous analyses have demonstrated both binding and neutralising223

antibodies measured at a fixed time after vaccination are associated with VE against COVID-19,224

including a study analysing data from the same COV002 trial [1], an analysis of data from a225

different trial of the ChAdOx1 nCoV-19 vaccine [2], as well as analyses of trials of other vac-226

cines [3, 4, 5], and booster doses [6, 7]. These studies compared peak antibody levels and risk227

of infection, and generally report wide confidence intervals due to a lack of power. They did228

not account for antibody waning between the time of measurement and exposure, which may229

introduce a bias[8]. Other studies have estimated correlates of protection by relating antibody230

levels at the time of exposure to the risk of infection, by using a recent antibody measurement231

[9, 10], or a model to predict antibody decay over time [11]. However the studies using a recent232

antibody measurement (Wei et al. 2022, 2023) used observational data from a cohort study, and233

did not account for antibody waning between measurement and exposure, which may introduce234

bias [9, 10]. The study modelling antibody levels over time (Follmann et al. 2023) assumed the235

rate of antibody decay to be the same for all individuals in the study, which may introduce236

bias if it decay rates vary [11]. All the above studies only used one antibody measurement per237

individual, meaning they are unable to account for measurement error in the antibody levels,238

which may bias the analysis [12]. None of these prior studies relate protection against COVID-19239

infection to antibody levels at the time of exposure while also accounting for measurement error240

or variation between individual rates of antibody level decay.241

We used a two-stage joint model to relate modelled antibody levels at the time of exposure242

to the risk of infection. Joint models have been shown to reduce bias and improve power in243

estimating the relationship between longitudinal outcomes (e.g. antibody levels) and the time244
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until an event (e.g. infection) [36, 25], as well as in estimating the trajectory of the longitu-245

dinal variable (antibody levels) [36]. Moreno-Bentacur et al. (2018) previously found using a246

multiple imputation-based joint model reduced bias, when compared with using the longitudi-247

nal observations directly to predict risk [25]. We include multiple antibody measurements per248

individual where available, allowing us to account for measurement error and variation between249

individual rates of decay. We further account for the informative censoring of antibody data250

after infection. We are not aware of any previous work applying joint modelling to understand251

how vaccine-induced immune responses relate to risk of infection for COVID-19 or any other252

infectious disease.253

We observe higher vaccine efficacy with much lower uncertainty at the same level of antibody,254

compared with the studies relating peak antibody levels to risk of infection [1, 2] (Table 1). The255

lower efficacy these studies report is likely due to antibody waning between the measurement256

and exposure, meaning higher initial antibodies would be required to give the same protection257

at exposure. These models also do not account for measurement error, which introduces noise to258

the data, likely causing the observed protective effect to be diluted [12]. Our results are broadly259

similar to those of Wei et al. (2022) who relate antibody levels at the time of exposure to risk of260

infection [9] (Table 1). Much higher antibody levels are required for similar levels of protection261

against the Omicron variant [10]. We are unable to compare with the results of Follmann et al.262

(2023), as their paper uses neutralising antibodies, whereas we use anti-spike IgG [11].263

We estimated the peak antibody response at 28 days after ChAdOx1 nCoV-19 vaccination, the264

subsequent rate of decay, and associated covariate effects. Table 2 compares our methods and265

results with previous studies. Wei et al. (2022) previously used a similar approach applied to non-266

randomised cohort data [9]. Their model does not account for the aforementioned informative267

censoring of antibody measurements, which may lead to bias [36]. This is because individuals268

with lower antibody levels will be more likely to test positive for COVID-19, after which anti-269

body measurements will be excluded from analysis. Thus individuals with lower antibody levels270

are less likely to have antibody measurements available, introducing informative missing data,271

which should be accounted for. However, as cases are rare in the population, this bias may be272

small. We estimated higher peak anti-spike IgG levels than Wei et al. study [9] (Table 2). This273

may be partly due to differences in the populations enrolled in the two studies. Our estimated274

half-life of antibody decay was broadly similar to previous results (Table 2). We observed indi-275

viduals with longer dose intervals had higher peak antibody levels (Fig. 4, Supplementary Table276

