1	Genetic study	of intrahep	atic cholestasis	of pregnancy in
		· · · · ·		

2 101,023 Chinese women unveils East Asian-specific etiology

3 linked to historic HBV infection

4	Yanho	ng Liu ^{1*} , Yuandan Wei ^{1,2*} , Xiaohang Chen ^{3*} , Shujia Huang ^{4*} , Yuqin Gu ¹ , Zijing
5	Yang ^{1,}	³ , Liang Hu ³ , Xinxin Guo ¹ , Hao Zheng ¹ , Mingxi Huang ⁴ , Shangliang Chen ⁵ ,
6	Tiantia	an Xiao ⁶ , Yang Zhang ¹ , Guo-Bo Chen ⁷ , Likuan Xiong ^{2,8} , Xiu Qiu ^{4#} , Fengxiang
7	Wei ^{3,9‡}	[#] , Jianxin Zhen ^{2#} , Siyang Liu ^{1#}
8	1.	School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen,
9		Guangdong 518107, China
10	2.	Central Laboratory, Shenzhen Baoan Women's and Children's Hospital,
11		Shenzhen, Guangdong 518102, China
12	3.	The Genetics Laboratory, Longgang District Maternity & Child Healthcare
13		Hospital of Shenzhen City, Shenzhen, Guangdong, 518172, China
14	4.	Division of Birth Cohort Study, Guangzhou Women and Children's Medical
15		Center, Guangzhou Medical University, Guangzhou, 510623, China
16	5.	Department of transfusion, Shenzhen Baoan Women's and Children's Hospital,
17		Shenzhen, Guangdong 518102, China
18	6.	Xiangya School of Medicine, Central South University, Changsha, Hunan
19		410078, China

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

20	7.	Center for Productive Medicine, Department of Genetic and Genomic
21		Medicine, Clinical Research Institute, Zhejiang Provincial People's Hospital,
22		People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang,
23		China
24	8.	Shenzhen Key Laboratory of Birth Defects Research, Shenzhen, Guangdong
25		518102, China
26	9.	Longgang Maternity and Child Institute of Shantou University Medical
27		College, Shenzhen, Guangdong, 518172, China
28		
29	*: The	ose authors contribute equally as co-first authors
30	#: Co1	respondence can be addressed to
31	Siyan	g Liu <u>liusy99@mail.sysu.edu.cn</u>
32	Jianxi	n Zhen jxzhen@qq.com
33	Fengx	iang Wei <u>haowei727499@163.com</u>
34	Xiu Q	iu <u>xiu.qiu@bigcs.org</u>
35		
36	Data	availability
37	GWA	S summary statistics for TBA and ICP phenotypes will be made publicly
38	availa	ble in the GWAS catalog (https://www.ebi.ac.uk/gwas/) upon publication.
39	Autho	or contribution

40	SL, FW, JZ, and XQ conceived the study. JZ, XC, LH, YW, ZY, HZ, SC, and TX
41	collected and organized the data from the maternity testing system. YL, YG, XC, LH,
42	and XG conducted data pre-processing and preliminary analyses. YL performed all
43	statistics, GWAS, and evolutionary analysis. YL and YW performed the visualization
44	of all results. JZ, SH, MH, and XQ provided the validation data. SL, FW, JZ, XQ, YZ,
45	GBC, and LX provided professional guidance and interpretation of data. YL & SL
46	wrote the manuscript with input from all authors. All authors contributed to
47	manuscript revisions and approved the final version of the article. SL is responsible
48	for the integrity of the work as a whole.
49	
50	Competing interests

- 51 All authors declare no competing financial interests.
- 52

53 Financial support statement

- 54 The study was supported by Shenzhen Basic Research Foundation
- 55 (20220818100717002), Guangdong Basic and Applied Basic Research Foundation
- 56 (2022B1515120080, 2020A1515110859), National Natural Science Foundation of
- 57 China (31900487, 82203291), and the Shenzhen Health Elite Talent Training Project.
- 58

