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Abstract  
In large cohort studies the number of unaffected individuals outnumbers the number of affected 
individuals, and the power can be low to detect associations for outcomes with low prevalence. We 
consider how including recorded family history in regression models increases the power to detect 
associations between genetic variants and disease risk. We show theoretically and using Monte-Carlo 
simulations that including family history of the disease, with a weighting of 0.5 compared to true cases, 
increases the power to detect associations. This is a powerful approach for detecting variants with 
moderate effects, but for larger effect sizes a weighting of >0.5 can be more powerful. We illustrate 
this both for common variants and for exome sequencing data for over 400,000 individuals in UK 
Biobank to evaluate the association between the burden of protein-truncating variants in genes and 
risk for 4 cancer types.  
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Introduction 
Genome-wide association studies (GWAS) have been highly successful in identifying common variants 
associated with disease. Increasingly, association studies are being extended to study rare variants 
using next-generation sequencing methods. Variants strongly predisposing to disease tend to be 
maintained at low allele frequencies in the population due to purifying selection, meaning that the 
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power to detect rare variants individually is low, even in very large datasets such as UK Biobank, and 
careful consideration must be given to analysis methods. A common approach to improve power is to 
aggregate rare variants, e.g., within genes, using burden tests, with the rationale that similar variants 
in the same gene are likely to have similar effects. A valuable additional source of information, often 
collected in research studies, is the family history of a disease. Individuals with affected relatives are 
more likely to carry risk variants than those without a family history. This phenomenon has been used 
to design more efficient GWAS by selecting cases enriched for family history (Antoniou & Easton, 2003) 
and the same argument applies to rare variant association studies. Here we consider how such family 
history information should be best incorporated in rare variant association analyses. This is particularly 
relevant in the analysis of data from large cohort studies, in which the number of unaffected 
individuals far outnumber the cases and the number of unaffected individuals with a family history 
may be significant. For example, for diseases that are largely restricted to one sex (e.g., breast or 
prostate cancer), incorporating family history information allows data for individuals of both sexes to 
be utilised. Utilising ‘proxy’ family history data may also be important in situations where genotypes 
on cases cannot be obtained (e.g., diseases with high fatality). 
 
Lui et al. (2017) developed a method to test for associations between SNPs and disease by including 
family history information in controls. They defined ‘proxy cases’ as controls with affected first-degree 
relatives, and ‘true controls’ to be controls with no affected first-degree relatives. They tested for 
association between carrier status and the three possible outcomes (case, ‘proxy case’ or ‘true 
control’) using a 3x2 chi-square test with three outcomes. This test showed greater power to detect 
associations than a 2x2 chi-square test comparing just cases and controls (Liu et al., 2017). An 
alternative method, which included information for first-degree relatives of cases as well as controls, 
was suggested by Hujoel et al. (2019); the Liability Threshold Family History (LT-FH) method. This has 
greater power than the Liu et al (2017) approach (Hujoel et al., 2019) and has also been used in a rare 
variant burden test framework: the family history aggregation unit-based test (FHAT). This approach 
requires the full genotype matrix for each gene to calculate the test statistic (Wang et al., 2022). Our 
method has a similar rationale, using kinship and first-degree relatives, but uses logistic regression 
directly on the aggregated burden variable.  
 
In our approach, we consider a logistic regression model to test for an association between disease 
and gene variant burden that incorporates information on the family history of both cases and 
controls. Our proposed method weights the disease status of first-degree relatives by k, i.e. 

log $ !(#$%)
%'!(#$%)

% = 𝛼 + 𝛽%(𝐶𝑎𝑠𝑒 + 𝑘𝐹𝐻) + 𝛽(𝑆𝑒𝑥 + 𝛽)𝑥)… where G is the gene burden, Case is the 

proband’s disease status (0 or 1) and FH i is the (first-degree) family history of disease status (0 or 1). 
We consider specifically the case k=1/2, which is theoretically optimal under limiting conditions. We 
illustrate the method using data from the UK Biobank to show how it improves power to detect 
associations for several cancers.  
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Methods  
 

Model Motivation 
We first consider association tests for a common variant. Let 𝑝 be the frequency of the risk allele, 
which we assume is associated with an increased relative risk 𝑒*  per allele, where 𝛽 is assumed to be 
small. Let 𝐷+ = (𝐷+,, 𝐷+%, . . 𝐷+-(+)) be the disease phenotypes (0,1) of the j=1..m(i) individuals in family 
i=1..n, where individual j=0 is the typed proband, and 𝐺+ = (𝐺+,, 𝐺+%, . . 𝐺+-(+)) be the corresponding 
genotypes (𝐺+. =	0, 1 or 2 observed alleles). We show in Supplementary Methods that the score test 
for H0: b=0 has the form:	 