5), as previous studies have reported [35, 34, 9]. We also observed higher peak antibody levels277

in younger individuals (18-55 vs ≥70), non-healthcare workers and non-white participants. The278

higher peak in non-white participants was also observed by Wei et al. (2022) [9], however there is279

no consensus on the effect of age and healthcare work on antibody levels (Table 2). We reported280

slower antibody decay in participants with a BMI<30kg/m2 (Fig. 4, Supplementary Table 5),281

and detected slightly slower antibody decay in males, however this does not translate to a no-282

ticeable difference in VE waning (Fig. 5, Supplementary Fig. 10). Neither of these differences283
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have been reported elsewhere and it is unclear if they represent true effects. We did not detect284

the other effects on peak antibody observed by Wei et al. (2022) [9].285

We reported predicted vaccine efficacy over time since second dose from our model, calculated286

from randomised controlled trial data. One previous analysis considered waning after a first287

dose of ChAdOx1 nCoV-19 [34], however the analysis was underpowered. Apart from this, we288

are not aware of any studies of ChAdOx1 nCoV-19 vaccine efficacy waning evaluated on ran-289

domised data. Table 3 and Supplementary Table 8 compare our methods and results to previous290

studies of waning vaccine efficacy, with a focus on studies of the ChAdOx1 nCoV-19 vaccine.291

These studies all use non-randomised observational data, including test-negative design studies292

[13, 14, 15, 18], and cohort studies [37, 15, 16, 17]. The test-negative design may introduce bias293

due to unmeasured differences in health-seeking behaviour between the vaccinated and unvac-294

cinated arms, likely reducing the observed VE [20, 21]. Results may also not carry over to the295

wider population, as those included in the study will likely test more frequently. Cohort studies296

are similarly vulnerable to biases due to unmeasured confounding causing differences in risk of297

infection between the unvaccinated and vaccinated populations. Such biases may increase over298

time, as the unvaccinated group are increasingly unvaccinated by choice, which may correlate299

with fewer health-seeking behaviours. Further, accumulation of more undetected infections in300

the unvaccinated arm may lead to VE waning to appear greater, due to the so-called depletion of301

susceptibles bias [38]. This bias may occur in randomised or observational data. Asymptomatic302

swabbing may negate this bias by increasing the proportion of infections which are detected.303

Rates of asymptomatic swabbing were high in our study [39], with around 75% of participants304

returning an asymptomatic test on a given week. Rates of asymptomatic swabbing were likely305

much lower in the other studies, where participants were not encouraged to swab weekly.306

Our analysis has some advantages over these methods. The data comes from a randomised307

single-blinded controlled trial, avoiding the potential biases of an observational cohort study308

and a test-negative case-control study. We model antibody waning and vaccine efficacy waning309

jointly over time, which may improve the efficiency of our estimates [22]. Further, the length310

of follow-up in our study after second dose was relatively long at over 29 weeks. However, the311

sample size of our data is much smaller than most of these studies, hence we report wider CrIs.312

Table 3 and Supplementary Table 8 compare our methods and results to previous studies of vac-313

cine efficacy waning against different variants. Results from previous studies varied by variant,314

with lower efficacy generally predicted against Delta than Alpha, and lower still against Omicron315

(Table 3, Supplementary Table 8). Our study reports efficacy over time since second dose against316

the Alpha variant. Note the predicted vaccine efficacy for a reference individual reported in Table317

3 and Figure 5 was slightly higher than the mean vaccine efficacy across all individuals (Fig. 3),318

primarily because the mean vaccine efficacy averaged over all individuals including those who319

had a shorter dose interval than 12 weeks. We predicted a slightly higher vaccine efficacy against320

symptomatic infection with the Alpha variant after two doses of ChAdOx1 nCoV-19 (Table 3,321