59 Abstract

60 Background & Aims

61	Intrahepatic cholestasis of pregnancy (ICP) is the most common and high-risk liver
62	disorder during the critical period of human reproduction. Despite varying prevalence
63	across populations, a mechanistic understanding of this phenomenon is lacking. This
64	study delves into the genetic etiology of ICP in East Asians, drawing comparisons
65	with Europeans to comprehend ICP etiology in the context of genetic background and
66	evolution.
67	Methods
68	We conducted the hitherto largest-scale genome-wide association studies (GWAS) on
68 69	We conducted the hitherto largest-scale genome-wide association studies (GWAS) on total bile acid concentration (TBA) and ICP among 101,023 Chinese pregnancies. The
68 69 70	We conducted the hitherto largest-scale genome-wide association studies (GWAS) on total bile acid concentration (TBA) and ICP among 101,023 Chinese pregnancies. The findings were subsequently replicated in two cohorts and compared with European
68 69 70 71	We conducted the hitherto largest-scale genome-wide association studies (GWAS) on total bile acid concentration (TBA) and ICP among 101,023 Chinese pregnancies. The findings were subsequently replicated in two cohorts and compared with European populations. Additionally, phenome-wide association and spatio-temporal evolution
6869707172	We conducted the hitherto largest-scale genome-wide association studies (GWAS) on total bile acid concentration (TBA) and ICP among 101,023 Chinese pregnancies. The findings were subsequently replicated in two cohorts and compared with European populations. Additionally, phenome-wide association and spatio-temporal evolution analyses were employed to understand the function and explore evolutionary pattern

74 **Results**

We identified eight TBA and five ICP loci, including ten novel loci. Notably, we
found an East-Asian-specific genetic locus at 14q24.1, contributing to a 6.41 µmol/L
increase in TBA and a 15.23-fold higher risk of ICP per risk allele (95% *CI*: 15.10 to

78	15.36, $P = 9.23 \times 10^{-375}$). Phenome-wide association studies and spatial-temporal
79	evolution analyses revealed that the 14q24.1 ICP risk locus exhibits resistance to
80	hepatitis B infection and has become prevalent only within the last 3,000 years in East
81	and Southeast Asia.

82 Conclusions

- 83 Our investigations have unraveled a distinct etiology of ICP between Europeans and
- 84 East Asians, and has linked ICP etiology in East Asians to a historical HBV epidemic
- in East and Southeast Asia within the last 3,000 years. These findings lay the
- 86 groundwork for an improved biological understanding of ICP pathophysiology.
- 87 Further exploration and utilization of these variations hold the potential for more

88 precise detection, assessment, and treatment of ICP.

89

90 Lay summary

Intrahepatic cholestasis of pregnancy (ICP) is a prevalent and high-risk liver disorder that occurs during pregnancy, a critical period in human reproduction. It affects approximately 1% to 6.06% pregnancies and has been associated with severe adverse outcomes such as preterm birth and stillbirth. While rare and common variants associated with ICP have been identified in the European population, the genetic basis of ICP in East Asian population remains uncharacterized. Here, we conducted the largest-scale genome-wide association studies to date for TBA and ICP among

98 101,023 Chinese pregnant women, including 4,703 cases and 96,320 controls from two hospitals in Shenzhen, China. We replicated our findings in two independent 99 100 Chinese cohorts and compared them with ICP genetic studies in the European 101 population. We identified eight and five genome-wide significant loci for TBA and 102 ICP. respectively, including ten novel loci. Notably, identified we an 103 East-Asian-specific genetic locus contributing to a 6.41 µmol/L increase in TBA per risk allele and a 15.23-fold higher risk of ICP. Further exploration through 104 phenome-wide association studies and spatial-temporal evolution analyses revealed 105 106 that the 14q24.1 ICP risk locus exhibits resistance to hepatitis B infection and has become prevalent only within the last 3,000 years in East and Southeast Asia. These 107 findings suggest a historical HBV epidemic in East and Southeast Asia within 3,000 108 109 years may have contributed to the increased prevalence of ICP and TBA risk alleles 110 among East Asians. Our study unravels a distinct genetic etiology of ICP between 111 Europeans and East Asians. These findings lay the foundation for an improved understanding of ICP pathophysiology and emphasize the need for integrating 112 population evolution into genetic medicine for personalized genomics and clinical 113 guidance. 114

115

116 Highlights

117	(1) In the most powerful genome-wide association studies on TBA and ICP in East
118	Asians to date, we identified eight and five genetic loci, respectively, of which, 7
119	and 3 were novel discoveries.
120	(2) One of the novel loci, the 14q24.1 locus, stands out as it contains unique causal
121	genetic variants specific to East-Asians. These variants demonstrate large effects,
122	contributing to an average increase of 6.41 μ mol/L in TBA per risk allele and a
123	15.23-fold higher risk of ICP.
124	(3) The risk mutations associated with ICP at the 14q24.1 exhibit resistance to
125	hepatitis B infection and has only become prevalent within the last 3000 years in
126	East and Southeast Asia.
127	Key words: Intrahepatic cholestasis of pregnancy; Total bile acid; Genetic etiology;

