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ABSTRACT

Aim: The overall aim of this project is to determine if gene expression signatures of tumors,
constructed from geometrical attributes of data, could be used to predict patient treatment response
by detecting subgroups of responders. This is tested in Pfizer clinical trial data and compared with
standard clustering methods (n = 726).
Results: Geometrical gene expression signature analysis demonstrated high utility to detect sub-
groups with enhanced treatment response. In the Pfizer trial, gene expression signatures were able to
detect three subgroups of responders (p = 0.012), containing 52.9% of patients and accounting for
nearly all the observed treatment effect. Standard techniques following a similar methodology were
able to partition a single subgroup containing 21.3% of patients.
Conclusions: Gene expression based geometrical signatures yielded vastly superior performance
over standard clustering techniques, as demonstrated in Pfizer’s Phase III clinical trial data. These
can be used to determine subgroups of enhanced treatment response in oncology clinical trials, and
might lead to personalized treatment recommendations in the future.
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1 Introduction

Precision medicine has the goal of individualizing the treatment for a patient based on that patient’s particular
characteristics, which may include data on patient demographics and clinical information, as well as experimental
data such as biomarkers, genomics, gene expression, proteomics, metabolomics, etc. By using individual response
to treatment, a more efficacious treatment approach or compound can be selected based on analysis of this data [1].
In oncology, tumors can be characterized by molecular approaches such as measuring gene expression or mutations.
The outcomes for each patient in clinical studies are typically reflected in time to event, with an increased time to
progression free survival (PFS), being frequently used to indicate better treatment effect.

Mutations are currently the most frequently used biomarker for dividing patients and tumors into clinical subgroups [2].
This may be a single somatic mutation or a combination of several mutations. This has led to efforts to find biomarkers
across tumor types which may indicate treatment response [3]. The ability to detect individuals who may respond to
a treatment across various tumor tissues would have strong clinical utility for precision oncology [4]. Nevertheless,
identifying such biomarkers to detect a large proportion of patients with efficacious responses remains difficult [1].

Some cancer therapies have been FDA approved based on the presence of certain mutations [5]. However, data from the
Dependency Map project (DepMap) [6] presented evidence that gene expression is the datatype most strongly associated
with treatment response. Given this, efforts to combine gene expression data into signatures which correspond to
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tumor biology and/or state are warranted. One method of combining large amounts of data, such as from RNA-seq
experiments, is by using techniques being developed in geometrical and topological research.

Topological data analysis (TDA) is a rapidly growing field enabling the ability to structure and organize data based on
its geometry. It transforms data into invariants that capture higher order interactions and are amenable for statistical and
machine learning analysis. The presence of the higher order information often can yield insights which are not available
with standard statistical methods. This field has been applied to biomedical research, with results in breast cancer
characterizing tumors with unique characteristics [7]. It also was used to identify Type 2 diabetes (T2D) subgroups
based on clinical features which had distinct genetic associations [8].

We have developed several TDA methods based on classical TDA approaches such as extending the mapper algorithm
for multi-measurements [9], and creating a new invariant called stable rank [10, 11] which is a key component of the
technology which is presented here. Stable rank has further been used in creating supervised learning methods [12],
which then have been applied to characterization of sex-based differences in microglia [13]. Extensions to these methods
herein create signatures based on gene expression, which contain various unique properties and can be correlated to
outcomes of interest such as treatment response.

Creating and testing these methods is difficult due to a lack of real-world data from drug trials. However, a trial
was conducted by Pfizer to test Avelumab plus Axitnib in patients with advanced renal cell carcinoma as part of the
JAVELIN Renal 101 program. The Phase III trial reached clinical endpoints and the drug combination was approved.
The data from this trial was released publicly, and includes information on patient clinical features and outcomes, as
well as high throughput data such as gene expression, mutation, HLA, etc. The release of this data provides an ideal test
case for using geometrical methods to predict treatment response in an oncology clincial trial.

The objectives of this study are to create gene expression signatures and apply related methodology to the Pfizer
clinical trial to determine if subgroups of responders can be identified which are statistically significant, and to compare
subgrouping results from gene expression signatures using TDA methods with more conventional approaches.

2 Materials and methods

2.1 Pfizer JAVELIN Renal 101 trial

The Pfizer JAVELIN program consisted of long-term monitoring of patients with advanced renal cell carcinoma [14].
A Phase III trial in avelumab plus axitinib was conducted with a comparator arm of sunitinib as the standard of care.
The total number of patients enrolled was 886, with 442 assigned to the treatment arm and 444 assigned to the sunitinib
comparator arm.

Data for this trial was provided for multiple data types, including 726 for which gene expression data was available
along with clinical parameters and outcomes. Gene expression was given in the form of log2 TPM, ie. Transcripts Per
Million, with minimum values set to 0.01. Data were not further processed in any way before being used in topological
data analysis.