Fig. 5) than Andrews et al. (2022a) in all age groups, although confidence intervals overlapped322
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[13]. Other studies were conducted at least partly in periods where the Delta or Omicron variants323

were dominant, and generally reported lower vaccine efficacy. Reported efficacy varied notice-324

ably between studies (Table 3, Supplementary Table 8). Differences in results between studies325

may be due to different proportions of circulating variants, rates of asymptomatic swabbing, and326

characteristics of the study populations, as well as the depletion of susceptibles bias, and previ-327

ously mentioned biases due to unmeasured confounding. Our results against the Alpha variant,328

calculated on data from a randomised single-blinded study, are free from bias due to unmeasured329

confounding.330

Our data was collected in a period when the Alpha variant was dominant, and considered in-331

dividuals without prior infection who received two doses of vaccine. In contrast, the Omicron332

variant is currently dominant, and many individuals have received three or more doses of vaccine333

and been previously infected. Therefore our results may not be directly applicable to current334

and future situation. To aid with this, we performed a supplementary analysis extrapolating our335

results to examine what the efficacy over time since second dose might have been, in the hypo-336

thetical scenario where the study was conducted in the Omicron BA.4/5 period. The analysis337

suggests a weak initial protection against Omicron BA.4/5, waning to negligible protection after338

6 months. See the Supplementary Information (Sections 1.4.6, 2.1, 3, Supplementary Fig. 11)339

for further details.340

We further reported covariate effects on vaccine efficacy, although this analysis lacked power. We341

observed lower vaccine efficacy for individuals with shorter intervals between the second dose;342

results from previous studies have provided varying degrees of evidence for this [40, 14, 13].343

We reported lower VE in older individuals after around 3 months since the second dose (Fig.344

5, Supplementary Fig. 10), with overlapping credible intervals. Faster waning [13] and lower345

VE [37, 16] have been previously observed in older individuals. However, these effects were not346

observed in all groups in the Andrews et al. study, with non-significant effects in the opposite347

direction observed in some groups [13], and the Nordström et al. age estimates were unadjusted348

and likely confounded due to different vaccines being given to different age groups [37]. Another349

observational study observed higher efficacy in individuals aged 80+ years than 50-79, while350

suggesting this could be confounded by clinical risk [40]. Hence further research on the effect351

of age on vaccine efficacy is necessary. We did not observe a difference in vaccine efficacy for352

individuals with comorbidites, although some prior studies suggest a lower VE in clinically vul-353

nerable individuals [16, 37, 13].354

355

16

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.02.24309776doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.02.24309776
http://creativecommons.org/licenses/by-nd/4.0/


Table 2: Comparison of methods and results with previous studies of antibody level waning

Paper Vaccine

Randomised
vaccine
/control
assignment

Account for
informative
censoring at
infection

Random
individual
slopes

Antibody
type

Time of
reported
peak
antibodies

Two-dose
/booster
/prior
infection

Peak anti-spike IgG
antibody
level
(BAU/mL)

Antibody
half-life
(days)

Covariates
related to
increased
peak antibody
levels

Covariates
related to
slower
antibody
decay

Wei et al.
(2022) [9]

ChAdOx1 nCoV-19
BNT162b2*

x x ✓
Anti-spike
IgG

21 days
post second
dose

Two-dose 184 (183, 185)
Mean
79 (78, 80)

Older age
Female
Non-white
No LTHC
Prior infection
Healthcare worker
Longer dose interval
More deprivation

Younger age
White
No LTHC

Aldridge et al.
(2022) [41]

ChAdOx1 nCoV-19
BNT162b2*

x x x
Anti-spike
IgG

28 days
post second
dose

Two-dose - 105.9 None None

Wei et al.
(2023) [10]

ChAdOx1 nCoV-19
BNT162b2

x x ✓
Anti-spike
IgG

21 days
post second
dose

Booster:
BNT162b2
mRNA-1273
Infection

-
78 (72, 86)
63 (61, 66)
96 (80, 119)