- 128 Evolutionary history; East Asians; 14q24.1
- 129

130 Introduction

131	Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent and high-risk liver
132	disorder occurring during pregnancy, a critical phase in human reproduction ¹ . The
133	disease is characterized by maternal pruritus and elevated serum bile acid
134	concentrations ($\geq 10 \mu mol/L$), with diagnosis typically involving assessing maternal
135	total serum bile acids (TBA) during routine pregnancy screening in the late second
136	and third trimesters ² . ICP has been associated with several severe adverse pregnancy
137	outcomes, including increased risks of spontaneous and iatrogenic preterm birth,
138	meconium-stained amniotic fluid, fetal asphyxia, and stillbirth ^{3,4} . A large-scale
139	meta-analysis of ICP cases revealed that a TBA level of 100 μ mol/L is associated with
140	an elevated risk of stillbirth, with a hazard ratio [<i>HR</i>] of 30.5 [95% <i>CI</i> : 8.83–105.30],
141	compared to a TBA level below 40 μ mol/L ⁵ . Several retrospective studies and case
142	reports underscore the unpredictability of prenatal fetal death in patients with ICP
143	after 36 weeks of pregnancy ^{2,6,7} . At present, oral ursodeoxycholic acid (UDCA) is the
144	most commonly employed treatment in clinics to alleviate maternal pruritus and
145	improve liver function. However, a recent clinical randomized controlled trial
146	declared that treatment with UDCA does not reduce adverse perinatal outcomes in
147	women with ICP ¹ , leaving its effectiveness in enhancing perinatal outcomes and the
148	long-term health of mothers with ICP and their children inconclusive ⁸ .
149	

150	Unraveling new treatments of ICP necessitates a profound understanding of the
151	disease's etiology. Accumulated evidence suggests the complexity of ICP etiology,
152	which is associated with genetic, endocrine, and environmental factors9. Familial
153	clustering of ICP strongly implies a genetic basis ¹⁰ . Family-based studies indicate that
154	the heterozygous state for an MDR3 (alias ABCB4) gene defect likely represents a
155	genetic predisposition within families ^{11,12} . A candidate gene analysis study identified
156	six SNPs in each of the ABCB4 and ABCB11 genes that demonstrated a significant
157	association with ICP ¹³ . Case-control study also showed that ABCB4, ABCB11, and
158	ATP8B1 genes are related to intrahepatic cholestasis of pregnancy ¹⁴ . Case reports
159	have proposed that NTCP deficiency, encoded by SLC10A1 gene, might be a genetic
160	factor contributing to ICP ¹⁵ . A recent genome-wide meta-association study involving
161	1,138 ICP cases and 153,642 controls from three Europeans studies identified eleven
162	genes associated with ICP risk, most of which are related to hepatic functions ¹⁶ .
163	
164	Notably, global prevalence of ICP varies substantially among different ethnicities. ICP
165	affects approximately 0.32% of pregnancies in the United States, 5.6% in the Latina
166	population in Los Angele ^{17,18} , 0.7% in the United Kingdom ¹⁷ , 1.5%-4% in Chile ^{19,20}
167	and 1.2% to 6.06% in China ²¹ . However, despite its variable geographical prevalence,
168	factors influencing these differences are poorly understood. In addition, despite the
169	considerably higher prevalence of the disease among East Asians, no studies of
170	sufficient power have been conducted among the East Asian populations.

172	To address these gaps, we conducted the most powerful genome-wide association
173	study (GWAS) of TBA and ICP in East Asia to date, utilizing sequencing data from
174	the non-invasive prenatal testing (NIPT) of 101,023 Chinese pregnant women and
175	comprehensive phenotypic records from two hospitals in Shenzhen city in South
176	China. The discoveries were replicated in two independent Chinese datasets and
177	compared to previous findings among the European population. Intriguingly, we
178	found distinct etiology of ICP among Europeans and Asians. Among the ten novel loci
179	previously not reported in the GWAS catalog, a genetic locus in 14q24.1 present
180	exclusively among East Asians stands out, contributing to an average increase of 6.41
181	μ mol/L in TBA per risk allele and a 15.23 times higher risk of ICP in East Asians.
182	Further phenome-wide association and spatio-temporal evolutionary studies have
183	linked this ICP risk locus to a putative HBV epidemic in East and Southeast Asia
184	within the last 3000 years.

