1	Economic evaluation of Wolbachia deployment in Colombia: A modeling study
2	
3	Short title: Economic evaluation of Wolbachia in Colombia
4	
5	Donald S. Shepard, PhD ^a
6	Samantha R. Lee, MS, MA ^a
7	Yara A. Halasa-Rappel, DMD, PhD ^a
8	Carlos Willian Rincon Perez, MS ^b
9	Arturo Harker Roa, PhD ^b
10	
11	^a Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
12	^b School of Government, University of Los Andes, Bogotá, Colombia
13	
14	Correspondence: Donald S. Shepard, The Heller School for Social Policy and Management, Brandeis
15	University, Waltham, MA 02454-9110, USA. Email: shepard@brandeis.edu
16	

17 ABSTRACT

18 Background and Aims

19	Wolbachia are bacteria that inhibit dengue virus replication within the mosquito. A cluster-randomized
20	trial found Wolbachia reduced virologically-confirmed dengue cases by 77% and previous models
21	predicted Wolbachia to be highly cost-effective in Indonesia, Vietnam, and Brazil. in Colombia,
22	Wolbachia was introduced in the Aburrá Valley in 2015 and Cali in 2020. To inform decisions about
23	future extensions, we performed economic evaluations of the potential expansion of Wolbachia
24	deployments to 11 target Colombian cities.
25	Methods
26	We assembled quantities and the distribution by severity of reported dengue cases from Colombia's
27	national disease surveillance system and the health service provision registry (RIPS). An epidemiological
28	panel of three experts estimated the shares of non-medical cases and adjustments for under-reporting
29	and misclassifications. We determined costs (in 2020 US dollars) of treating dengue illness from the
30	benchmark insurance tariff, RIPS data on treatment services per symptomatic dengue case, and the
31	national government database for establishing insurance premiums. A cluster randomized trial
32	quantified the effectiveness of Wolbachia against symptomatic dengue cases.

33 <u>Results</u>

Projecting impact over 10 years for Cali, we estimated a net health-sector savings of USD4.95 per
person. We also estimated averting 369 disability-adjusted life years (DALYs) per 100,000 population.
From a societal perspective, at 10 years *Wolbachia* deployment is expected to have highly favorable
benefit-cost ratios, with benefits per dollar invested of \$5.50 in Cali and USD4.68 over all target cities.

38 <u>Conclusions</u>

- 39 Over 10 years, *Wolbachia* is highly beneficial on economic grounds, and almost universally cost saving.
- 40 That is, Wolbachia's savings in health care costs alone would more than offset deployment costs
- 41 nationally and in 9 target cities (those with adjusted annual dengue incidence at least 50/100,000
- 42 population). In these 9 target cities, *Wolbachia* would generate at least USD3.00 in benefits per dollar
- 43 invested, giving substantial confidence that *Wolbachia* deployment would be cost-beneficial in
- 44 Colombia.
- 45
- 46 Key words:
- 47 Dengue, Colombia, *Wolbachia*, Cost-effectiveness analysis, Benefit-cost analysis, Mosquito control

49 Introduction

50 Dengue, responsible for dengue fever and dengue hemorrhagic fever, is the most widespread vector-51 borne virus in the southern hemisphere.[1] Colombia has experienced recent dengue epidemics in

52 2010, 2013, and 2019.[2]

53	Wolbachia are common bacteria that naturally infect fruit flies and many other insects.
54	Researchers at the World Mosquito Program (WMP) discovered that they could infect Aedes aegypti
55	mosquitoes with these bacteria[3] and that dengue, chikungunya and Zika viruses are then less able
56	to replicate within the insects, thereby inhibiting the transmission of these mosquito-borne
57	infections.[4] To use this method for disease control, governments, communities, and international
58	organizations (e.g., the WMP) partner to grow mosquitoes infected with Wolbachia in insectaries and
59	then deploy eggs or adult mosquitoes to establish the bacteria in the local mosquito population.
60	Wolbachia-infected mosquitoes transmit the bacteria through their eggs to the next generation. This
61	approach is termed the "replacement" strategy, as it tends to replace wild mosquitoes by Wolbachia-
62	infected ones. Thus, the establishment of Wolbachia becomes a sustainable and often long-term
63	control mechanism at that site. The replacement approach was first applied near Cairns, Australia.
64	Over a decade after initial deployment, mosquitoes there remain infected with the bacteria,
65	supporting the long-term viability of the approach.[5] The replacement approach is being applied in
66	countries in the Americas, Asia, and Oceania.[6]
67	Under a different approach, the <i>Wolbachia</i> suppression strategy, Singapore releases only male
-	

68 *Wolbachia* infected mosquitoes.[3] When these mosquitoes mate with wild mosquitoes, the eggs do 69 not hatch, thereby reducing the number of potentially disease-carrying insects. While experience to 70 date has found this approach efficacious, the need for annual releases makes the suppression

approach more costly but potentially economically viable in this high-income country.[7] The

remainder of this paper considers only the replacement approach.

73 A landmark cluster-randomized trial in Yogyakarta, Indonesia found that the replacement 74 strategy reduced all virologically-confirmed symptomatic dengue cases by 77.1% and hospitalized 75 cases by 86.2% under the original protocol analysis.[8] A reanalysis that corrected for the attenuation 76 due to border crossing by humans and mosquitoes raised the estimated efficacy against dengue cases 77 to 82.7%.[9] A subsequent cluster randomized trial is underway in Belo Horizonte, Brazil. A guasi-78 experimental study from Niterói, Brazil found that Wolbachia reduced incidence of dengue by 69%, of 79 chikungunya by 56%, and of Zika by 37%.[10] Research in Rio de Janeiro has shown that the 80 technique is generally robust. Even in neighborhoods where *Wolbachia* coverage was low, such in

81 *favelas* where access was difficult, dengue infections were still reduced by 38% and chikungunya by

82 10%.[11]

72

83 In Colombia, pilot Wolbachia releases began in the city of Bello in 2015 and were expanded in 2017 to city-wide deployments throughout Medellín, Itagui and Bello in the Aburrá Valley. An 84 85 evaluation based on routine disease surveillance data reported reductions in notified dengue 86 incidence of 95% to 97% in the three cities following Wolbachia introduction, compared to the prior 87 decade; a parallel case-control study in Medellín also showed significantly lower dengue incidence in Wolbachia-treated neighborhoods compared to untreated ones.[12-15] Deployment progressed to 88 89 Cali, with phased releases since 2020. In May 2023, Cali's coverage reached 50% and the 90 departmental and municipal governments announced the expansion of Wolbachia to Yumbo 91 municipality, 13 km northeast of Cali.[16]

92	Wolbachia is predicted to be a highly cost-effective intervention for controlling mosquito-
93	borne illnesses, especially when released in high-density urban areas. In Indonesia, Wolbachia was
94	projected to have a cost-effectiveness ratio in US dollars (USD) of USD1500 per disability-adjusted life
95	year (DALY) averted, offsetting much of the costs to the health system and to society with benefit-
96	cost ratios ranging from 1.35 to 3.40.[17] In Vietnam, another study found the technology similarly
97	cost effective based on the 10-year time horizon, and cost-saving at the 20-year time horizon.[18] A
98	simulation across seven Brazilian cities also found Wolbachia cost-effective across all 7 cities
99	modeled, though not cost saving[19] in 2 of the 7 cities. In Suva, Fiji, a much smaller city, Wolbachia
100	was acceptably cost-effective, but in Port Vila, Vanuatu, the relatively small target population and
101	lower population density would not make the approach cost-effective there.[20] A simulation for
102	Thailand suggested that Wolbachia combined with vaccination could be cost-effective.[21]
103	To inform decision making within Colombia, we modeled the large-scale implementation of the
103 104	To inform decision making within Colombia, we modeled the large-scale implementation of the <i>Wolbachia</i> replacement strategy for controlling dengue in 11 target Colombian cities. Here we
104	Wolbachia replacement strategy for controlling dengue in 11 target Colombian cities. Here we
104 105	Wolbachia replacement strategy for controlling dengue in 11 target Colombian cities. Here we
104 105 106	<i>Wolbachia</i> replacement strategy for controlling dengue in 11 target Colombian cities. Here we present the resulting cost-effectiveness and benefit-cost analyses.
104 105 106 107	Wolbachia replacement strategy for controlling dengue in 11 target Colombian cities. Here we present the resulting cost-effectiveness and benefit-cost analyses.
104 105 106 107 108	Wolbachia replacement strategy for controlling dengue in 11 target Colombian cities. Here we present the resulting cost-effectiveness and benefit-cost analyses. Methods Framework

112 Colombia's reported dengue cases from 2010 through 2019. We conducted economic analyses for

- each of these target cities. Colombia's capital and largest city, Bogotá, is virtually free of dengue due
- to its high altitude, so it was not a target city.

115 The analyses were done	by city, as costs, imp	pacts, and funding decisions lie partly	/ at the
----------------------------	------------------------	---	----------

- 116 municipal level. Our analysis began by estimating the current burden of dengue-related illness in
- each of these target cities in terms of average annual numbers of cases, health care costs, and loss of
- health from non-fatal dengue cases. We then estimated the expected gains from *Wolbachia* based on
- the Yogyakarta cluster randomized trial. Next, we examined the cost of implementing *Wolbachia*
- 120 based on the WMP's recent Colombian projects. Finally, we calculated cost-effectiveness and benefit-
- 121 cost ratios showing the ratio of predicted health care gains to estimated costs by city.
- 122 Parameters
- 123 Table 1 provides the necessary national parameters for the economic analysis with monetary amounts
- 124 in 2020 USD.