Additional data such as gene mutations, HLA, pathway, etc. were not considered in this analysis.

Clinical information included baseline parameters such as age, PD-L1 positive status (PD-L1+), sex, time to PFS, and
binary indication of censor at PFS (that is, inverse of event at PFS). The Median time to PFS was reported as 13.3
months in the treatment arm and 8.0 in the comparator arm, resulting in a stratified HR of 0.69 (p-value < 0.0001).
However, it must be noted that in the data provided by Pfizer, using data from the 726 individuals with both clinical and
gene expression data, median time to PFS is 4.07 months between arms as opposed to the 5.3 months reported. We
therefore used the data in its current form, while considering the more modest difference in median time to PFS present
for the present study.

2.2 TDA approach

In this article we build from the local approach, as described in [15]. This process assigns to every element in a distance
space, a non increasing function called a stable rank, according to some predefined parameters. A key feature of this
signature of a point in a distance space is that it captures geometrical properties of the embedding of this point into the
entire distance space. In particular, points whose embeddings have similar geometrical properties have similar stable
ranks, and the embeddings of points whose stable ranks are far apart have different geometrical properties.

The first step of our analysis is to choose a collection of sets of parameters (called geometrical parameters) for extracting
stable ranks. Extracting stable ranks, with respect to each set of geometrical parameters, is the second step of our
analysis. In the third step, for every set of geometrical parameters, we consider the distribution of integrals of the
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obtained stable ranks. We think about these integrals as a filter function and apply local clustering according to this filter
and the l2 distance in a process similar to the mapper procedure [7]. In this way, for every set of geometrical parameters,
we construct various subgroups of the obtained stable ranks, and hence subgroups of the points in the distance space
from which we started.

Thus the points in the distance space are subgrouped according to the geometrical properties of their embeddings as
captured by the obtained stable ranks: the embedings of the points in different subgroups have different geometrical
character and the embeddings of the points in the same subgroup have similar geometrical character.

We applied this three step process to the gene expression data with the distance given by the Euclidean metric and 22
standard sets of geometrical parameters in homological degees 0 and 1. The outcome is a collection of subgroups of
patients based on geometrical similarities of the embeddings of the associated gene expression in the Euclidean distance
space given by the entire gene expression data. These subgroups are organized into 44 groups, corresponding to our
choice of sets of geometrical parameters.

2.3 Statistical analysis

The significance threshold alpha was set to 0.05 for all testing.

For each subgroup created via our TDA pipeline described in Section 2.2, the Kaplan-Meier (KM) estimators was
created and a log-rank test was employed. To avoid spurious associations arising from multiple testing error, Bonferroni
correction was employed by altering alpha based on the number of total subgroups for a given choice of a set of
geometrcial parameters. Subgroups that passed the revised threshold were then passed to step two.

Strictly speaking, Bonferroni correction may be too conservative when partitioning a dataset into hypothetical subgroups
to test. This is due to the reduced number of samples available and lowered p-value; in some instances when too
many subgroups are created, the variation may be insufficient to attain statistical significance due to lower sample size.
Nevertheless, this provides an even basis for comparison of results within a robust and well characterized statistical
framework.

In the second step, we determined the p-value of the entire subgrouping process. Since the entirety of the data has a
statistically significant p-value, we considered the null hypothesis to be that there are no subgroups with a statistically
significant p-value in the KMs. We then created 1000 permutations by shuffling the samples to create the approximate
test distribution statistic based on the number of significant subgroups in the KMs created. We then assigned a p-value
to results by determining the number of results more extreme with respect to significant subgroups.

In the last step, subgroups were merged using the following procedure. First, all subgroups with KM derived p-values
less than the threshold calculated using Bonferroni correction based on the number of blocks in a given geometry were
included, and non-significant subgroups were discarded. Next, subgroups were merge if and only if the Gower distance
between them indicated less than 50% overlap of the smaller subgroup. The final subgroups were then reported, with
all samples not in one such subgroup lumped together and considered as “non-subgroup”.

This entire procedure was repeated using a standard gene-expression clustering procedure. This consisted of first using
t-SNE to reduce the data to two dimensions, using “TSNE” from the python package “sklearn”. Then, the DBSCAN
algorithm from “sklearn” was used to cluster according to similarity. This was conducted with several parameter
choices, with an ad-hoc choice of the optimum number to promote maximum clusters. A similar approach of Bonferroni
correction using log-rank test of KM was used, although determining statistical significance was not conducted since
only a single partitioning of the data was created which is not amenable to permutation testing. Since t-SNE is not
deterministic, a representative embedding was selected. We queried and tested other parameter choices to ensure that
superior results to the selection were not likely.