𝑈 ==>=(𝐷+. − Λ,A𝑡+.C)
-

.$,

2𝜙+,.F (𝑔+, − 2𝑝)
+

 

 
With variance under the null: 

𝑉 = 2𝑝(1 − 𝑝)𝑁𝑣𝑎𝑟 $∑ (𝐷.. − Λ,A𝑡..C)
-(.)
.$, 2𝜙.,.%,  

 
Here 𝜙+.0 is the kinship coefficient between individuals j and k in pedigree I and Λ,(𝑡) is the 
cumulative disease hazard in the population to age t. Thus, the (locally) most powerful test, for small 
effect sizes b, generalises a simple case-control analysis by replacing the disease status with the 
disease number of affected individuals in the pedigree, weighted by their degree of relationship to the 
proband, minus the weighted sum of the predicted number of affected individuals based on 
population incidence rates, and regressing this against the genotypes. 
 
In practice, full pedigree data are not typically available: it is more usual for summary variables 
indicating a positive family history (yes/no) or the number of affected relatives, typically just first-
degree relatives, to be provided. If we assume that the disease phenotype is relatively rare so that 
most individuals are unaffected, then the Λ,(𝑡+0) terms can be ignored, and the test reduces to 

regressing the genotypes against 𝐷+, +
%
1
𝑓+., i.e., the disease status of the proband plus ½ the number 

of affected first-degree relatives 𝑓. In the analyses considered here, the possibility of more than 1 
affected relative is ignored so that 𝑓+  = 0 or 1. 
 

Gene burden tests 
Single variant association tests are generally underpowered for rare variants; however, burden tests, 
in which variants within units, e.g., a gene, are collapsed together can be more powerful if the variants 
have similar effect sizes (Lee et al., 2014). Here we consider the simplest type of burden test where 
genotypes are collapsed to a 0/1 variable based on whether samples carry a variant of a given class 
(e.g., PTVs or rare missense variants in a specific gene). That is, 𝐺+ = 1	𝑖𝑓	 ∑ 𝑔+.

2
.$% >

0	𝑎𝑛𝑑	0	𝑖𝑓 ∑ 𝑔+.
2
.$% = 0	 where 𝑔+.  = 0, 1, 2 is the number of minor alleles observed for sample i at 

variant j, and p is the number of variants in the gene.  
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To apply the approach described above, we fit logistic regression models in which the carrier status is 
the outcome variable, and the disease phenotype is a covariate. Thus, a standard logistic regression 
model for the case-control study would be of the form:  

𝐌𝐨𝐝𝐞𝐥	𝟏:	 log [
𝑃(𝐺 = 1)

1 − 𝑃(𝐺 = 1)]
= 𝛼 + 𝛽%𝐶𝑎𝑠𝑒 + 𝛽(𝑆𝑒𝑥 + 𝛽)𝑥)… 

Case is a binary variable for if an individual is a case or control, Sex is a binary variable for female or 
male, and 𝑥)...represent other covariates, e.g., genetic principal components (PCs). G is a binary 
variable summarising the genotype (G=1 for a carrier, G=0 for a non-carrier). To incorporate family 
history, we could add the covariate FH:  

𝐌𝐨𝐝𝐞𝐥	𝟐:	 log [
𝑃(𝐺 = 1)

1 − 𝑃(𝐺 = 1)]
= 𝛼 + 𝛽%𝐶𝑎𝑠𝑒 + 𝛽1𝐹𝐻 + 𝛽(𝑆𝑒𝑥 + 𝛽)𝑥)… 

 
FH is a binary variable for whether the individual has an affected first-degree relative or not. A test for 
an association is a test of the null hypothesis 𝐻,: 𝛽% = 𝛽1 = 0, leading to a 2-degree freedom (df) test. 
The test proposed by Liu et al is a 𝜒1score test, without additional covariates, but a likelihood ratio or 
Wald test is equivalent.  
 
However, motivated by the arguments above, we consider a modification in which the effect size 
associated with family history is a predetermined fixed multiple of the case-control effect size, i.e., 
𝛽1 = 𝑘𝛽%.  
 

𝐌𝐨𝐝𝐞𝐥	𝟑:	 log [
𝑃(𝐺 = 1)

1 − 𝑃(𝐺 = 1)]
= 𝛼 + 𝛽%(𝐶𝑎𝑠𝑒 + 𝑘𝐹𝐻) + 𝛽(𝑆𝑒𝑥 + 𝛽)𝑥)… 

 
This leads to a 1-df test 𝐻,: 𝛽% = 0. As above, we postulate that k=1/2 is likely to be a reasonable 
choice. Model 1 is equivalent to k=0, and k=1 is equivalent to treating a positive family history as 
equivalent to a case. 
 