125

126 Table 1. National Parameters

Label	Parameter	Value
P1	Average health system cost per dengue case in 2019-20 for cases treated in the	\$202.11
	medical sector, USD	
P2	Average health system cost per dengue case in 2019-20 for cases treated in the	\$116.90
	medical and non-medical sectors combined, USD	

Р3	Estimated cost of Wolbachia per km ² in target cites in Colombia, USD	\$87,625
Р4	Estimated % savings in conventional vector control spending, year 1,	0%
Р5	Estimated % savings in conventional vector control spending, year 2	20%
P6	Estimated % savings in conventional vector control spending, year 3	30%
Ρ7	Estimated % savings in conventional vector control spending, year 4	40%
Р8	Estimated % savings in conventional vector control spending, years 5+	50%
Р9	Efficacy of Wolbachia intervention (%), year 1 from date of deployment	37.5%
P10	Efficacy of Wolbachia intervention (%), years 2+ from date of deployment	75.0%
P11	Efficacy of Wolbachia intervention (%), 10-year average	71.3%
P12	Annual discount rate for costs and health effects	3%
P13	DALY/dengue case	0.0476
P13	Share of Wolbachia deployment cost that is incurred in year 1	100%
P15	Share of Wolbachia deployment cost needed for long term monitoring, year 2+	1%
P16	Cumulative present value factor over 10 years using P12	8.53
P17	Colombia GDP/capita (2020), World Bank, market prices, USD	\$5,312
P18	Share of dengue cases correctly reported in surveillance system	29%

P19 Share of *Wolbachia* costs for preparation, before deployment

20.54%

127	Legend: DALY=disability-adjusted life year; GDP=gross domestic product; km=kilometers; SOAT=Seguro
128	Obligatorio para Accidentes de Tránsito (Compulsory Insurance for Traffic Accidents), the reference
129	prices used by Colombian insurers; USD=United States dollars. Monetary amounts are in 2020 USD at
130	market exchange rates. Sources: For P1 and P2, items were available only for 2019; these were adjusted
131	for inflation and changes in exchange rates, giving virtually identical values in 2020 USD as of 2019. For
132	P3, cost data were provided by the WMP based on its budget projections. They apply to all target cities
133	except Cali. For Cali, where Phase I implementation had been conducted, delays due to interruptions
134	from the COVID-19 pandemic increased costs. The COVID interruption raised the projected cost per
135	km2 for Cali across all phases to \$96,698.
136	For P12, we relied on a leading textbook on economic evaluation in health.[22] For P13, the disease
137	burden per case of dengue is the sum of its morbidity and mortality components. The morbidity
138	component was 0.032.[23] The mortality component was calculated first by dividing the average
139	number of deaths due to dengue between the years 2012 through 2018 by the average incidence for
140	these same years. The resulting weighted average case-fatality rate was 6.05 $ imes$ 10 ⁻⁴ . Based on an
141	estimated 50 years of remaining life (as young adults are the median age of dengue fatalities) and the
142	widely recommended discount rate of 3%, the discounted remaining life was calculated using the
143	following formula: Discounted remaining life = [1 - (1 + P12) ⁻⁵⁰] /P12 = 25.73. The mortality component
144	was 0.0156 DALYs (i.e. 6.05 × 10^{-4} x 25.73). The overall burden per case was 0.0476 DALYs (i.e., 0.032 +
145	0.0156).

P16, the cumulative present value factor, was calculated with the Excel present value function (PV) using
P12 and a time horizon of 10 years, i.e., PV(P12,10,-1) equals 8.53; P17 is from the World Bank[24]; all
other items are based on the authors' calculations.

149 Disease burden of dengue

150 The disease burden of dengue in a specified geographical area in a year is best conceptualized as the 151 product of its number of dengue cases times the disease burden per case. Global research has found 152 that a substantial share of dengue cases are treated outside the formal health sector, and thus not 153 captured in existing databases.[25] To apply this concept to Colombia, we assessed the breakdown of 154 dengue cases by severity and reporting status. We relied on the expertise of three epidemiologists: Luz 155 Inés Villarreal Salazar (independent consultant in Colombia), Carlos Willian Rincon (University Los 156 Andes), and Maria Patricia Arbelaez Montoya (World Mosquito Program, Colombia). We adjusted for 157 underreporting of the number of dengue cases using an adjustment factor derived from *el Sistema* 158 Nacional de Vigilancia en Salud Pública (SIVIGILA) [the National Public Health Surveillance System] and Registro Individual de Prestación de Servicios de Salud Municipio de Envigado (RIPS) [Individual Registry 159 160 of Provision of Health Services Municipality of Envigado].

To adjust for the fact that routine programs often have fewer resources and less intensive supervision than research trials, we rounded down the per-protocol efficacy from the Indonesian cluster randomized trial.[8] We projected that the *Wolbachia* program in Colombia will result in a 75% reduction in dengue cases once *Wolbachia* is stably established in the mosquito population--the second year of implementation onwards based on projected time for deployment. Projecting a linear increase from zero to complete establishment of *Wolbachia* over the first year of implementation, we estimated a 37.5% reduction in dengue cases overall in the first year.

168 Current cost of a dengue episode

169	The aggregate cost of dengue is the product of the average cost per case times the number of cases. We
170	used two approaches to estimate the cost of a dengue case in Colombia. Under our main approach, the
171	average direct cost of a dengue case treated in the formal health system in 2019 was estimated using
172	the tariffs to pay treatment costs from transit accidents, Seguro Obligatorio para Accidentes de Tránsito
173	(SOAT) [Compulsory Insurance for Traffic Accidents]. The SOAT tariffs also serve as reference prices in
174	payment negotiations between insurers and providers. While actual payment rates from other insurers
175	are not publicly available, experts believe that actual payment rates likely average the SOAT rates.
176	Anecdotal reports suggest that in rural areas, where providers are few, providers are paid above the
177	SOAT rates, whereas in urban areas, where providers are numerous, payers can negotiate discounts
178	below the SOAT rates.
179	We converted the SOAT amounts in Colombian pesos to US dollars at the average exchange rate

for the years 2015-2020.[26] For most curative services in the health care system, RIPS provides a national claims system that captures the health care provided to the insured population by diagnostic codes, care provided, and care setting. The data include the number of consultations and procedures used, emergency room visits, and hospitalizations. RIPS categorized dengue cases as classic dengue and severe dengue. For verification we used the *Suficiencia* [Sufficiency] database, which provides service payments for calculating the *Unidad de Pago por Capitación (UPC)* [Capitation Payment Unit] and premium information.[27]

Using the SOAT tariff, we derived the cost per case through stratification by the severity of
 dengue and calculated a weighted average based on the estimated share of dengue cases by severity. To
 reflect the fact that a number of non-hemorrhagic (classical) cases were hospitalized, we stratified by

190 severity category instead of treatment setting for consistency among data sources. To report the cost of 191 all types of dengue cases in Colombia from the health system perspective, we adjusted for cases treated 192 outside the health care system. To estimate the economic cost, we incorporated both the cost of cases 193 treated outside the health care system and direct and indirect household expenditures during a dengue 194 episode. We then analyzed the RIPS claims data to derive the average cost of a non-fatal dengue case 195 for the years 2015 through 2020 and reported the average 5-year cost per case based on the severity of 196 dengue, i.e., severe and non-severe dengue. The claims data included the total number and cost of 197 dengue health care services based on the care setting: consultations, procedures, emergencies, and 198 hospitalizations.

To validate our SOAT-based estimate of the healthcare cost per dengue case, we used aggregate data (see Supporting Information S2 Text, Supporting Information S3 Table and Supporting Information S4 Table). [28-33] This aggregate approach, termed macro-costing, used an empirical bed-day equivalent factor of 0.32 of an ambulatory visit compared to an inpatient day[32] and the average cost of a hospitalization and an ambulatory visit. Macro-costing remained a secondary estimate, however, as its applicability rested on the assumption that visits and hospitalizations for dengue consumed the same resources, on average, as visits and hospitalizations for all causes combined.

206 Disease burden of dengue per case

Based on the calculation provided for discounted remaining life, the years of life lost and years lost to
disability per case are 0.0156 and 0.0320,[23] corresponding to shares of 33% and 67%, respectively.
The sum of these two metrics comprised the total disease burden per dengue case of 0.0476 DALYs.

210 Cost of Wolbachia deployment

To estimate the cost of the *Wolbachia* program in the 11 target cities in Columbia, we started by analyzing the program budget for Cali. The budget covered two programmatic phases, with each phase divided into three stages: prepare, release, and short-term monitoring (STM). The budget covered the administrative and management cost, communication, community engagement, data management, diagnostic, monitoring, mosquito rearing, the release of the *Wolbachia* mosquitoes, surveillance, site start-up, project oversight, and indirect (facilities and administrative) costs.

The preparation stage lasted 12 and 6 months for phases 1 and 2 of the Cali program, respectively; release stages each took 6 months, and the STM stage was 12 months. Initially, the WMP projected that implementation of the *Wolbachia* program would take three years per city. After further review, however, WMP officials and the authors agreed that expansion of the existing program to additional cities in Colombia, and likely in other countries in a scale-up phase, could be achieved with an accelerated timeline and reduced the projected duration.