186 **Result**

187 Study design and TBA phenotypic distribution

- 188 The design of the study is summarized in Abstract Figure. In Shenzhen city, China,
- 189 government-sponsored Non-Invasive Prenatal Tests (NIPT) were administered as a
- 190 standard examination. Over the period from 2017 to 2022, we recruited 101,023
- 191 pregnant women during routine obstetric examinations across two Shenzhen hospitals
- 192 (Baoan and Longgang). Each pregnant woman underwent both a NIPT test and at
- 193 least one TBA test between the 13th and 42nd gestational weeks. After excluding
- outliners, 94,360 pregnancies with normal TBA levels ($< 10\mu mol/L$) were included
- 195 for the GWAS of plasma TBA levels. Using the inclusion and exclusion criteria
- 196 detailed in the Methods section, 4,703 pregnancies were identified as ICP cases, while
- 197 96,320 individuals served as controls for the ICP GWAS.
- 198

100	Sunnlementary Fig. 1 illustrates a positively skewed phenotypic distribution of TBA
1))	Supplementary rig. r musuales a positively skewed phenotypic distribution of right

levels, which exhibits a consistent median of 2.90 µmol/L (Interquartile Range [IQR]:

- 201 [2.00, 4.20]) among normal pregnancies and a median of 14.52 μmol/L (IQR: [11.58,
- 202 23.10]) among ICP cases. The distribution of TBA levels, maternal age (29.72 ± 4.47)
- 203 years old), and gestational week $(33.05 \pm 8.48 \text{ weeks})$ are similar between the two

204 hospitals (Supplementary Table 1).

206	We employed a well-established genetic analysis pipeline developed in our previous
207	studies to analyze the NIPT data ^{22,23} and conduct the GWAS for TBA level and ICP
208	across over 7 million sequence variants with minor allele frequency (MAF) greater
209	than 1% in the study cohorts. We replicated the genetic findings in two independent
210	Chinese datasets and provided meta-analysis estimates. We further conducted
211	phenome-wide colocalization analyses to examine the genetic associations across a
212	hundred pregnancy phenotypes. For the most significant and East Asian-specific
213	14q24.1 locus, we conducted spatio-temporal and natural selection evolutionary
214	analyses to explore the frequency changes of the ICP risk alleles globally and since
215	the Holocene.
216	
217	Genome-wide association study of TBA and ICP among the 101,023 pregnancies
218	Power estimations for the meta-GWAS design indicate an 80% statistical power to
219	detect genetic associations with an effect size (β) > 0.170 and MAF ≥ 0.05, or
220	otherwise $\beta > 0.370$ and MAF ≥ 0.01 for TBA, and similarly for genetic associations
221	with an odds ratio (OR) > 1.140 and MAF \ge 0.05 as well as an OR > 1.320 and MAF
222	\geq 0.01 for ICP (Fig. S2). The genomic inflation (lambda) values for TBA and ICP

- were 1.069 and 1.018, respectively, suggesting negligible confounding of population
- stratification (Fig. S3).
- 225

226	In total, we identified 1,673 and 1,281 genome-wide significant variants ($P < 5 \times 10^{-8}$),
227	constituting 19 and 16 independent association signals for TBA and ICP respectively
228	(Table S2). These were represented by 8 independent association loci for TBA and 5
229	for ICP (Fig. 1; Table 1; Table S3). Among the 13 association loci, 7 and 3 were not
230	previously reported in the GWAS catalog or Phenoscanner and were identified as
231	novel loci (gene symbols in red in Fig. 1).
232	
233	We assessed the fidelity of the association signals by comparing the effect estimates
234	between the two independent hospitals (internal replication) and with two external
235	Chinese datasets (external replication) (Materials and Methods). The effect
236	estimates demonstrated high consistency between the two hospitals, where 18/19
237	association signals (94.8%) or 7/8 loci (87.5%) exhibited the same beta direction and
238	surpassed Bonferroni correction significance levels for TBA in each hospital.
239	Similarly, for ICP, all 16 association signals included in the 5 loci exhibited the same
240	effect direction and significant P value after Bonferroni-correction (Fig. S4, Table
241	S2-S3). The only <i>GREB1</i> gene locus (lead SNP rs10929754-T) associated with TBA
242	did not pass the Bonferroni correction significance level in the Baoan cohort.
243	However, it consistently showed the same effect direction and achieved nominal
244	significance ($P=0.0233$). The effect estimates also demonstrated high consistency
245	between our study and the two Chinese external datasets, where all signals and loci
246	were replicated in one of the two external datasets (Fig. S5, Table S2, Table S4). The