Younger age
Longer dose interval

Not reported

Our analysis ChAdOx1 nCoV-19 ✓ ✓ ✓
Anti-spike
IgG

28 days
post second
dose

Two-dose 217 (208, 227)
Median
74 (69, 79)

Younger age (18-69)
Non-white
Longer dose interval
Not HCW

Male
BMI <30 kg/m2

We include studies of two doses of the ChAdOx1 nCoV-19 vaccine, and studies after a subsequent booster vaccine, focussing on
anti-spike IgG antibody waning. Results are given with 95% confidence intervals or 95% credible intervals, depending on the paper.
We report covariate effects where the null effect is not included in the 95% interval. HCW = healthcare worker, LTHC = long-term
health condition. *We do not report these results here, see the original paper.
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Table 3: Comparison of methods and results with previous vaccine efficacy waning studies, against the Alpha and
Delta variants

Paper
Primary
course
vaccine

Dominant
variant

Two-dose
/booster
/prior infection

Study design

Randomised
vaccine
/control
assignment

Baseline
comparator

Outcome
Location
of result
in paper

Group
Weeks
since
dose

Vaccine
efficacy (%)

Our analysis† ChAdOx1 nCoV-19 Alpha Two dose
Randomised
Controlled
Trial

✓ Unvaccinated

Symptomatic Fig. 5

Age 18-55

Age 56-69

Age 70+

5
10
20
26
5
10
20
26
5
10
20
26

93.1 (81.6, 97.6)
89.0 (76.6, 95.1)
77.7 (64.5, 85.7)
70.0 (55.0, 78.5)
91.8 (80.0, 97.0)
88.1 (76.1, 94.7)
78.5 (66.3, 88.0)
72.2 (57.2, 83.1)
90.7 (78.8, 96.4)
84.7 (73.0, 92.4)
69.9 (54.5, 80.4)
61.3 (38.1, 73.6)

Any infection
Supp.
Fig. 10

Age 18-55

Age 56-69

Age 70+

5
10
20
26
5
10
20
26
5
10
20
26

84.3 (70.6, 91.8)
77.2 (62.7, 86.1)
60.5 (46.1, 70.1)
50.6 (34.8, 60.1)
81.8 (68.3, 90.4)
75.6 (62.4, 85.3)
61.6 (48.0, 73.7)
53.4 (37.0, 66.5)
79.9 (66.4, 89.0)
70.4 (57.6, 80.9)
50.4 (34.2, 62.8)
40.1 (18.4, 53.8)

Andrews et al.
(2022a) [13]

ChAdOx1 nCoV-19
BNT162b2*

Alpha
Delta*

Two dose Test-negative x Unvaccinated Symptomatic
Table
S11

Age 16+

Age 40-64
Age 65+

2-9
10+
2-9
2-9

82.4 (79.6, 84.7)
76.2 (49.8, 88.7)
81.7 (76.0, 86.1)
88.2 (82.2, 92.1)

Nordström et al.
(2022) [37]

ChAdOx1 nCoV-19
BNT162b2*
mRNA-1273*

Alpha and
Delta
(Combined)

Two dose Cohort x Unvaccinated Any inection Table 2

Alpha,
Delta and
all ages
combined

2-4
4-9
9-17
≥ 17

68 (58, 70)
49 (28, 64)
41 (29, 51)
−19 (−98, 28)

Skowronski et al.
(2022) [14]

ChAdOx1 nCoV-19
BNT162b2*
mRNA-1273*
Mixed schedules*

Alpha
Delta

Two dose Test-negative x Unvaccinated
Any inection
Hospitalisation*

Supp.
Table 12

Quebec
(Alpha and
Delta)

British
Columbia
(Delta)

4-7
8-11
20-23
24-27
4-7
8-11
20-23
24-27

90 (84, 94)
85 (81, 88)
70 (64, 75)
56 (43, 65)
77 (71, 82)
76 (73, 79)
74 (70, 78)
67 (48, 80)