223 Based on the shortened timeframes, we reduced the durations of projected staff 224 requirements. We estimated the indirect cost of the Wolbachia program at 15% of direct costs. This is 225 the maximum global rate allowed to grantees by the Bill & Melinda Gates Foundation, [28] a major 226 sponsor of Wolbachia development. Brandeis researchers also reduced the estimated time needed for 227 preparation, release, and long-term monitoring from 30 months to 15 months. Both adjustments 228 reduced the overall projected per square kilometer (km²) cost of the Wolbachia program. To estimate 229 the overall cost of the program in the 11 target cities, we made the preceding two adjustments to the 230 budgeted cost of Cali phase 2 deployments to derive an adjusted cost per km² (parameter P5). WMP 231 estimated the projected release area (km²) in each target city, including all built-up areas and excluding

232	public spaces, parks, and empty spaces. This area was multiplied by the adjusted cost per km ²
233	(parameter P3) to estimate the cost of implementation in the rest of Cali and the 10 other target cities.
234	Our cost projections generated both best estimates and confidence bounds. The uncertainty
235	reflected alternative estimates of the size of the deployment needed and the cost adjustment
236	attributable to the pause in Cali phase 1 deployment due to the COVID-19 pandemic. The
237	implementation costs occur primarily during the first and second years of release and STM, with an
238	estimated 1% of the initial spending needed annually for long-term monitoring from the second year
239	onward.

240 Economic appraisal

241 We calculated the medical cost offsets from dengue cases averted each year as the cost per 242 symptomatic case times the baseline average number of such cases times the fraction averted in each 243 city year. Although some health economists disagree with discounting future health effects, [34] a 244 leading textbook and Colombia-specific guidelines recommend that future costs and health benefits 245 should be discounted.[22, 35] We calculated the present value of the *Wolbachia* program and all cost 246 offsets in each city over a ten-year time horizon with a discount factor from P12. The vector control 247 offset was calculated through percentagewise cost savings in parameters P4 through P8. The medical cost offset comprises the estimated reduction of cases over the ten-year time horizon. The present 248 249 value of these offsets was calculated as the annual full-deployment result time the cumulative present 250 value factor for ten years (parameter P16) less an adjustment for the smaller effectiveness in year 1. If 251 we had decided not to discount, then the present value costs would have changed little, but the 252 present value of health impacts would have been substantially higher.

253 To value the indirect benefits (gains in quality and length of life), we needed to assign an 254 economic value to a year of good health—averting a DALY or gaining a Quality-adjusted Life Year 255 (QALY). This valuation is equivalent to setting a threshold value for determining the cost-effectiveness 256 of a health intervention. In 2001, the World Health Organization's Macroeconomic Commission on 257 Health recommended thresholds of 1 and 3 times a country's per capita Gross Domestic Product (GDP) 258 for an intervention to be "very cost-effective" or "cost effective," respectively.[36] Subsequently, WHO 259 officials recommended finding evidence-based thresholds and incorporating fairness and affordability 260 into the decision process.[37] Economic theory suggests that evidence consider the public's willingness 261 to pay (WTP) to avert one DALY or gain one QALY.[22]

262 To apply this concept, we searched PubMed for studies on WTP in Colombia. The one study we 263 found, modeling chemotherapy for lung cancer, did not present an empirical estimate, but simply 264 selected a value of US\$17,656, three times Colombia's then GDP per capita.[38] A wider search, a 265 systematic global review of WTP studies, found a median value for upper-middle income countries (the 266 relevant category for Colombia) of US\$5,936, with an interquartile range of US\$7,233.[39] However, 267 none of the included studies was conducted in Colombia and upper-middle income countries span a 268 wide range of per capita GDP. However, in 2023, an empirical approach was published for WTP 269 thresholds and applied to 174 countries.[40] It included Colombia. Based on national data rather than 270 survey responses, it calculated national WTPs based on the country's changes in life expectancy and 271 health expenditures. This approach found that Colombia's WTP per QALY gained (equivalent to a DALY 272 averted) was 0.75 times its per capita GDP in 2019. An independent commentary noted the many 273 advantages of this approach.[41] Like that in most upper-middle income countries, Colombia's WTP as 274 a proportion of per capita GDP fell in the range of 0.5 to 1.0. Applying Colombia's ratio, we valued each

- 275 DALY in our target year (2020) in Colombia as 0.75 times that year's per capita GDP. That is, each DALY
- averted through reduced dengue had an economic value of USD3,984.
- We calculated each city's benefit-cost ratio as its total economic benefits (including the
 economic value of good health) divided by the cost of the deployment. If this ratio exceeded 1.0, *Wolbachia* was considered a favorable economic investment. The incremental cost-effectiveness ratio
 (ICER) is the net present value cost of the *Wolbachia* program divided by its present value health gain in
 DALYS. A positive ICER below USD3,984 (0.75 times Colombia's per capita GDP[20] of USD5,312)
 indicates that the intervention is cost-effective. A negative ICER indicates that the replacement
 strategy is cost saving in that city, i.e., exceptionally cost-effective.
- 285 Results

286 <u>Current cost per case of dengue</u>

The epidemiological panel provided the following five categories for the distribution of dengue cases in Colombia by severity and reporting to SIVIGILA: (1) 2% are severe cases and correctly diagnosed and reported to SIVIGILA, (2) 27% are non-severe dengue (including those with and without warning signs) and correctly reported to SIVIGILA, (3) 11% are non-severe dengue, diagnosed by medical providers but not reported to SIVIGILA due to time and administrative barriers, (4) 20% are non-severe dengue cases that are misdiagnosed (e.g., diagnosed as a non-specific viral fever), and (5) 40% are mild and do not interact with the formal healthcare system (i.e. home treatments).

294 Supporting Information S5 Table presents the average cost of a dengue case by severity and 295 the proportion of dengue cases treated by setting. Only 29% of dengue cases are reported, almost all of

- which are non-severe dengue. Based on SOAT tariff, we estimated the healthcare cost of care for cases
- within the medical system as USD406.37 for a severe case (constituting 6.45% of medical cases) and
- 298 USD188.02 for a non-severe medical dengue case (constituting 93.55% of medical cases). The weighted
- average healthcare cost per medical case was USD202.11 and USD1.50 for a non-medical dengue case.
- 300 The societal cost per case averaged USD151.96, comprised of healthcare costs (averaging USD116.90)
- and indirect costs (averaging USD35.06).

302 Economic results in target cities

- 303 Table 2 displays the analytic results of *Wolbachia* releases for each target city and the national total
- 304 (sum of all target cities). Table 3 presents the costs and benefits as rates per person covered and gives
- final economic results. All benefit cost ratios are favorable or highly favorable, ranging from 1.39 to
- 306 8.85.

			Adjusted						
		Adjusted	release area	Initial					
		population	dengue cases	Wolbachia	PV Wolbachia	PV vector			
		in release	(including	deployment	program	control	PV medical		PV
Rank	Municipality	area	unreported)	costs	costs ^a	offsets ^a	cost offsets ^a	PV net costs ^a	DALYs ^a
1	Cali	2,217,961	27,649	\$8,973,571	\$9,672,263	\$563,261	\$20,086,318	-\$10,977,315	8,174
2	Ibagué	503,745	10,342	\$2,269,484	\$2,446,189	\$238,873	\$7,512,810	-\$5,305,494	3,057
3	Villavicencio	506,145	10,161	\$2,506,072	\$2,701,197	\$309,493	\$7,381,782	-\$4,990,078	3,004
4	Cúcuta	759,395	9,739	\$4,363,719	\$4,703,483	\$1,195,491	\$7,075,123	-\$3,567,131	2,879
5	Bucaramanga	604,186	9,540	\$1,989,085	\$2,143,957	\$803,501	\$6,930,606	-\$5,590,150	2,821
	-								
6	Neiva	343,194	7,035	\$1,857,647	\$2,002,286	\$159,430	\$5,110,385	-\$3,267,529	2,080

Table 2. Aggregate costs and DALYs for target cities following the start of Wolbachia releases

7	Barranquilla	1,296,471	6,015	\$5,783,242	\$6,233,532	\$226,281	\$4,370,044	\$1,637,207	1,778
8	Valledupar	477,763	3,937	\$2,234,434	\$2,408,410	\$295,246	\$2,860,029	-\$746,866	1,164
9	Armenia	300,785	4,100	\$1,253,036	\$1,350,598	\$124,653	\$2,978,651	-\$1,752,705	1,212
10	Pereira	404,270	3,262	\$1,524,673	\$1,643,386	\$127,747	\$2,369,401	-\$853,762	964
11	Cartagena	926,747	2,460	\$3,864,257	\$4,165,132	\$1,103,887	\$1,786,889	\$1,274,356	727
ALL	National	8,340,662	94,239	\$36,619,221	\$39,470,433	\$5,147,863	\$68,462,037	-\$34,139,468	27,862
	_								

^a 10-year present values.