3 Results

The unsupervised geometrical transformation into gene-expression signatures resulted in six statistically significant
subgroups. Permutation testing determined that this partitioning had an empirical p-value of 0.012. The subgroups
were then merged according to the a priori methodology, resulting in three subgroups (n = 258, n = 107, n = 91,
union=384). The remaining patients (n = 352) were then grouped into a “non-subgroup” for comparison purposes.
The standard method (t-SNE with DBSCAN) resulted in one significant subgroup being detected (n = 155, 21.3% of
patients). The remaining patients were likewise grouped together (n = 571).
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3.1 Kaplan-Meier plots

Figure 1 shows the Kaplan-Meier plots for the subgroups generated by geometrical gene expression signatures, for each
of the three subgroups detected (n=384) as well as the remaining non-subgroup patients (n=342).

In Figure 2, the Kaplan-Meier estimators for the conventional subgrouping method is presented for the identified
subgroup of patient responders (n=155) and all other patients (n=571).

The baseline characteristics of subgroups created by both geometric and conventional methods are shown in the table in
Figure 3. The number of patients, mean age, proportion female, PD-L1+ proportion, proportion in the treatment arm
and proportion that reached PFS are given for each of the subgroups and non-subgroups.

Geometrical results t-SNE & DBSCAN
All Subgr 1 Subgr 2 Subgr 3 Non-subgr Subgr 1 Non-subgr

Number 726 258 107 91 342 155 571
Age (mean) 60.69 59.60 59.70 60.10 61.30 59.42 61.03

Sex (proportion female) 0.25 0.28 0.30 0.19 0.23 0.24 0.25
PD-L1+ (proportion) 0.71 0.66 0.75 0.77 0.72 0.71 0.71

Treatment arm (proportion) 0.49 0.52 0.59 0.47 0.46 0.45 0.50
Reach PFS (proportion) 0.51 0.45 0.52 0.55 0.53 0.46 0.52

Figure 3: Baseline clinical parameters per subgroup and non-subgroup, for both the subgroups/non-subgroups created
with geometrical methods, as well as for those created with t-SNE and DBSCAN

4 Discussion

We have created a method of creating geometry based gene expression signatures for cancer tumors. This allows for
comparison of signatures within a clinical trial to identify subgroups which are correlated with improved treatment.
This use case shows strong utility with data from a real-world cancer trial and has applications in precision oncology, ie.
getting the correct treatment to the correct patient.

In the Pfizer Phase III clinical trial, the methodology displays superior subgrouping of patient responders than
conventional clustering. Using a completely generic and strict a priori analysis structure, the methodology detected
three subgroups of enhanced response of 384 patients in the treatment arm, which contained nearly all the treatment
effect. Permutation testing confirmed this result was unlikely to be a chance finding (p = 0.012). The alternative
methodology detected a single subgroup of 155 patients with improved response. However, it should be noted that a
p-value using permutation testing was not practically feasible. If one assumes that these results are robust, this method
of detecting subgroups still identified only 40.3% of the number of patient responders as the geometrical method.

The subgroups did not vary substantially in terms of mean age, proportion of females, PD-L1+ status, or proportions
of treated or those that achieved PFS. This was not surprising, given that the subgroups were created purely from
geometrical information in an unsupervised manner, such that clinical and baseline characteristics were not considered.
Hence the subgroups appear to be distinct molecular signatures of response which correlate to treatment outcome and
not to baseline characteristics. This reinforces the notion that subgrouping based on some clinical parameter, such as
PD-L1 positivity, may not be optimal for detecting subgroups of enhanced response. Using the techniques described to
detect and identify subgroups based on geometrical gene expression signatures could provide important information for
Phase III clinical trial endpoints.

The method described herein first transforms the data and then analyses the obtained signatures. These signatures
integrate certain geometrical aspects of how individual points embed into the space of gene expression data. This has
key advantages over standard machine learning (ML) and (artificial intelligence) AI implementations applied directly
to the data. For example our method is able to find results with only a few hundred data points when the number of
features is on the order of tens of thousands. Typically, ML and AI techniques requires a large number of datapoints to
train models, and the presence of huge numbers of variables creates a noisy point cloud where extraneous features may
reduce model performance. This is in contrast to our TDA method which has denoising properties, enabling to identify
signals embedded due to otherwise non-observable geometrical patterns.

The methods also have been extended to inherently anonymize data, meaning that the geometrically transformed gene
expression signatures cannot be reconverted to raw data by any means. While largely not a concern with tumor gene
expression, these can therefore be used without revealing patient data if it is of a sensitive nature, for example in
genomics data which may theoretically be used to re-identify individuals. This is also a useful additional component if
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data must be transferred across various country of origin lines, where legal regulations may forbid the use of identifiable
data, or raw data even when re-identification is not a concern.