We include studies of two doses of the ChAdOx1 nCoV-19 vaccine, prior to the Omicron variant. Results are given with 95%
confidence intervals or 95% credible intervals, depending on the paper. Results are presented for different age groups, where
appropriate. *We do not report these results here, see the original paper. †We report here the predicted vaccine efficacy for a reference
individual in the given age group, with covariates: female, white, no comorbidities, BMI<30 kg/m2, ≥12 week interval, not a
healthcare worker, standard dose.
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Our study has several limitions. Our results may not be directly applicable to current and356

future populations, for four reasons. Firstly dominant variants have changed from B.1.177 and357

Alpha (B.1.1.7) variants when our data was collected, to the Omicron variant today. Secondly358

individuals in the study were SARS-CoV-2 näıve, results will likely differ in individuals with359

prior infection [10]. Thirdly individuals in the study received two doses of ChAdOx1 nCoV-19,360

whereas three or more doses of different vaccines have been given in many populations.361

Fourthly the study population differs from the general population, being predominantly white,362

18-55 years old and including mostly healthcare workers. For these reasons our results are363

unlikely to transfer directly to the general population today, although qualitative aspects of our364

results, and our methods, remain relevant. We further only consider the effect of anti-spike IgG365

binding antibodies, and do not measure neutralising antibodies or cellular immune responses.366

It may be that the protection conferred by other immune responses depends on the antibody367

level, or changes with time, whereas we assumed a constant effect. We did not consider the368

effect on risk of hospitalisation, severe disease and death due to insufficient data. Fewer369

antibody observations were available at the later timepoints (PB90 and PB182 study visits),370

causing greater uncertainty in our estimates at later times. We assumed a 7 day gap from371

exposure to reported infection; deviation from this assumption may introduce a small bias to372

our analysis. We did not account for the change in dominant variant from B.1.177 to B.1.1.7373

(Alpha) during the study, however we expect the impact of this on VE to be negligible [42].374

The dose of virus that individuals were exposed to may have varied throughout the study, as375

social distancing policies changed. Further, viral load is likely to have varied between376

individuals depending on previous exposure to COVID-19, and the variant to which they were377

exposed. We have not accounted for differences in viral load or dose of virus in this analysis.378

In summary, we report correlates of protection against any COVID-19 infection and379

symptomatic infection from a randomised COVID-19 vaccine study, using binding antibody380

responses at the time of exposure. We further report vaccine efficacy waning over time,381

antibody waning over time, and associated covariate effects. We use a joint model which382

accounts for antibody measurement error, the waning of antibody levels over time, and383

censoring of antibody observations at COVID-19 infection. This may reduce bias and increase384

power in the analysis compared with previous approaches.385

Methods386

Study description387

We analysed data from COV002 (registration NCT04400838), a phase 2/3 randomized388

single-blind vaccine efficacy (VE) trial conducted across 19 sites in the United Kingdom. A full389

description of the trial including immunogenicity, efficacy, and safety data, and the protocol has390

been previously published [32, 33, 34, 42]. An analysis of immune correlates of protection,391

relating antibody measurements 28 days after the second dose with protection against392
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infection, was previously published [1].393

This study was approved in the United Kingdom by the Medicines and Healthcare products394

Regulatory Agency (MHRA), reference 21584/0428/001–0001, and the South-Central Berkshire395

Research Ethics Committee, reference 20/SC/0179. All participants provided informed consent.396

Participants in the study were randomized to receive ChAdOx1 nCoV-19 (AZD1222) or a397

MenACWY control vaccine. The randomization ratio (ChAdOx1 nCoV-19:MenACWY)398

differed by study cohort, and was either 1:1, 5:1, or 3:1. Open label groups are not included in399

this analysis.400

Study endpoints and outcomes401

Participants were sent weekly reminders to contact their study site if they experienced any of402

the primary symptoms of COVID-19 (fever ≥37.8 °C; cough; shortness of breath; anosmia or403

ageusia) and were then assessed in clinic, by taking a nose and throat swab by a nucleic acid404

amplification test (NAAT). In addition, participants were asked to complete a nose and throat405

swab at home each week.406

The outcomes for this analysis were (1) primary symptomatic COVID-19 infection, that is a407

nucleic acid amplification test positive (NAAT+) swab with at least one qualifying symptom,408