Note: DALYs=disability adjusted life years; PV=present value over 10 years discounted using P12; population in the release areas derived by the World Mosquito Program based on analyses of population density; monetary amounts are in 2020 US dollars. Cities are ranked in decreasing number of average annual dengue cases from 2010 through 2019 (see Supporting Information Table S1). Table 3. Ratios for target cities following the start of Wolbachia releases

				PV					
		PV	PV	medical					
		Wolbachia	conventional	care		PV overall			
		deployment	vector control	offsets	PV indirect	gross	PV DALYs		
		costs per	offsets per	per	benefits	benefits per	averted per		
		person	person	person	per person	person	100,000	Benefit-	
Rank	Municipality	covered	covered	covered	covered	covered	population	cost ratio	ICER
1	Cali	\$4.36	\$0.25	\$9.06	\$14.68	\$23.99	369	5.50	-\$1,343
2	Ibagué	\$4.86	\$0.47	\$14.91	\$24.18	\$39.57	607	8.15	-\$1,735
3	Villavicencio	\$5.34	\$0.61	\$14.58	\$23.65	\$38.84	594	7.28	-\$1,661
4	Cúcuta	\$6.19	\$1.57	\$9.32	\$15.11	\$26.00	379	4.20	-\$1,239
5	Bucaramanga	\$3.55	\$1.33	\$11.47	\$18.60	\$31.40	467	8.85	-\$1,982
6	Neiva	\$5.83	\$0.46	\$14.89	\$24.14	\$39.50	606	6.77	-\$1,571

7	Barranquilla \$4.81 \$0.17 \$		\$3.37	\$5.47	\$9.01	137	1.87	\$921	
8	Valledupar	\$5.04	\$0.62	\$5.99	\$9.71	\$16.31	244	3.24	-\$642
9	Armenia	\$4.49	\$0.41	\$9.90	\$16.06	\$26.37	403	5.87	-\$1,446
10	Pereira	\$4.07	\$0.32	\$5.86	\$9.50	\$15.68	239	3.86	-\$885
11	Cartagena	\$4.49	\$1.19	\$1.93	\$3.13	\$6.25	78	1.39	\$1,752
ALL	National	\$4.73	\$0.62	\$8.21	\$13.31	\$22.13	334	4.68	-\$1,225

Note: DALYs = disability adjusted life years; ICER=incremental cost-effectiveness ratio; PV=present value over 10 years discounted from P12.

Monetary amounts are in 2020 US dollars. Cities are ranked in decreasing number of average annual dengue cases from 2010 through 2019 (see Supporting Information Table S1). National represents the sum of all target cities.

309	To illustrate our results in greater detail, we have focused on Cali. It was the city with
310	the greatest burden in reported dengue cases. After the Aburrá Valley, where Wolbachia had
311	been deployed previously,[12-15] Cali is the one target city in Colombia in which Wolbachia is
312	already partly deployed. Fig 1 displays the cumulative projected economic benefits of the
313	Wolbachia program in Cali by component and time horizon, where time is the number of
314	completed years since Wolbachia deployment. Wolbachia is projected to replace some
315	conventional vector control, lower the need for medical care for treating dengue illness, and
316	create economic value of additional healthy years. The overall economic benefits, the sum of
317	these components, grows with increasing time horizons to USD42.97 per person covered with a
318	20-year horizon. Over this horizon, indirect benefits (the economic value of reduced illness,
319	USD26.27) are the largest component, followed by medical care offsets (USD16.20), with vector
320	control offsets as the smallest benefit (USD0.50),
321	
322	<insert 1="" about="" fig="" here=""></insert>
323	
324	The upper (dashed) line in Fig 2 shows the cost per person of implementing the
325	Wolbachia program. The cost per person starts in year 0 with 20.54% of initial program costs
326	(USD0.83) for planning and engagement of residents and local leaders. The remainder of initial
327	costs occur in year 1, the year in which city-wide releases would occur, bringing initial program

- 328 costs to USD4.05. Thereafter, annual monitoring occurs, if needed, costing 1% of the initial costs
- 329 annually throughout the remainder of the time horizon. Thus, cumulative Wolbachia
- implementation costs per person rise to USD4.20 through 5 years and USD4.63 through 20 years.

331	Whereas longer time horizons generated substantially larger benefits for each of the economic
332	benefits, they added very little to the present value of Wolbachia program costs. The lower
333	(solid) line is the net healthcare cost at each time horizon. In year 0, when there are no offsets,
334	it is identical to costs of planning and engagement (USD0.83). In year 1, with some conventional
335	vector control and medical care offsets, net healthcare costs per person covered reached the
336	maximum (USD3.50). In subsequent years, healthcare offsets exceed the additional vector
337	control costs. At 4.3 years, Wolbachia becomes cost saving in health care costs. With longer
338	time horizons, the cost savings continue to grow. Net costs per person become substantial
339	negative numbers (-USD4.95 and -USD12.08) with the 10- and 20-year horizons, respectively.
340	
341	<insert 2="" about="" fig="" here=""></insert>
342	
342 343	Fig 3 shows the summary outcome measures on health (DALYs averted) and economic
	Fig 3 shows the summary outcome measures on health (DALYs averted) and economic impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a
343	
343 344	impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a
343 344 345	impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a 10-year horizon, the <i>Wolbachia</i> program averts 369 DALYs per 100,000 population with a
343 344 345 346	impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a 10-year horizon, the <i>Wolbachia</i> program averts 369 DALYs per 100,000 population with a benefit-cost ratio of 5.50. This highly favorable ratio indicates that every dollar invested
343 344 345 346 347	impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a 10-year horizon, the <i>Wolbachia</i> program averts 369 DALYs per 100,000 population with a benefit-cost ratio of 5.50. This highly favorable ratio indicates that every dollar invested generates USD5.50 in economic benefits for the city's residents through better health and
343 344 345 346 347 348	impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a 10-year horizon, the <i>Wolbachia</i> program averts 369 DALYs per 100,000 population with a benefit-cost ratio of 5.50. This highly favorable ratio indicates that every dollar invested generates USD5.50 in economic benefits for the city's residents through better health and averting healthcare costs. With a 20-year horizon, these results become almost twice as
 343 344 345 346 347 348 349 	impact (benefit-cost ratio) for Cali. Both measures increase with longer time horizons. With a 10-year horizon, the <i>Wolbachia</i> program averts 369 DALYs per 100,000 population with a benefit-cost ratio of 5.50. This highly favorable ratio indicates that every dollar invested generates USD5.50 in economic benefits for the city's residents through better health and averting healthcare costs. With a 20-year horizon, these results become almost twice as favorable, averting 659 DALYs and a benefit-cost ratio of 9.29 to 1. Since the economic benefits

353

354 <Insert Fig 3 about here>

355

356	Extending these results nationally, Fig 4 presents the benefit-cost ratios for all target
357	cities based on the 10-year horizon. Panel A displays the cities in decreasing order. Projections
358	for all target cities are favorable, as all the ratios exceed 1.00. Cali is close to the national
359	average. Cartagena is the most marginal in economic terms (ratio 1.39), while Bucaramanga,
360	with a ratio of 8.85, is almost twice as favorable as the national average. Panel B shows a scatter
361	plot of these ratios in relation to population density and average annual dengue incidence.
362	Higher values of both independent variables tend to be associated with higher (more favorable)
363	benefit-cost ratios. Dengue incidence is the more important factor as it varies 8-fold from the
364	least to the most affected city. Higher population density, which varies by a factor of 1.7,
365	contributes marginally to higher ratios.
366	
367	<insert 4="" about="" fig="" here=""></insert>
368	
369	

370 Discussion

371 Colombia is hyperendemic with dengue.[2] Accounting for cases treated outside the medical 372 system, misdiagnosed, or otherwise not reported, we concluded that the country's dengue 373 burden is several times greater than official statistics. Our estimates reinforce previous research 374 that Colombia's dengue burden exceeds the global average.[17, 25] 375 If implemented with efficacy mirroring the results from the cluster randomized trial, [8] 376 Wolbachia will substantially mitigate dengue incidence in the target cities in Colombia. These 377 impacts generate highly favorable benefit-cost ratios by helping to avert healthcare and indirect 378 costs. In over half of the cities, including Cali, the economic benefits exceed USD5.00 for every 379 dollar invested. 380 Wolbachia's costs mostly occur at the beginning, while the health and economic benefits 381 accrue over time. Therefore, the cost effectiveness and economic benefits of Wolbachia 382 increase with longer time horizons. For example, for each dollar invested, the benefit in Cali 383 ranged from USD5.50 at 10 years to USD9.29 at 20 years. Thanks to Colombia's national health

insurance system, the medical care component of these benefits would accrue largely toColombia's public sector.

We used a supplemental method to validate the cost per case of dengue through a supplemental calculation. The consistency between our main (SOAT) and supplemental (macrocosting) approaches lent confidence in our results. The difference in cost per case between our main and supplemental approaches (USD117.50 and USD121.61, respectively) was only 3.5%. Because the SOAT approach provided greater detail, it was our preferred choice. We explored performing additional analyses by tier within Colombia's health system, but inconsistencies precluded doing this reliably with the available data (see Supporting Information S6 Text).

393	Global experience and models raise a caution that Wolbachia may not work in isolated
394	circumstances. As one example, in two nearby sites in Vietnam, Wolbachia coverage dropped in
395	one (Tri Nguyan village) but not in the other (Vinh Luong). Researchers speculated that elevated
396	temperature in water storage tanks where mosquitoes bred or an interaction with the built
397	environment may have inhibited Wolbachia replication in the ineffective village[42]. As another
398	example, in small-scale releases in Malaysia, Wolbachia were not permanently established
399	because the selected strain (wAlbB) may have been less fit than the wild mosquitoes.[42]
400	Modeling studies raise the possibility that dengue viruses could become resistant to Wolbachia.
401	Because of the multiple mechanisms by which Wolbachia inhibit dengue transmission, however,
402	any such resistance, if any, would likely evolve only slowly.[43] Resistance could be identified by
403	monitoring and possible corrective actions, such as new Wolbachia strains.
404	Our very favorable national benefit-cost ratio of 4.68 indicates that our findings are
405	robust and broadly resistant to such concerns. Our calculations show that the replacement
406	strategy would remain economically viable nationally even if 10-year efficacy declined by as
407	much as 78.6%, calculated as $(4.68 - 1)/4.68$. With that large a decline costs of USD1.00 would
408	generate benefits of USD4.68 x (100.0% - 78.6%) or USD1.00, meaning that the program would
409	just break even economically.