Current methods in precision medicine for cancer typically prioritize mutations and addressable oncogenes, which
derives from basic research and a need to identify the biological mechanisms underlying model of action of a compound.
However, as the dependency map project illustrated, gene expression shows the strongest correlation with treatment
response in cell lines [6]. Therefore, we take a more holistic view of determining treatment response from the aggregation
of all gene expression data without consideration of underlying biological mechanisms. Using the measurements at all
genes leverages the power of geometry where complicated relationships between variables may exist and is difficult
to model, and where the use of some subset of variables is likely to reduce signal substantially. Because geometries
are built in a completely unsupervised fashion and without any input from treatment response, these geometries are
robust and downstream correlation with treatment is therefore unbiased. Nevertheless, permutation testing is utilized to
determine which associations are statistically significant and thus less likely to be spurious. With this and any method,
the gold standard is an independent replication cohort.

This study is limited by the accuracy of the data provided by Pfizer in the publication. Any errors in the collection,
processing, measurement and analysis of the patient and tumor derived data may reduce the accuracy of our results.
Characterization of clinical variables, such as the primary outcome PFS or times to censor may likewise alter results.
Given that this is a published clinical trial, it is assumed that these errors will be minimized to those that are present in
any strictly controlled study.

These methods can be applied in Phase II trials to determine inclusion/exclusion criteria for Phase III studies, as well as
to create additional primary or secondary endpoints for analysis. This might increase the chances of passing Phase
III substantially. In failed Phase III trials, these techniques may be able to detect similar subgroups of responders
not visible with the analytical methods used at the time of the trial. This represents an enormous opportunity, since
thousands of oncology drugs have failed Phase III trials, the vast majority due to lack of efficacy. Identifying the most
efficacious subgroups in a post-mortem fashion may allow for application of a fast-tracked trial to confirm the finding.
This could potentially bring a large number of previous failed cancer drugs to market as well as enhancing the treatment
effect in subgroups of response, thereby benefiting patients suffering from an incurable disease.

An additional and related use case could involve combining and jointly analyzing data from various clinical trials, in
order to find drug repurposing targets or expanded markets for existing therapies. Conducting such an endeavor across
multiple cancer types and tissues of origin might provide valuable information to categorize oncology response using
gene expression signature instead of testing based on a cancer type/tissue. This could expand the use and potential of
many oncology drugs across a variety of cancer phenotypes.

Repeating this procedure on additional Phase III data is desirable, but difficult due to a lack of publicly available
datasets. Initiation of collaborations with pharmaceutical consortia may be effective at creating a larger scale testing
framework. Such efforts may be utilized not only in single compounds, but also across multiple oncology clinical trials
to identify expanded use cases and potential drug repurposing across oncology phenotypes.

5 Conclusion

The application of our gene expression signatures and geometrical methods on Pfizer avelumab plus axitinib data
identified three subgroups including slightly more than half of patients, which accounts for nearly all the observed
treatment effect.

While this clinical trial met primary endpoints, in Phase II and Phase III studies the ability to detect subgroups of
response may improve chances of a compound passing clinical trials dramatically.

6 Data and software availability

Pfizer’s avlemuab plus axitinib clinical trial data are freely available at: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC8493486/ under “Supplemental Materials”. The analyses conducted in this paper are part of a propri-
etary codebase which is closed source and therefore not publicly available. A web application which will allow for
some of the analyses contained within is under preparation.
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(a) (b)

(c) (d)

Figure 1: Kaplan-Meier estimator of subgroups created with geometrical gene expression signatures methodology.
Three subgroups were detected, which when combined contained 384 patients (52.9% of the cohort). The p-value
after permutation testing of these findings was 0.012. Treatment arm is indicated by (treat=1) while the comparator is
(treat=0).

(a) Subgroup 1 (n = 258). Median time to PFS was 4.24 in the comparator arm and 12.48 in the treatment arm.
(b) Subgroup 2 (n = 107). Median time to PFS was 8.21 in the comparator arm and 50% line not crossed in the

treatment arm.
(c) Subgroup 3 (n = 91). Median time to PFS was 6.80 in the comparator arm and 50% line not crossed in the

treatment arm.
(d) Non-subgroup patients (n = 342). Median time to PFS was 9.72 in the comparator arm and 11.1 in the

treatment arm.
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(a) (b)

Figure 2: Kaplan-Meier estimator of subgroup and non-subgroup created with standard methodology

(a) Kaplan-Meier estimator of the significant subgroup created using t-SNE to reduce to two dimensions and DB
Scan to produce clusters (n=155). Median time to PFS was 7.0 in the comparator arm (treat=0) and 17.97 in
the treatment arm (treat=1).

(b) Kaplan-Meier estimator of patients not in the subgroup created using t-SNE to reduce to two dimensions and
DB Scan to produce clusters (n=571). Median time to PFS was 9.1 in the comparator arm (treat=0) and 11.07
in the treatment arm (treat=1).
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