(2) any COVID-19 infection, that is any NAAT+ swab.409

All endpoints were evaluated by a blinded independent clinical review committee. The date of410

onset of infection was determined by the committee, as the earliest time at which there was411

evidence of infection. Evidence included NAAT+ swabs and self-reported symptoms based on412

telephone contact and study visits.413

Antibody measurements414

A proportion of serum samples from vaccine recipients at the PB28, PB90 and PB182 study415

visits were tested for anti-SARS-CoV-2 Spike IgG in a single laboratory assay. For PB28416

samples, all NAAT+ cases were tested if sample volume allowed, and a proportion of non-cases417

were tested. Samples were tested blinded to case status. The data from noncases was obtained418

first, and consisted mainly of the samples processed for the initial application for emergency419

use, which needed 15% of samples included in the efficacy cohort to be processed on validated420

assays. Subsequent to this PB28 samples from NAAT+ cases were sent for testing as they421

occurred, if not already including the 15%. A proportion of those participants with samples422

tested at PB28 were additionally tested at either PB90 only, or PB90 and PB182. We assume423

the samples to be missing at random, i.e. the missingness depended only on factors observed in424

the study. To account for the missing data, factors associated with sample availability were425

included as covariates in the model for antibody decay (see ‘Antibody decay model’ below).426

Anti-SARS-CoV-2 Spike IgG was measured by a multiplex immunoassay on the MSD platform427

at PPD Laboratories. The assay sequences were based on the ancestral sequences from Wuhan,428
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China. Assay validation included precision and ruggedness, dilutional linearity, selectivity, and429

relative accuracy for each SARS-CoV-2 antigens. Post-validation studies for stability and for430

conversion to the WHO standard, as well as the establishment of a cut-point, were performed.431

The lower limit of quantification (LLOQ) for anti-spike IgG was 33 AU/mL (0.21 BAU/mL).432

We excluded 8 anti-spike IgG results as outliers - three results at PB28 and four at PB90 whose433

anti-spike IgG levels were especially low, and one results at PB90 whose levels were especially434

high (Supplementary Table 3, Supplementary Fig. 2). The individuals from whom these435

samples were taken, and any other antibody measurements are included in the analysis - only436

the outlying antibody measurements are excluded. Outliers were excluded as they may bias the437

results [43].438

The assay was analysed in its original scale. Results were then converted to the WHO439

international standard units, binding antibody units per mL (BAU/mL), by multiplying by a440

conversion factor supplied by the laboratory. The anti-spike IgG conversion factor from441

arbitrary units per mL (AU/mL) to WHO standard binding antibody units per mL (BAU/mL)442

was 0.00645 (95% confidence interval (CI): 0.00594, 0.00701). We did not apply the CI, as it443

represents the uncertainty due to measurement error in the assay, and our antibody model444

already accounts for this.445

Study design446

We included a subset of participants in the COV002 trial in our study, who met the following447

eligibility criteria: received two doses of ChAdOx1 nCoV-19 or MenACWY control vaccine,448

baseline seronegative to the SARS-CoV-2 N protein at first vaccination, and followed up to at449

least day 21 post second vaccination with no evidence of prior infection. Vaccinated450

participants received a first and second dose: either two standard doses, low dose followed by451

standard dose, or two low doses. Nine participants who received mixed schedules in error (one452

dose of ChAdOx1 nCoV-19 and one dose of MenACWY control) were excluded from the453

analysis (Supplementary Fig. 1). One control individual had missing BMI, we imputed this454

with the mean value in the study.455

Participants were considered at-risk of the study event from day 21 post second dose. The456

at-risk period ended at the first of: the onset of COVID-19 infection, withdrawal, unblinding,457

or the analysis cut-off date 30 June 2021. Antibody levels were assumed to relate to risk of458

infection 7 days later, to account for the gap between first being exposed to COVID-19 until a459

case is reported in the trial. Thus antibody measurements are excluded if taken prior to 14460

days after the second dose, after the end of the at-risk period, or less than 7 days before the461

end of the at-risk period.462

Participants who tested NAAT+ during the at-risk period were defined as cases, those who also463

had at least one qualifying symptom were defined as symptomatic cases, while those who did464

not return a positive test during the at-risk period were defined as non-cases.465
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Statistical Analysis466