While our benefit-cost ratios compare *Wolbachia* against no dengue control,
policymakers may also wish to consider comparing *Wolbachia* against alternative dengue control
strategies. Among the few trials, an alternative vector control strategy based on communitybased mobilization (*Camino Verde*) proved to be effective but labor intensive and expensive. Its
cost-effectiveness ratios relative to GDP per capita were relatively unfavorable--3.0 in Mexico

415	and 16.9 in Nicaragua.[44] A modeled assessment of screening and vaccination in Colombia with
416	the first licensed dengue vaccine (Sanofi's Dengvaxia®) gave cost-effectiveness ratios relative to
417	GDP per capita ranging from 0.47 (in areas with 90% dengue seropositivity among 9 year-olds) to
418	6.72 (with 10% dengue seropositivity).[45] This strategy proved more cost-effective (lower ICER)
419	as the percentage of nine-year old seropositive individuals in the population increased.
420	The second dengue vaccine, TAK-003 (Takeda's Qdenga [®]), was licensed by the
420	The second deligue vaccine, TAK-005 (Takeda's Queliga'), was incensed by the
421	European Medicines Agency in 2022 and received pre-approval by the World Health
422	Organization in 2024.[46] Published trial results showed TAK-003 reduced dengue fever cases by
423	80% and, unlike Dengvaxia [®] , created no added risk for persons with no prior dengue
424	infection.[46] While preliminary economic models by the manufacturer projected that Qdenga®
425	would be cost saving in Puerto Rico[47] and Thailand[48], we could not find any related peer-
426	reviewed economic studies. Fig 4(B) showed that in the 9 of 11 target municipalities with
427	dengue incidence of at least 500 per 100,000 population, Wolbachia also proved cost saving.
428	As resources for public health interventions are limited, it is informative to compare the
429	cost-effectiveness of Wolbachia against that of two other public health preventive interventions
430	in Colombia. First, a year after Colombia had introduced HPV vaccination into its national
431	vaccination program, [49] a cost-effectiveness analysis reported its ICER was greater than three
432	times Colombia's then GDP per capita, so HPV was not then considered cost-effective.[50]
433	Second, a campaign to encourage COVID-19 vaccination among those at highest risk proved cost-
434	effective [51] by the latest criteria, [40] but not cost saving.
435	In addition to cost-benefit and cost-effectiveness ratios, policy makers must also

436 consider the affordability of any proposed program. The first year costs of Wolbachia

437 deployment (\$4.05 per person) represent a notable 0.8% of Colombia's 2019 per capita health 438 expenditure and might appear too expensive if widely implemented at once. However, the 439 program can become more affordable by phasing deployment across parts of a city over multiple 440 years (as happened in Cali) or sequencing successive cities in different years. 441 Several limitations should be acknowledged. The number of dengue cases differs 442 between the RIPS and Suficiencia databases, pointing to inconsistencies and/or under-reporting. 443 Second, differences in numbers of dengue cases treated among different epidemiological 444 models, macro-costing, RIPS, and SIVIGILA creates uncertainty around the estimated healthcare 445 cost offsets. Finally, our adjustments for underreporting and misdiagnosis are based on our 446 panel's expert judgment rather than objective information. However, the extremely favorable

447 benefit-cost ratios in 9 or our 11 target cities indicate that *Wolbachia* deployment would still be

448 highly favorable in those cities.

449 Key strengths also deserve highlighting. First, we believe this is the first economic 450 evaluation of Wolbachia in Colombia, building on the empirical record of efficacy and feasibility 451 from the trial in Indonesia[8] and controlled observational studies in the country.[3, 12-15] 452 Second, we used an empirical method for valuing indirect benefits based on the overall 453 economy.[40] As 64% of Colombia's workers were in the informal sector in 2020 and generally 454 earned less than formal sector workers, [52] this approach is more realistic than applying formal 455 sector wages to indirect costs of all cases, including those not employed or working informally, 456 as was done elsewhere.[19] Third, this study's number of sites (11) substantially exceeds the 457 numbers in previous economic analyses--3 in Indonesia[17] and 7 in Brazil.[19] These multiple 458 sites provided the insight that not only was *Wolbachia* beneficial overall, but it was especially

459	valuable in cities with high dengue incidence. High population density in the release area was
460	associated with somewhat more favorable outcomes. As a square kilometer with high dengue
461	incidence and high population density is one with substantial dengue burden, deploying
462	Wolbachia in such a location will generate substantial economic value. Conversely, areas with
463	relatively low incidence and low density would benefit much less; another control strategy may
464	be preferable.[53]

465

466 Conclusions

- 467 In conclusion, Wolbachia proved economically beneficial in all 11 target cities and cost saving
- 468 (paying for itself through treatment costs averted) in the 9 target cities with adjusted incidence
- of at least 500 per 100,000 population. In the future, policy makers may have a portfolio of
- 470 options to control dengue. Municipalities with both high incidence of dengue and high
- 471 population density should strongly consider trying to mobilize the resources for Wolbachia
- 472 deployment. Areas with high dengue incidence but low population density should consider
- 473 vaccination. To address the uncertainties around each dengue control technique, some experts
- 474 recommend integrating *Wolbachia*, vaccination, and case management.

475

476 Funding

This work was funded in whole, or in part, by the Wellcome Trust (grant 224459/Z/21/Z) to the
World Mosquito Program (WMP), Monash University (Clayton, VIC, Australia). For the purpose

- 479 of open access, the author has applied a CC BY public copyright license to any Author Accepted
- 480 Manuscript version arising from this submission.

481

482 Author Contributions

- 483 **Donald S. Shepard**: conceptualization; formal analysis; funding acquisition; methodology;
- 484 supervision; writing—review & editing. Samantha R. Lee: data curation; formal analysis;
- 485 writing—original draft, review & editing. Yara A. Halasa-Rappel: data curation; formal analysis;
- 486 writing—original draft, review & editing. **Carlos Rincon Perez**: methodology; data curation;
- 487 formal analysis; writing—review & editing. Arturo Harker Roa: methodology; data curation;
- 488 supervision; writing—review & editing. All authors have read and approved the final version of
- 489 the manuscript. Donald S. Shepard had full access to all of the data in this study and takes
- 490 complete responsibility for the integrity of the data and the accuracy of the data analysis.

491

492 Acknowledgments

- 493 The authors thank Luz Villarreal Salazar for serving on the study's epidemiologic panel, Ivan
- 494 Velez and Patricia Arbelaez Montoya from the WMP Colombia and Reynold Dias and Katherine
- 495 Anders from the global WMP (Australia) for Wolbachia cost data and valuable comments, and
- 496 Clare L. Hurley of Brandeis University for editorial assistance.

497

498 Conflict of Interest Statement

499	All authors received funding from the Wellcome Trust under a grant (224459/Z/21/Z) to the
500	World Mosquito Program (WMP), Monash University (Clayton, VIC, Australia), which had no
501	role in review nor the decision to submit. The direct sponsor (WMP) had the right to review but
502	authorized submission with no required changes. Donald S. Shepard has received financial
503	support from Abbott, Inc, Sanofi, and Takeda Vaccines, Inc. in the past 36 months unrelated to
504	the present study. All other authors declare no other conflicts of interest.
505	
506	Data Availability Statement
507	Data access may be requested from the respective Colombian government agencies. For RIPS,
508	see https://www.minsalud.gov.co/proteccionsocial/Paginas/rips.aspx. For population, see
509	https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-
510	poblacion/proyecciones-de-poblacion.
511	
512	Ethics Statement
513	This modeling study did not involve any human studies data as it was based entirely on

aggregate or publicly available anonymous data. These data could not allow any individual to

be identified nor linked with any individual. The research team did not prospectively nor

- retrospectively recruit human participants nor did the team obtain tissues, data, or samples for
- 517 the purposes of this study. The research team did not review existing medical records nor
- 518 archived samples. Therefore, this study was outside the purview of the Committee for
- 519 Protection of Human Studies in Research so ethical approval was not applicable.