For the main burden association results, generated using Model 3, we test for association using the 
Wald p-value associated with 𝛽%. However, to compare the power of Models 1-3 we use the likelihood 
ratio tests, comparing with the null model: 

𝐌𝐨𝐝𝐞𝐥	𝐧𝐮𝐥𝐥:	 log [
𝑃(𝐺 = 1)

1 − 𝑃(𝐺 = 1)]
= 𝛼 + 𝛽(𝑆𝑒𝑥 + 𝛽)𝑥)… 

 
In the case of rare alleles conferring a moderate risk, so that 𝛽 is no longer close to zero, it is less clear 
that model 3 with k=1/2 provides the most powerful test. As an alternative motivation, we note that 
for a rare risk allele conferring a relative risk 𝑒*, the allele frequency in individuals with an affected 

first-degree relative is ~2𝑝 %
1
A𝑒* + 1C that is approximately the mean of the frequency in cases and 

controls (Risch, 1990). This corresponds to a model in which 𝑒*! = %
1
A𝑒*" + 1C. When 𝛽 = 𝛽% is small 

this reduces to 𝛽1 =
%
1
𝛽% i.e., k=½ as proposed. However, for larger effect sizes this predicts 𝛽1 >

%
1
𝛽%; 

hence, k>1/2 may provide a more powerful test in this scenario. We examine the power of alternative 
values of k. 
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For commoner variants (such as SNPs in GWAS), the genotype G has three levels (0, 1 and 2). The 
equivalent to models 1-3 are then adjacent-categories models: 
 

𝐌𝐨𝐝𝐞𝐥	𝟏:	 log d
𝑃(𝐺 = 𝑗 + 1)
𝑃(𝐺 = 𝑗)

f = 𝛼., + 𝛽%𝐶𝑎𝑠𝑒 + 𝛽(𝑆𝑒𝑥 

𝐌𝐨𝐝𝐞𝐥	𝟐:	 log [
𝑃(𝐺 = 𝑗 + 1)
𝑃(𝐺 = 𝑗) ] = 𝛼., + 𝛽%𝐶𝑎𝑠𝑒 + 𝛽1𝐹𝐻 + 𝛽(𝑆𝑒𝑥 

𝐌𝐨𝐝𝐞𝐥	𝟑:	 log [
𝑃(𝐺 = 𝑗 + 1)
𝑃(𝐺 = 𝑗) ] = 𝛼., + 𝛽%(𝐶𝑎𝑠𝑒 + 𝑘𝐹𝐻) + 𝛽(𝑆𝑒𝑥 

In these models, 𝛽% is the per-allele OR for the disease associated with the variant, and 𝛽1 is the per-
allele OR for a positive family history.  
 

Theoretical Power and Effective Sample Size 
We can also derive approximate expressions for the gain in power achievable by incorporating family 
history in this way, expressed in terms of the relative sample size relative to a case-control study with 
equal numbers of cases and controls. Suppose there are N0 controls, n1 with a family history and n0 
without, and N1 cases, and n3 with a family history and n2 without. 

 Control Case 

FH=0 n0 n2 

FH=1 n1 n3 

 N0 N1 
 
We let 𝐷+. = 0,1 be the disease status of individual j in family i, as above. Here 𝑑+ = 𝐷+, is the disease 
status of the proband, and 𝑓+ = 0,1 according to whether the proband has a positive family history or 
not. Let p be the population allele frequency and b the per-allele rate ratio.  
 
In the simple case-control analysis, excluding family history, the standard test is of the form: 

𝑈 ==A𝑑+ − �̅�C(𝑔+ − �̅�)
+

==𝑑+′𝑔+′
+

 

With variance: 𝑉 = 𝑁𝑣𝑎𝑟A𝑑′C𝑣𝑎𝑟(𝑔′) 

Where 𝑑+3 = 𝑑+ − �̅� and 𝑔+3 = 𝑔+ − �̅� are normalised phenotypes and genotypes with mean 0, and 𝑁 =
𝑁, +𝑁% is the total number of genotyped individuals This gives a Z-score of the form: 

𝑍 = 𝑈/√𝑉 
 
where, under the alternative (see Supplementary Methods): 

𝐸(𝑍|𝛽) = 𝛽n2𝑝(1 − 𝑝)
𝑁,𝑁%
𝑁% +𝑁,

 

This is a standard formula for deriving the power of a case-control study, excluding family history. The 
effective sample size is, by definition, the sample size of a case-control study with equal numbers of 
cases and controls that would give the same power, leading the usual formula: 

𝑁455% =
2𝑁,𝑁%
𝑁% +𝑁,

= 2 [
1
𝑁%
+
1
𝑁,
]
'%

 

.  
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Now we consider the test for our models, which is instead based on: 

𝑈 ==(𝑢+ − 𝑢p)(𝑔+ − �̅�)
+

==𝑢+′𝑔+′
+

 

Where the phenotype 𝑢+ = 𝑑+ +
%
1
𝑓+, with family history weighted by ½.  