We modelled antibody decay and the risk of COVID-19 infection in a two-stage joint model for467

longitudinal and survival data. Joint models are a popular method to consider the relationship468

between a longitudinal biomarker and the risk of a health outcome, especially in studies of469

disease progression such as HIV and cancer trials [8]. We employed a two-stage multiple470

imputation approach to overcome convergence issues that arose when attempting to fit a full471

joint model. A mathematical formulation of the model, and an explanation of how the472

two-stage method approximates a Bayesian joint model, are given in the Supplementary473

Methods.474

Antibody decay model In the first stage, we fit a log-linear Bayesian mixed effects model475

to the antibody decay after vaccination for ChAdOx1 nCoV-19 recipients (see Supplementary476

Methods). The Bayesian approach easily accounts for the complex structure of the data and477

the model, including missing antibody observations for some individuals, and unknown true478

antibody levels which change over time. We first standardised the data; after running the479

model we transformed the parameters back to the scale of the original dataset. The log480

antibody observations were assumed to have t-distributed zero-mean random error, with 4481

degrees of freedom and unknown scale (Supplementary Methods). The latent true log antibody482

values were assumed to decay linearly from 14 days post second dose. The model included an483

effect on both the peak antibody response (intercept) and rate of decay (slope) due to the484

following covariates: age group (18-55 years, 56-69 years, 70+ years), sex (female, male),485

ethnicity (white, non-white), comorbidity (none, comorbidity), BMI (<30 kg/m2, ≥30), time486

interval between first and second dose (≥12 weeks, 9-11 weeks, 6-8 weeks, <6 weeks),487

healthcare worker (HCW) status (not a HCW, HCW facing <1 COVID-19 patient per day,488

HCW facing ≥1 COVID-19 patient per day), initial dose (standard dose, low dose). The489

probability of missing antibody data was observed to be related to whether an individual tested490

positive and their follow-up time. To account for this, we also included covariate effects on the491

intercept and slope due to: (i) returning a positive test during the study, (ii) being primary492

symptomatic, and (iii) the Nelson–Aalen estimate of cumulative hazard for any COVID-19493

infection in the vaccine group, as previously suggested [44]. We allowed a random intercept and494

slope for each individual, as well as a correlation between the random effects. The slopes were495

required to be negative, by applying the negative of the exponential function to the slope496

parameter. This was done to avoid convergence issues in the risk of infection model due to497

exponentially increasing antibody levels. The model predicts antibody trajectories for all498

vaccinated individuals, with appropriate uncertainty. The model was fit using Hamiltonian499

Monte Carlo in Stan [45]. Four chains were run, each of 20,000 iterations. The first 5,000500

iterations were discarded as burn-in. Convergence was checked by ensuring the Rhat501

convergence diagnostic (potential scale reduction factor) was less than 1.01 [46]. See the502

Supplementary Information (Section 2.3) for the reported computation time.503
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Risk of infection model In the second stage, we fit a Cox model to the time until504

COVID-19 onset (either primary symptomatic COVID-19 infection or any COVID-19505

infection), using the output from the antibody model to predict the risk of infection. We506

employed multiple imputation [31], which accounts for the uncertainty in the predicted507

antibody levels in our estimation of the hazard (instantaneous risk) for infection (see508