520 Transparency Statement

- 521 The lead author Donald S. Shepard affirms that this manuscript is an honest, accurate, and
- 522 transparent account of the study being reported; that no important aspects of the study have
- 523 been omitted; and that any discrepancies from the study as planned (and, if relevant,
- 524 registered) have been explained.
- 525
- 526 **ORCID**
- 527 Donald S Shepard, (ORCID ID: 0000-0003-2187-0593)
- 528 Samantha R. Lee, (ORCID ID: 0000-0002-9225-3077
- 529 Yara A. Halasa-Rappel, (ORCID ID: 0000-0001-6564-1608)
- 530 Carlos Rincon Perez, (ORCID ID: 0009-0004-8721-9159)
- 531 Arturo Harker Roa, (ORCID ID: 0000-0003-2343-1965)

532 References

533	1.	Castro Rodríguez R, Carrasquilla G, Porra A, Galera-Gelvez K, Lopez Yescas JG, Rueda-Gallardo
534		JA. The burden of dengue and the financial cost to Colombia, 2010–2012. Am J Trop Med Hyg
535		2016;94(5):1065-72. doi: 10.4269/ajtmh.15-0280.
536	2.	Gutierrez-Barbosa H, Medina-Moreno S, Zapata JC, Chua JV. Dengue infections in Colombia:
537		Epidemiological trends of a hyperendemic country. Trop Med Infect Dis. 2020;5(4):156 doi:
538		10.3390/tropicalmed5040156.
539	3.	Humphreys G. Tackling mosquito-borne viruses in the Region of the Americas. Bull World Health
540		Organ. 2023;101:441–2. doi: 10.2471/BLT.23.020723
541	4.	Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The
542		wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature.
543		2011;476:450–3. doi: 10.1038/nature10355.
544	5.	Ross PA, Robinson KL, Yang Q, Callahan AG, Schmidt TL, Axford JK, et al. A decade of stability for
545		wMel Wolbachia in natural Aedes aegypti populations. PLoS Pathog. 2022;18(2):e1010256. doi:
546		10.1371/journal.ppat.1010256.
547	6.	World Mosquito Program. The World Mosquito Program helps protect communities around the
548		world from mosquito-borne diseases. 2023. Available from:

549 https://www.worldmosquitoprogram.org/.

550	7.	Soh S, Ho SH, Seah A, Ong J, Dickens BS, Tan KW, et al. Economic impact of dengue in Singapore
551		from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions. PLOS Glob Public

- 552 Health. 2021;1(10):e0000024. doi: 10.1371/journal.pgph.0000024.
- 553 8. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, et al. Efficacy of
- 554 Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med.
- 555 2021;384(23):2177–86. doi: 10.1056/NEJMoa2030243.
- 556 9. Dufault SM, Tanamas SK, Indriani C, Ahmad RA, Utarini A, Jewell NP, et al. Reanalysis of cluster
- 557 randomised trial data to account for exposure misclassification using a per-protocol and
- 558 complier-restricted approach. Scientific Reports. 2024;14:Article number 11207. doi:
- 559 10.1038/s41598-024-60896-9.
- 560 10. Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, et al. Effectiveness of Wolbachia-
- 561 infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne
- 562 diseases in Niterói, Brazil: A quasi-experimental study. PLoS Negl Trop Dis. 2021;15(7):0009556.
- 563 doi: 10.1371/journal.pntd.0009556.
- 11. dos Santos GR, Durovni B, Saraceni V, Souza Riback TI, Pinto SB, Anders KL, et al. Estimating the
- 565 effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de
- 566 Janeiro, Brazil: a spatiotemporal modelling study. Lancet Infect Dis. 2022;22:1587–95. doi:
- 567 10.1016/S1473-3099(22)00436-4.
- 568 12. Lenharo M. Dengue rates drop after release of modified mosquitoes in Colombia. Nature.
- 569 2023;623:235-6. doi: 10.1038/d41586-023-03346-2.

570	13.	Velez ID, Santacruz E, Kutcher SC, Duque SL, Uribe A, Barajas J, et al. The impact of city-wide
571		deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellín and
572		Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative
573		design study (version 2). F1000 Research. 2019. doi: f1000research.com/articles/8-1327.
574	14.	Velez ID, Tanamas SK, Arbelaez MP, Kutcher SC, Duque SL, Uribe A, et al. Reduced dengue
575		incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian
576		cities: Interrupted time series analysis and a prospective case-control study. PLoS Negl Trop Dis.
577		2023;17(11):e0011713. doi: 10.1371/journal.pntd.0011713.
578	15.	Velez ID, Uribe A, Barajas J, Uribe S, Ángel S, Suaza-Vasco JD, et al. Large-scale releases and
579		establishment of wMel Wolbachia in Aedes aegypti mosquitoes throughout the Cities of Bello,
580		Medellín and Itagüí, Colombia. PLoS Negl Trop Dis. 2023;17(11):e0011642. doi:
581		10.1371/journal.pntd.0011642.
582	16.	Governorate of Valle del Cauca. This Monday, the 'Wolbachia' project is launched in Yumbo to
583		combat dengue. 2023. Available from:
584		https://www.valledelcauca.gov.co/publicaciones/78449/este-lunes-se-lanza-en-yumbo-el-
585		proyecto-wolbachia-con-el-que-se-busca-combatir-el-dengue/.
586	17.	Brady OJ, Kharisma DD, Wilastonegoro NN, O'Reilly KM, Hendrickx E, Bastos LS, et al. The cost-
587		effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: A

588 modelling study. BMC Med. 2020;18(1):186. doi: 10.1186/s12916-020-01638-2.

- 18. Turner HC, Quyen DL, Dias R, Huong PT, Simmons CP, Anders K. An economic evaluation of
- 590 Wolbachia deployments for dengue control in Vietnam. PLoS Negl Trop Dis.
- 591 2023;17(5):e0011356. doi: 10.1371/journal.pntd.0011356.
- 19. Zimmermann IR, Fernandes RRA, da Costa MGS, Pinto M, Peixoto HM. Simulation-based
- 593 economic evaluation of the Wolbachia method in Brazil: A cost-effective strategy for dengue
- 594 control. Lancet Reg Health Am. 2024;35:100783. doi: 10.1016/j.lana.2024.100783.
- 595 20. Shepard DS, Hariharan D, Ratu A, Anders K. Cost-benefit analysis of Wolbachia to control dengue
- 596 in Suva, Fiji and Port Vila, Vanuatu. Annual Conference of the American Society of Tropical
- 597 Medicine and Hygiene (virtual meeting, presentation 1449, Slide 14. 15-19 Nov 2020.
- 598 21. Knerer G, Currie CSM, Brailsford SC. The economic impact and cost-effectiveness of combined
- 599 vector-control and dengue vaccination strategies in Thailand: Results from a dynamic
- transmission model. PLoS Negl Trop Dis. 2020;14:e0008805. doi: 10.1371/journal.pntd.0008805.
- 601 22. Drummond MF, Sculpher MJ, Claxton K, Stoddard GL, Torrance GW. Methods for Economic
- 602 Evaluation of Health Care Programmes. Fourth Edition. New York Oxford; 2015.
- 23. Zeng W, Halasa-Rappel YA, Durand L, Coudeville L, Shepard DS. Impact of a nonfatal dengue
- 604 episode on disability-adjusted life years: A systematic analysis. Am J Trop Med Hyg.
- 605 2018;99(6):1458-65. doi: 10.4269/ajtmh.18-0309.
- 606 24. The World Bank. GDP per capita (current US\$). 2020. Available from:
- 607 https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=CO,%20Accessed%207/29/20
- 608

22.

609	25.	Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: A
610		systematic analysis. Lancet Inf Dis. 2016;16(8):935-41. doi: 10.1016/S1473- 3099(16)00146-8.
611	26.	Exchange Rates. US dollar to Colombian peso spot exchange rates for 2016. 2023. Available
612		from: https://www.exchangerates.org.uk/USD-COP-spot-exchange-rates-history-2016.html.
613	27.	Gobierno de Colombia M. Condiciones de salud para djuste de riesgo de la UPC y mecanismo de
614		incentivos para el mejoramiento de la claidad y los resultados en salud [Health conditions for
615		UPC risk adjustment and incentive mechanism for quality improvement and health outcomes].
616		2022. Available from:
617		https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VP/DOA/condiciones-salud-
618		upc- incentivos-calidad-resultados-salud-2022.pdf.
619	28.	Bill and Melinda Gates Foundation. Indirect Cost Guidelines. 2010. Available from:
620		https://docs.gatesfoundation.org/documents/historical_indirect_cost_policy.pdf.
621	29.	Gobierno de Colombia M. Estructura del gasto en Salud Pública en Colombia, Papeles en Salud.
622		Edicion No 17. 2018. Available from:
623		https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PES/estructura-gasto-
624		salud- publica-colombia.pdf.
625	30.	Ministerio de Salud y Protección Social. Cifras de aseguramiento en salud. 2022. Available from:
626		https://www.minsalud.gov.co/proteccionsocial/Paginas/cifras-aseguramiento-salud.aspx.
627	31.	Organization for Economic Cooperation and Development (OECD). Health at a Glance 2021:
628		OECD Indicators. Paris: OECD Publishing; 2021. Available from:
629		https://doi.org/10.1787/ae3016b9-en.