 
We show that (Supplementary Material Methods): 

𝐸(𝑍|𝛽) = 𝛽q2𝑝(1 − 𝑝)𝑁𝑣𝑎𝑟A𝑢3C

= 𝛽n𝑝(1 − 𝑝)
1
2𝑁

(𝑛,𝑛% + 𝑛%𝑛1 + 𝑛1𝑛( + 4(𝑛,𝑛1 + 𝑛%𝑛() + 9𝑛,𝑛() 

 
Therefore, the effective sample size is: 

𝑁4551 =
1
2𝑁

(𝑛,𝑛% + 𝑛%𝑛1 + 𝑛1𝑛( + 4(𝑛,𝑛1 + 𝑛%𝑛() + 9𝑛,𝑛() 

 
In the absence of family history, i.e. 𝑛% = 𝑛( = 0, this reduces to 2𝑛,𝑛1/𝑁 as expected. 
 
It is possible to also calculate an effective population size if instead, the approach of Liu et al (2017) of 
grouping cases and controls with a family history (“proxy cases”) together, is used. Here the phenotype 
𝑦+ = max	(𝑑+ , 𝑓+) (Liu et al., 2017). 
 
In this case, the test statistic is of the form: 

𝑈 ==(𝑦+ − 𝑦p)(𝑔+ − �̅�)
+

==𝑦+′𝑔+′
+

 

With variance: 
 

𝑉3 = 𝑁𝑣𝑎𝑟(𝑦+)𝑣𝑎𝑟(𝑔) 
 
We show that (Supplementary Material Methods): 

𝐸(𝑍|𝛽) = n
𝑛,(𝑛% + 2𝑛1 + 3𝑛()1𝑝(1 − 𝑝)

2𝑁(𝑛% + 𝑛1 + 𝑛()
 

 
Therefore, the effective sample size is: 

𝑁455( =
𝑛,(𝑛% + 2𝑛1 + 3𝑛()1

2𝑁(𝑛% + 𝑛1 + 𝑛()
 

 
 
We derive effective sample sizes in UK Biobank	for breast, prostate, bowel, and lung cancer using 
these different approaches.  
 

UK Biobank  
UK Biobank is a population-based prospective cohort study of more than 500,000 individuals. More 
detailed information on the UK Biobank is given elsewhere (Collins, 2012; Sudlow et al., 2015). WES 
data for 450,000 samples were released in October 2021 and accessed via the UK Biobank DNA Nexus 
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platform (Backman et al., 2021). QC metrics were applied to Variant Call Format (VCF) files as 
described by Gardner et Al, including genotype level filters for depth and genotype quality (Gardner 
et al., 2022). Other filters including samples with disagreement between genetically determined and 
self-reported sex, excess relatives etc were applied as described elsewhere (Wilcox et al., 2023). The 
final dataset for analysis included 419,307 samples with 227,393 females and 191,914 males.  
 
Cases for breast cancer, prostate cancer, bowel cancer, and lung cancer were determined by linkage 
to national cancer registration data (NCRAS) and selecting the appropriate ICD 10 codes 
(Supplementary Table 1). For breast cancer, we also included self-reported cancer. Both prevalent and 
incident cases were included. Only cancers which were an individual’s first or second diagnosed cancer 
were included as cases. The numbers of cases for males and females for each cancer are provided in 
Table 1.  
 
Table 1 | The number of female and male cases and controls for each cancer using the ICD-10 codes in Supplementary 
Table 1. 

 
Females Males 

Control Case Control Case 

Breast cancer 209,435 17,958 191,820 94 

Prostate cancer 227,393 0 180,249 11,665 

Bowel cancer 224,404 2,989 187,956 3,958 

Lung cancer 225,641 1,752 190,009 1,905 
 
The Ensembl Variant Effect Predictor (VEP) was used to annotate variants, including the 1000 genomes 
phase 3 allele frequency, sequence ontology variant consequences and exon/intron number (McLaren 
et al., 2016). Annotation files were used to identify PTVs and rare (allele frequency <0.001 in both the 
1000 genomes dataset and the current dataset) missense variants. PTVs in the last exon of each gene 
and the last 50 bp of the penultimate exon were excluded as these are generally predicted to escape 
Nonsense-Mediated mRNA Decay (NMD). 
 