Supplementary Methods). A previously published multiple imputation-based joint model was509

shown to reduce bias compared with single imputation “näıve” two-stage approaches [25]. We510

first sampled 60,000 antibody trajectories from the first stage for each vaccinated individual,511

from which we imputed the predicted antibody levels at each relevant time. For each sample,512

we fit a Cox model for the time to infection. The baseline hazard varies with calendar time, to513

account for the changing rates of COVID-19 in the population during the pandemic, and is514

stratified by study site, to account for different rates across geographic regions. The hazard for515

a given vaccinated individual i at time t then depends on the effect γ of their imputed antibody516

levels Ai(t− 7) at time t− 7, and a direct effect due to vaccination ζ, unrelated to antibody517

levels. We further included covariate effects which may affect the risk of infection: age group518

(18-55 years, 56-69 years, 70+ years), sex (female, male), ethnicity (white, non-white),519

comorbidity (none, comorbidity), BMI (<30 kg/m2, ≥30), healthcare worker (HCW) status520

(not a HCW, HCW facing <1 COVID-19 patient per day, HCW facing ≥1 COVID-19 patient521

per day). The hazard for a given control individual i at time t depends only on the baseline522

hazard and covariates, we assume no antibody or vaccine effect for control individuals.523

For each Cox model, we then drew from the asymptotic distribution of the maximum likelihood524

estimators, to approximate a Bayesian posterior with diffuse improper priors [47]. We525

combined this draw with the corresponding antibody model individual intercepts and slopes to526

form a draw from the approximate joint distribution. Quantities of interest, such as vaccine527

efficacy, can then be calculated from each draw. Posterior medians and 95% CrIs are calculated528

based on quantiles of the posterior samples.529

Calculating vaccine efficacy Vaccine efficacy (VE) at a given antibody level A is then530

calculated as 1 minus the hazard ratio between a vaccinated individual with that level of531

antibody, and a control individual with matching covariates.532

VE(A) = 1− exp(γA+ ζ) (1)

with γ the antibody effect and ζ the direct effect due to vaccination. Antibody level at a given533

VE is defined by the inverse of Eq (1). For individuals i = 1, . . . , n in the vaccine arm, let534

Ai(t− 7) be the latent antibody level at time t− 7. Then the mean VE at time t is the mean535

VE among all the latent antibody levels of vaccinated individuals at time t− 7.536

VE(t) =
1

n

n∑
i=1

VE(Ai(t− 7)) = 1− 1

n

n∑
i=1

exp(γAi(t− 7) + ζ) (2)
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The qth quantile of VE at time t, VEq(t), is equal to the VE at the qth antibody quantile537

Aq(t), VEq(t) = 1− exp(γAq(t) + ζ).538

Calculating covariate effects on vaccine efficacy To calculate covariate effects on539

vaccine efficacy, we predicted efficacy in new individuals with given covariate values. Note the540

event indicators and Nelson–Aalen (N–A) estimate of cumulative hazard for a new individual541

are unknown, as they depend on the infection outcome. We first built an imputation model to542

sequentially impute the missing event indicators (infection, symptomatic) and N–A estimate,543

which appear in the longitudinal antibody model, given the known covariates. We imputed544

these missing covariates n times. For each set of imputed covariates, we drew from the545

predictive distribution of antibody trajectories for a new individual with the given covariate546

values, Apred
j (t), j = 1, . . . , n. We then averaged these to calculate the mean risk of infection547

given the known covariate values548

VE(t) =
1

n

n∑
j=1

VE(Apred
j (t)) = 1− 1

n

n∑
j=1

exp(γApred
j (t) + ζ) (3)

Software Data analysis was performed in R version 4.3.1 [48], using RStudio [49], and549

relying extensively on the following packages: survival [50], RStan [51], snowfall [52], ggplot2550

[53]. RColorBrewer [54] and tidyr [55] were also used. Hamiltonian Monte Carlo algorithms551

were run in Stan [45] via the R package RStan [51].552

Data availability553

Anonymized data will be made available via the Vivli platform https://vivli.org/. Source554

data for the figures are provided with this paper where possible.555

Code availability556

The code used for the analysis is available at GitHub repository557

https://github.com/danphillipsstats/COVID-joint-model-CoP.558
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