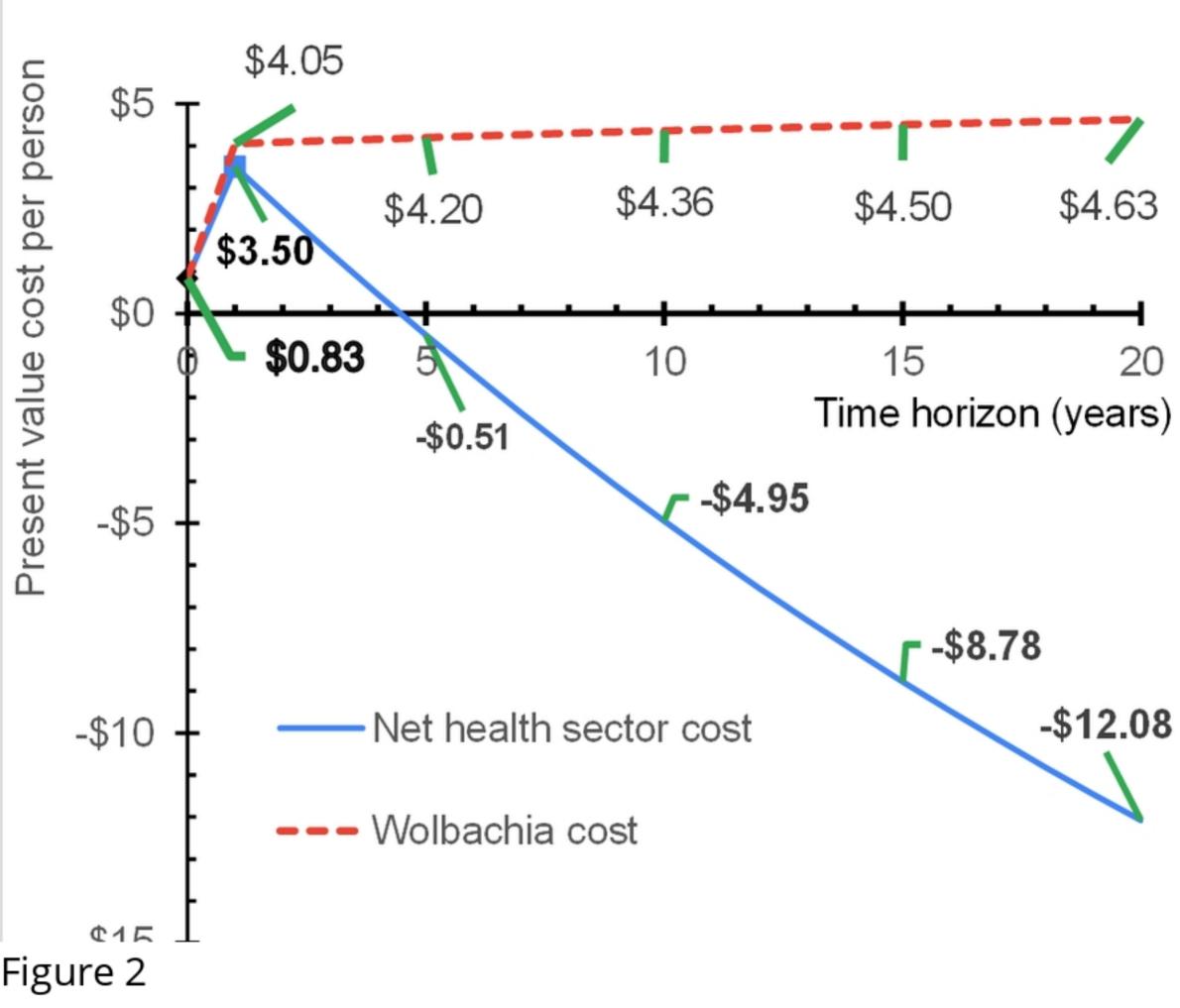
- 630 32. Shepard DS, Hodgkin D, Anthony YE. Analysis of Hospital Costs: A Manual for Managers. Geneva,
- 631 Switzerland: World Health Organization; 2000.
- 632 33. Worldometer. Colombia population. 2022. Available from:
- 633 https://www.worldometers.info/world-population/colombia-population/.
- 634 34. Bertram MY, Lauer JA, Stenberg K, Edejer TTT. Methods for the economic evaluation of health
- 635 care interventions for priority setting in the health system: an update from WHO CHOICE. Int J
- 636 Health Policy Manag. 2021;10(11):673–7. doi:10.34172/ijhpm.2020.244.
- 637 35. Faria R, Duarte A, McKenna C, Revill P, Cary M, Byford S. Guidelines for the economic evaluation
- of healthcare technologies in Colombia: technical support documents. Bogota: Instituto de
- 639 Evaluación Tecnológica en Salud; 2014. Available from:
- 640 https://www.iets.org.co/Archivos/66/Documentos_tecnicos_en_ingles.pdf.
- 641 36. World Health Organization Commission on Macroeconomics and Health. Macroeconomics and
- 642 health: Investing in health for economic development: Executive summary. 2001. Available
- 643 from: http://www.who.int/iris/handle/10665/42463.
- 644 37. Bertram MY, Lauer JA, De Joncheere K, Edejer T, Hutubessy R, Kienya M-P, et al. Cost-

645 effectiveness thresholds: Pros and cons. Bull World Health Organ. 2016;94:925–30. doi:

- 646 10.2471/BLT.15.164418.
- 647 38. Lasalvia P, Hernández F, Gil-Rojas Y, Rosselli D. Incremental cost-effectiveness analysis of
- 648 tyrosine kinase inhibitors in advanced non-small cell lung cancer with mutations of the
- 649 epidermal growth factor receptor in Colombia. Expert Review of Pharmacoeconomics &
- 650 Outcomes Research. 2021;21(4):821-7. doi: 10.1080/14737167.2020.1779063

651	39.	Nu Vu A, Hoang MV, Lindholm L, Sahlen KG, Nguyen CTT, Sun S. A systematic review on the
652		direct approach to elicit the demand side cost-effectiveness threshold: Implications for low- and
653		middle-income countries. PLoS One. 2024;19(2):e0297450. doi: 10.1371/journal.
654	40.	Pichon-Riviere A, Drummond M, Palacios A, Garcia-Marti S, Augustovski F. Determining the
655		efficiency path to universal health coverage: cost-effectiveness thresholds for 174 countries
656		based on growth in life expectancy and health expenditures. Lancet Glob Health.
657		2023;11(6):e833-e42. doi: 10.1016/S2214-109X(23)00162-6.
658	41.	Cao Z, Chen S. Innovative methods of determining health expenditure efficiency are urgently
659		needed. Lancet Glob Health. 2023;11(6):e797-e8. doi: 10.1016/S2214-109X(23)00196-1.
660	42.	Hien NT, Anh DD, Le NH, Yen NT, Phong TV, Nam VS, et al. Environmental factors influence the
661		local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in
662		central Vietnam. Gates Open Res. 2022;5:147. doi: 10.12688/gatesopenres.13347.2.
663	43.	Edenborough KM, Flores HA, Simmons CP, Fraser JE. Using Wolbachia to eliminate dengue: Will
664		the virus fight back? J Virol. 2021;95:e02203-20. doi: 10.1128/JVI .02203-20.
665	44.	Tschampl CA, Undurraga EA, Ledogar RJ, Coloma J, Legorreta-Soberanis J, Paredes-Solís S, et al.
666		Cost-effectiveness of community mobilization (Camino Verde) for dengue prevention in
667		Nicaragua and Mexico: A cluster randomized controlled trial. Int J Infect Dis. 2020;94:59–67. doi:
668		10.1016/j.ijid.2020.03.026.
669	45.	Coudeville L, Baurin N, Shepard DS. The potential impact of dengue vaccination with, and
670		without, pre-vaccination screening. Vaccine. 2020;38(6):1363–9. doi:
671		10.1016/j.vaccine.2019.12.012.

672	46.	World Health Organization. WHO prequalifies new dengue vaccine. Geneva: WHO; 2024.
673		Available from: https://www.who.int/news/item/15-05-2024-who-prequalifies-new-dengue-
674		vaccine.
675	47.	Kaul RR. Summary of two economic models for dengue vaccine TAK-003 use in Puerto Rico.
676		2023. Available from: https://stacks.cdc.gov/view/cdc/130011/cdc_130011_DS1.pdf
677	48.	Shen J, Kharitonova E, Biswal S, Sharma M, Aballea S, TytuEa A, et al. Disease impact and cost-
678		effectiveness of a new dengue vaccine TAK003 in Thailand. International Journal of Infectious
679		Diseases. 2023;130(Supplement 2):S141. doi: 10.1016/j.ijid.2023.04.347.
680	49.	Pan American Health Organization (PAHO). Colombia Introduces HPV Vaccine into National
681		Immunization Schedule. 2012. Available from:
682		https://www3.paho.org/hq/index.php?option=com_content&view=article&id=7358:2012.
683	50.	Aponte-González J, Fajardo-Bernal L, Diaz J, Eslava-Schmalbach J, Gamboa O, Hay JW. Cost-
684		effectiveness analysis of the bivalent and quadrivalent human papillomavirus vaccines from a
685		societal perspective in Colombia. PloS One. 2013;8(11):e80639. doi:
686		10.1371/journal.pone.0080639.
687	51.	Morales-Zamora G, Espinosa O, Puertas E, Fernández JC, Hernández J, Zakzuk V, et al. Cost-
688		effectiveness analysis of strategies of COVID-19 vaccination in Colombia: Comparison of high-
689		risk prioritization and no prioritization strategies with the absence of a vaccination plan. Value
690		Health Reg Issues. 2022;31:101-10. doi: 10.1016/j.vhri.2022.04.004.
691	52.	Danish Trade Union Development Agency, Norwegian Confederation of Trade Unions. Labour
692		Market Profile Colombia – 2023/2024. Copenhagen: Ulandssekretariatet; 2023. Available from: 40


- 693 https://www.ulandssekretariatet.dk/wp-content/uploads/2023/06/LMP-Colombia-2023-
- 694 final.pdf.
- 695 53. Ooi EE, Wilder-Smith A. Externalities modulate the effectiveness of the Wolbachia release
- 696 programme. Lancet Inf Dis. 2022;22(11):1518-9. doi: 10.1016/S1473-3099(22)00497-2.