UK Biobank imputed genetic data was also accessed to explore results for 4 known breast cancer 
GWAS SNPs (Easton et al., 2007; Fachal et al., 2020; Michailidou et al., 2017; Turnbull et al., 2010). 
Genome-wide genotyping was performed using the UK Biobank Axiom Array, where approximately 
850,000 variants were measured, and this was imputed to >90 million variants using the Haplotype 
Reference Consortium and UK10K+10000 Genome’s reference panels. This dataset contained 
information for 451,959 individuals (245,215 females).  
 

Monte Carlo Simulations 
We used Monte Carlo simulations to compare the power of models 2 and 3. We simulated N datasets 
under alternate hypotheses with specified OR and k values, each of size n=450,000. The generated 
proportions of males and females, cases/controls and positive and negative family history were the 
same as for cancer phenotypes in the UK Biobank dataset (Table 2). For each variable, this was done 
using random sampling from a binomial distribution. We then generated a binary carrier variable, 
indicating if an individual carried a risk variant, based on predicted probabilities from the logistic 
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regression with coefficients (𝛼, 𝛽%=log(OR), 𝛽1 = klog(OR), 𝛽().  This was repeated for each of the 
5,000 simulated datasets. The power was calculated as the proportion of times the null hypothesis 
was correctly rejected for the models, i.e., the proportion of p-values less than 0.05 for nominal 
significance, or less than 2.5x10-6 for exome-wide significance, based on the appropriate likelihood 
ratio test. 
 

Table 2 | Proportions used to simulate datasets for MC power calculations for the 4 cancers. 

 Females 
Cases 
within 

Females 

Cases 
within 
Males 

FH=1 
within 
Female 

Controls 

FH Cases 
within 
Female 
Cases 

FH Cases 
within 
Male 

Controls 

FH Cases 
within 
Male 
Cases 

Breast 
Cancer 

0.54 0.079 0.00049 0.11 0.18 0.10 0.16 

Prostate 
Cancer 

0.54 0 0.061 0.081 0 0.077 0.15 

Bowel 
Cancer 

0.54 0.013 0.021 0.11 0.15 0.12 0.18 

Lung 
cancer 

0.54 0.0077 0.0099 0.13 0.23 0.13 0.22 

 

Results 
Breast Cancer: known genes  
The ORs and p-values for the five “known” genes, under the different models, are given in Table 3. 
The association was most significant for model 3 (assuming k=1/2) for truncating variants in ATM, 
CHEK2 and PALB2, and also for rare missense variants in CHEK2. For BRCA1 and BRCA2, the association 
tests were more significant under model 2. It is notable that for these genes, which are associated 
with the highest risks, the estimated values of k were the largest (all greater than 0.5), as expected. 
However, only for BRCA1 and BRCA2 did estimating k improve the significance, showing the benefit of 
model 3 for detecting associations with modest effect sizes.  
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Table 3 | ORs from models 1-3 for breast cancer risk for PTVs in known risk genes. For model 2 the ‘true’ 𝑘# = 𝛽$/𝛽%	is 
calculated, and model 3 uses k=1/2.  P-values are from the LRT to the Null model.  

 
model 1 model 2 model 3 

OR OR KT OR 

PTVs 

ATM 
2.23 (1.79, 2.79), 

p=1.25x10-10 
2.14 (1.71, 2.68), 

p=9.87x10-17 0.66 
2.32 (1.94, 2.76), 

p=1.77x10-17 

BRCA1 
9.09 (6.75, 12.2), 

p=4.66x10-38 
7.64 (5.67, 10.3), 

p=4.61x10-78 
0.78 

11.3 (8.97, 14.3), 
p=1.26x10-75 

BRCA2 
6.12 (5.22, 7.19), 

p=1.31x10-83 
5.42 (4.61, 6.37), 

p=1.32x10-151 
0.72 

6.79 (5.98, 7.72), 
p=2.35x10-148 

CHEK2 
2.45 (2.11, 2.84), 

p=2.29x10-26 
2.34 (2.02, 2.72), 

p=1.73x10-42 
0.61 

2.49 (2.21, 2.81), 
p=2.57x10-43 

PALB2 
4.03 (3.21, 5.04), 

p=1.73x10-26 
3.69 (2.95, 4.63), 

p=9.26x10-46 
0.70 

4.33 (3.62, 5.18), 
p=8.33x10-46 

Rare 
missense 
variants 

CHEK2 
1.46 (1.30, 1.64), 

p=8.93x10-10 
1.44 (1.28, 1.62), 

p=1.21x10-12 
0.48 

1.43 (1.31, 1.57), 
p=1.29x10-13 

 

  

Breast cancer GWAS SNPs 
Table 4 shows the corresponding results for GWAS SNPs. Here the analyses using model 3 (fixing 
k=1/2) were consistently the most significant. Under model 2, the best estimates of k are between 0.4 
and 0.6, consistent with the theoretical expectation.  
 
Table 4 | Per-allele ORs from models 1-3 for 4 lead breast cancer GWAS SNPs. For model 2 the ‘true’ 𝑘# = 𝛽$/𝛽%	is 
calculated, and model 3 uses k=1/2. P-values are from LRT to the null model.  

SNP 
(Gene) 

Ref 
allele 

Alt 
allele 

ALT 
AF 

Model 1 Model 2 Model 3 
OR OR KT OR 

rs62355901 
(C5orf67) 

T C 0.162 
1.17 (1.14, 1.21) 

p=2.11x10-30 
1.17 (1.14, 1.20) 

p=7.07x10-41 
0.43 

1.16 (1.13, 1.18) 
p=6.61x10-42 

rs78540526 
(CCND1) 

C T 0.070 
1.31 (1.27, 1.36) 

p=4.62x10-45 
1.30 (1.25, 1.35) 

p=3.44x10-72 0.56 
1.31 (1.28, 1.35) 

p=2.31x10-73 
rs4784227 
(CASC16) 

C T 0.240 
1.26 (1.23, 1.29) 

p=1.80x10-83 
1.25 (1.22, 1.28) 
p=4.09x10-120 

0.46 
1.24 (1.22, 1.27) 
p=2.13x10-121 

rs2981578 
(FGFR2) 

T C 0.462 
1.24 (1.22, 1.27) 

p=1.45x10-93 
1.24 (1.21, 1.26) 
p=8.59x10-131 

0.43 
1.22 (1.20, 1.24) 
p=1.24x10-131 

 

Effective sample size 
 
Figure 1 summarises the effective size sample sizes for the analysis of the four cancer types in UK 
Biobank, using the different methods. As expected, the effective sample size is greatest for breast 
cancer, reflecting the higher prevalence of this cancer. The relative gain in effective sample size is, 
however, greatest for lung cancer (more than 3-fold) reflecting that the proportion of individuals with 
a positive family history is highest for this cancer.  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2024. ; https://doi.org/10.1101/2024.07.01.24309759doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.01.24309759
http://creativecommons.org/licenses/by/4.0/


 
Figure 1 | Effective sample size for different models. Neff1 is the effective sample size from the standard case-control 
analysis (Model 1) just considering an individual’s disease status, di. Neff2 is the effective sample size from our model 
including family history, fi, of cases and controls with a weighting 0.5 (Model 3). Neff3 is the effective sample size from the 
Model of Liu et al (2017) where controls with a positive family history are treated the same as true cases (Liu et al., 2017).  

Monte Carlo Simulations  
We compared the power of model 2 and model 3 by Monte Carlo simulation for the four cancers.  
 
For breast cancer, at a significance level of 0.05, the power is greater for model 3 than model 2 or 
model 1 for OR<2.5 (Figure 2). For example, the power to detect OR=2 increases from 0.964 to 0.989 
to 0.995 when comparing models 1 to 3. For OR≥2.5 the power approaches 1 for all models. At exome-
wide significance, the power is also greatest for model 3 for OR<3. For example, the power to detect 
OR=2 increases from 0.232 to 0.433 to 0.526 comparing models 1 to 3. For OR≥3 the power 
approaches 1 for all models. Varying the value of k between 0.4 and 0.7 under model 3 made little 
difference to the power for any OR (Supplementary Tables 3 and 4, Supplementary Figure 1).  
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2024. ; https://doi.org/10.1101/2024.07.01.24309759doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.01.24309759
http://creativecommons.org/licenses/by/4.0/


 
Figure 2 | The power to detect different ORs for breast cancer risk. Power is calculated by Monte Carlo simulations for 
5,000 datasets of size 450,000 with proportions of sex, case/control, and family history the same as for breast cancer in the 
UK Biobank. For each simulated dataset model 2 and model 3 were compared to the null model by LRT.  

For prostate cancer, the power of each model is lower than that for breast cancer (Supplementary 
Figs. 2 and 3) reflecting the lower prevalence of the disease. At a significance level of 0.05, the power 
is greater for model 3 than model 2 or model 1 for OR<2.5 (Supplementary Figure 4). For example, 
the power to detect an association with OR=2 increases from 0.86 to 0.94 to 0.97 comparing models 
1 to 3. For OR≥2.5 the power approaches 1 for all models. At exome-wide significance, the power is 
also greatest for model 3 for OR<3.5. For lung cancer, the power of each model is lower than that for 
breast, prostate, and bowel cancer (Supplementary Figs. 2 and 3) reflecting the lower prevalence of 
the disease. At a significance level of 0.05, the power is greater for model 3 than model 2 or model 1 
for OR<3 (Supplementary Figure 5). For example, the power to detect OR=2 increases from 0.48 to 
0.87 to 0.92 comparing models 1 to 3. For OR≥3.5 the power approaches 1 for all models. At exome-
wide significance, the power is also greatest for model 3 for OR<4. Finally, for bowel cancer, the power 
of each model is lower than that for breast cancer and prostate cancer, but greater than that for lung 
cancer (Supplementary Figs. 2 and 3). At a significance level of 0.05, the power is greater for model 3 
than model 2 or model 1 for OR< 3 (Supplementary Figure 6).  
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Exome-wide association results using Model 3 
 