698	Figure Legends
699	Fig 1. Economic benefits of Wolbachia by component and time horizon
700	
701	Fig 2. Gross and net healthcare costs of Wolbachia by component and time horizon
702	
703	Fig 3. Program impacts (DALYs and benefit-cost ratios) in Cali by time horizon
704	Note: DALYs denote disability adjusted life years
705	
706	Fig 4. Estimated benefit-cost ratios by city with a 10-year horizon
707	
708	
709	Supporting Information
710	S1 Table. Input data for target cities
711	S2 Text: Macro-costing approach
712	S3 Table. Macro-costing approach to estimate the average cost of an outpatient visit and hospitalization

713 (monetary amounts in 2020 USD)

- 54 Table. Health care cost of dengue cases by type of dengue diagnosis and setting using macro-costing
- 715 (amounts in 2019-2020 USD)
- 716 S5 Table. Cost of dengue case by dengue type (Tarifa SOAT for reported), 2019-20 USD
- 717 S6 Text.

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

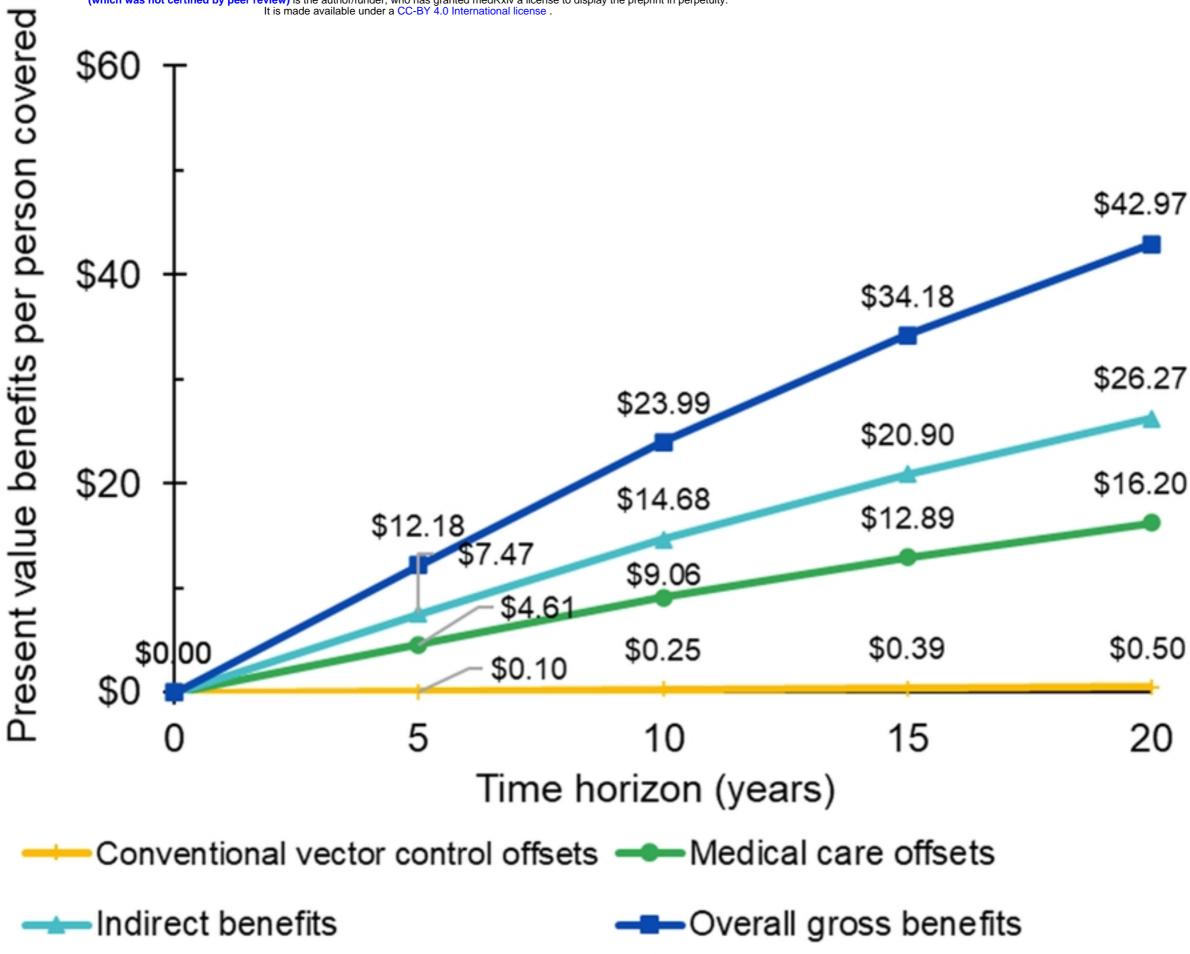


Figure 1

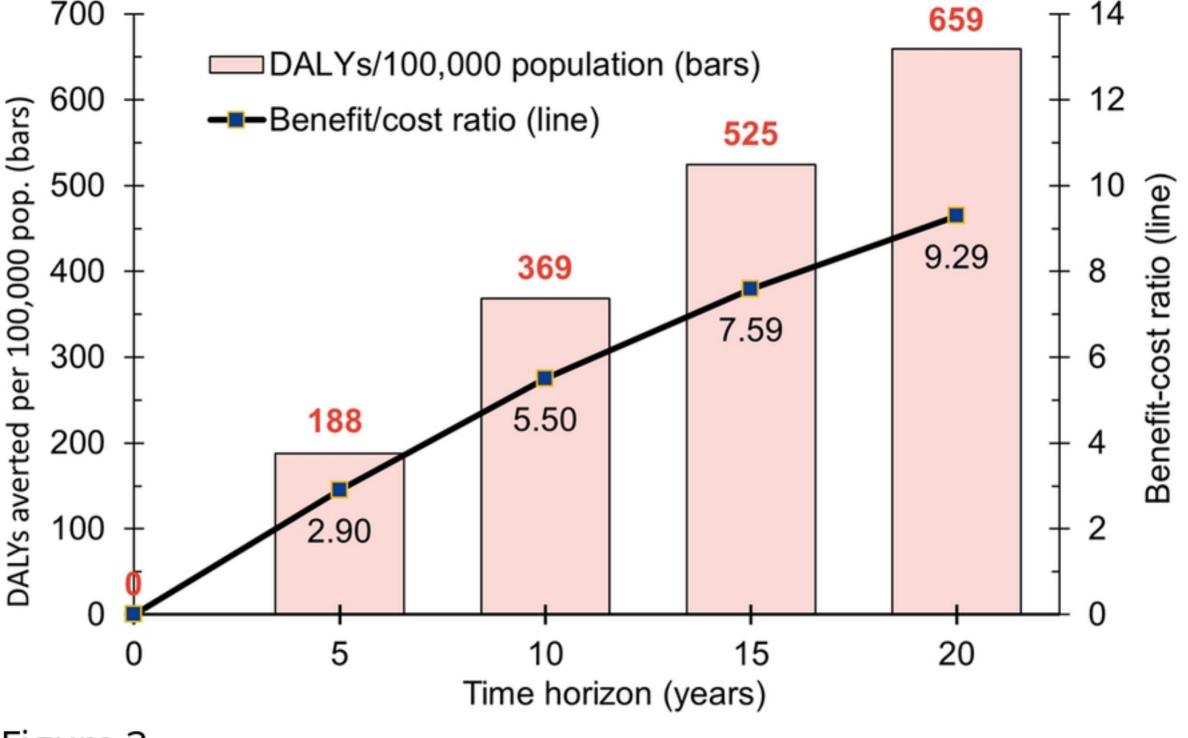


Figure 3

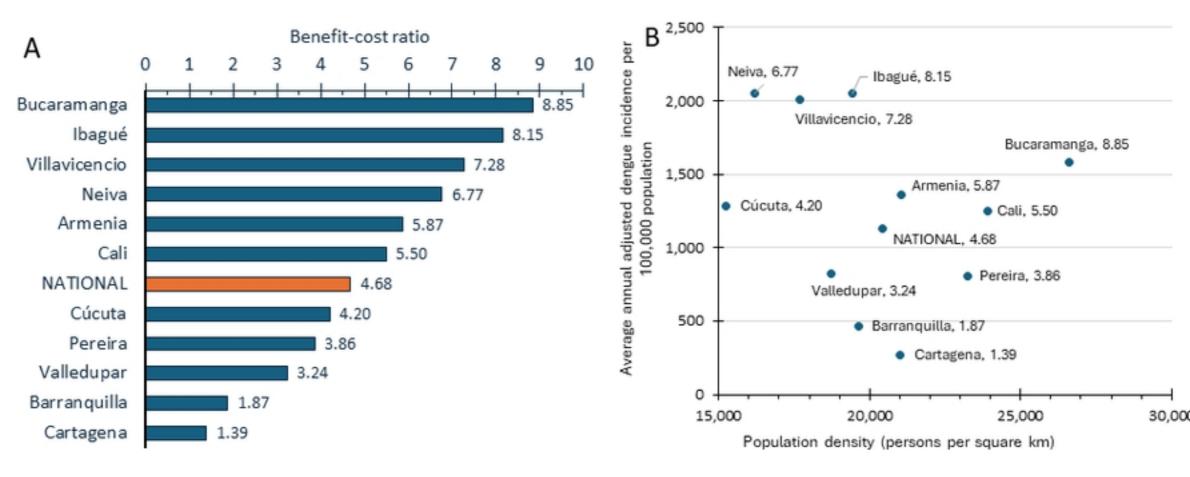


Figure 4