Breast cancer  
Exome-wide association analyses for breast cancer using this approach have been presented 
elsewhere (Wilcox et al., 2023). In brief, for PTVs, 30 genes were associated at P<0.001. Of these, 6 
genes reached exome-wide significance (P<2.5x10-6): the five previously known genes above plus 
MAP3K1. The results in Wilcox et al. were based on a meta-analysis of UK Biobank and studies in the 
Breast Cancer Association Consortium, but the same 6 genes reached exome-wide significance using 
UK Biobank alone. If the analyses had been based on model 1 in the UK Biobank alone, 23 genes would 
have met P<0.001 compared to 27 using model 3 (Supplementary Table 5). In UK Biobank, all the p-
values for the exome-wide significant genes from model 3 were at least 10-3 smaller than using model 
1, e.g. for MAP3K1 the p-value for model 3 was 3.2x10-8 compared to 8.3x10-5 in model 1 
(Supplementary Table 5).  
 
We applied the same approach to three other common cancers for which family history data are 
available in UK Biobank: prostate, bowel, and lung. 
 

Prostate cancer  
For prostate cancer, 34 genes were associated at P<0.001 (Supplementary Table 6, Supplementary 
Figs. 7 and 8). Of these, 3 met exome-wide significance; BRCA2, CHEK2 and ATM. Associations at 
P<1x10-4 were also identified for PTVs in GEMIN2, OSGIN1, UBQLN4, C9orf50 and C9orf152. There 
was some evidence of association for BAP1 (p=0.0010) and MSH4 (p=0.0018). If the analyses had been 
based on model 1, 26 genes would have met P<0.001 compared to 34 using model 3. The p-values for 
the exome-wide significant genes from model 3 were all more significant than model 1, e.g. for 
GEMIN2 the p-value for model 3 was 3.9x10-6 compared to 3.1x10-4 in model 1 (Supplementary Table 
6).  
 

Lung cancer 
For lung cancer, 46 genes were associated at p<0.001 (Supplementary Table 7, Supplementary Figs. 9. 
and 10). Of these, none met exome-wide significance, but associations at P<1x10-4 were observed for 
MON2, ASB6, ABCF2, PPP6R3, ARHGAP35, KCNH8 and BIRC3. However, we note that the number of 
case carriers for these genes was very low (≤ 4) and standard errors were large. Of known cancer 
susceptibility genes, some evidence of association was seen for ATM (p=0.00012) and BRCA2 
(p=0.0025). If the analyses had been based on model 1, 56 genes would have met P<0.001 compared 
to 46 using model 3. However, the p-values for the most significant genes from model 3 were all more 
significant than model 1, e.g., for ATM the p-value in model 3 was 1.2x10-4 compared to 2.0x10-3 in 
model 1 (Supplementary Table 7). 
 
Bowel cancer 
For bowel cancer, 42 genes were associated at P<0.001 (Supplementary Table 8, Supplementary Figs. 
11 and 12). Of these, 5 met exome-wide significance: the known susceptibility genes MSH2, MSH6, 
MLH1 and APC; and GAPDH. The mismatch repair gene PMS2 also showed evidence of association 
(P=0.00020). Associations at P<1x10-4 were also observed for MT1G, FLCN, SMAD4 and ATF3. Among 
other cancer susceptibility genes, associations were seen for ATM (p=0.0013), BRCA1 (p=0.0015), 
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BARD1 (p=0.00021), CHEK2 (p=0.039), RAD51D (p=0.0065), MSH3 (p=0.0025). If the analyses had been 
based on model 1, 64 genes would have met P<0.001 compared to 42 using model 3. However, the p-
values for the exome-wide significant genes were all more significant than model 1, with no additional 
genome-wide significant genes using model 1, e.g. for GAPDH the p-value in model 3 was 9.3x10-7 
compared to 1.9x10-5 in model 1 (supplementary Table 8). 

Conclusions 
Our analyses confirm that the inclusion of family history can improve the power of association studies, 
for both common variants (the focus of GWAS) and rare variants (the focus of WES studies). We show 
that for typical common variants, and for “moderate” risk gene variants such as PTVs in CHEK2 and 
ATM, a 1-degree freedom test fixing (assigning a weight k=1/2 to individuals with a family history) is 
more powerful than a 2-degree freedom test in which the effects of genotype on disease risk and 
family history are both estimated. This is consistent with the theoretical results that the 1-degree 
freedom testing with k=1/2 should be most powerful in the limiting case of small effect sizes.  
 
For variants with larger effect sizes, the association test the 2df can be more powerful (or, 
equivalently, the 1df test can be made more powerful by assuming a larger k). This is logical: in the 
simplifying situation with a single relative, the relative risk associated with a positive family history 

𝑒*!, should be approximately %
1
A𝑒*" + 1C. When 𝛽% is large, 𝛽1 >

%
1
𝛽%, as is observed for BRCA1, 

BRCA2 and PALB2 for breast cancer. In practice, however, we expect that most novel variants will be 
associated with ORs<2.5, corresponding to 0.5<k<0.6. In theory, the power would be improved by 
fixing k to its optimum value, but in practice, we do not know k, and k=1/2 is a straightforward choice 
giving near optimum power. We also note that, in theory, it would be possible to fit the constrained 

model in which 𝑒*! = %
1
A𝑒*" + 1C rather than the simpler 𝛽1 =

%
1
𝛽% constraint. However, this is a non-

linear model which is less suitable for genome-wide analyses involving many genes or variants, and 
the model would still be approximate (for example, dealing only approximately with cases with a 
family history).  
 
It should be noted that fixing k=0.5 will tend to overestimate β% if the effect size is large, as seen in 
the analysis the higher risk known genes. Thus, this is not an ideal approach for estimating risk. 
However, the focus here is on genome-wide discovery experiments, where the main interest is in the 
power to detect associations rather than effect size estimation.  
 
While the gain in power was seen for all cancers, it was particularly marked for lung cancer, reflecting 
the relatively large proportion of affected relatives (in turn related to the much higher risk in older 
individuals in early birth cohorts). 
 
The gain in power by incorporating family history is illustrated by the exome-wide association analyses 
for specific cancers. Using model 3 with k=0.5, novel association genes at exome-wide significance 
were identified for breast cancer e.g., MAP3K1, as reported elsewhere (Wilcox et al., 2023). For bowel 
cancer, we note MSH2, MSH6, MLH1, and PMS2 are MMR genes with known bowel cancer 
associations, while APC is a known susceptibility gene through its association with familial 
adenomatous polyposis. Biallelic MSH3 variants have also been associated with adenomatous 
polyposis. To our knowledge the association for GAPDH is novel. Literature suggests GAPDH 
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expression to be significantly up-regulated in human colorectal carcinoma tissues compared to 
adjacent normal tissue (Tang et al., 2012). Genes associated with prostate cancer at exome-wide 
significance include BRCA2, a known risk factor, as well as other breast-cancer risk genes CHEK2 and 
ATM for which previous evidence has been more equivocal. No significant associations were observed 
for BRCA1 or HOXB13, previously identified risk genes (Ewing et al., 2012; Nyberg et al., 2020; Nyberg 
et al., 2019). However, the BRCA1 association remains controversial, and there were only 12 case 
carriers in this dataset, while the reported HOXB13 association is specific to the p.Gly84Glu missense 
variant not included in these analyses. For lung cancer, no genes reached exome-wide significance 
(using any model). The genes with more moderate evidence can, however, provide a basis for further 
targeted replication studies. There were more genes at P<10-4 using model 1 than model 3 for lung 
and bowel cancer (in contrast to the theoretical expectations), however many of these genes had very 
low carrier counts and this may reflect a combination of chance and inaccuracy in the type I error at 
very low frequencies. 
 
While we have concentrated on the application of these methods to UK Biobank, the same approach 
could be fruitfully applied to other cohorts: for example, AllOfUs has family history for a wide range 
of cancers, as well as other diseases ("The “All of Us” Research Program," 2019; Bick et al., 2024). 
Possible further developments to the model, in datasets where the information is available, would 
include incorporating more extensive family history information e.g., extending the model to 2nd-
degree relatives, as well as including data on genotypes of relatives, which would further improve 
power. 
 
In conclusion, these results demonstrate that including family history in burden regression models 
improves the power to identify cancer susceptibility genes. This is particularly relevant in the analysis 
of data from large cohort studies where the number of unaffected individuals outnumbers the number 
of affected individuals, and the number of unaffected individuals with a family history is significant. 
We demonstrated the power of this model for 4 cancer phenotypes, but the method could also be 
applied to non-cancer phenotypes where family history information is available, such as Alzheimer’s 
disease, major depressive disorder, and coronary artery disease in the UK Biobank.  
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