247	LocusZoom regional association maps for the eight loci associated with TBA and the
248	five loci associated with ICP are presented in Fig. S6-S7. The above evaluations
249	suggest high fidelity of the associations identified in our study.
250	
251	The East Asian-specific at 14q24.1 locus contributes to a 15.23-fold higher risk of
252	ICP
253	Seven out of the eight loci associated with TBA and three of the five loci associated
254	with ICP were not previously documented in the GWAS catalog ²⁴ and Phenoscanner ²⁵ ,
255	particularly in the current unique ICP GWAS among the European population ¹⁶ .
256	Genes contained within the genetic loci associated with TBA levels and ICP are
257	enriched in bile acid and bile salt transport, bile acid signaling and biosynthetic
258	processes, as well as lipid metabolism (Table S5). Specifically, the ABCB11, ABCG5
259	and SLC10A1 loci associated with ICP are uniquely expressed in liver tissue ²⁶ and
260	hepatocyte cells ²⁷ , reflecting the central role of the liver organ in the development of
261	ICP. Notably, we observed substantial discrepancies in genetic discoveries between
262	our study and the European ICP GWAS study (Fig. S8, Table S2 and Table S5).
263	Particularly, variants within the 14q24.1 locus, encompassing the ERH, SLC39A9 and
264	SLC10A1 genes, are absent outside East Asian populations. This includes the lead
265	SNPs rs137983251-G associated with TBA, the lead SNP rs147525203-C associated
266	with ICP and the missense variants rs2296651-A (p.Ser267Phe) present in SLC10A1
267	which is strongly associated with TBA and ICP risk (MAF=0.04, OR=15.23, [95%CI]:

 are in complete linkage disequilibrium (LD) with each in less strong LD with rs137983251-G and rs14752520 The ICP risk variants at the 14q24.1 locus decrease Notably, <i>SLC10A1</i>, also known as <i>NTCP</i>, is recognized cotransporter and has been implicated as the cellular re Despite this, none of the GWAS studies cataloged in th Phenoscanner or PubMed has linked it to TBA or ICP² specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14 	a other ($R^2=1$), rs2296651-A are 03-C ($R^2=0.21$) ²⁸ . HBV infection d as a sodium/bile acid eceptor for HBV infection ²⁹ . he GWAS catalog,
 in less strong LD with rs137983251-G and rs14752520 The ICP risk variants at the 14q24.1 locus decrease Notably, <i>SLC10A1</i>, also known as <i>NTCP</i>, is recognized cotransporter and has been implicated as the cellular re Despite this, none of the GWAS studies cataloged in th Phenoscanner or PubMed has linked it to TBA or ICP² specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank or pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14 	03-C $(R^2=0.21)^{28}$. HBV infection d as a sodium/bile acid eceptor for HBV infection ²⁹ . he GWAS catalog,
271272 The ICP risk variants at the 14q24.1 locus decrease 273Notably, <i>SLC10A1</i> , also known as <i>NTCP</i> , is recognized274cotransporter and has been implicated as the cellular ref275Despite this, none of the GWAS studies cataloged in th276Phenoscanner or PubMed has linked it to TBA or ICP2277specificity. To elucidate the function of the East Asian-278alleles, we scrutinized 246 phenotypes in the Biobank of279pregnancy phenotypes in our dataset (see Materials and280that lead SNPs of TBA and ICP (rs137983251 and rs14)	e HBV infection d as a sodium/bile acid eceptor for HBV infection ²⁹ . he GWAS catalog,
The ICP risk variants at the 14q24.1 locus decrease Notably, <i>SLC10A1</i> , also known as <i>NTCP</i> , is recognized cotransporter and has been implicated as the cellular re Despite this, none of the GWAS studies cataloged in th Phenoscanner or PubMed has linked it to TBA or ICP ² specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14	e HBV infection d as a sodium/bile acid eceptor for HBV infection ²⁹ . he GWAS catalog,
 Notably, <i>SLC10A1</i>, also known as <i>NTCP</i>, is recognized cotransporter and has been implicated as the cellular response Despite this, none of the GWAS studies cataloged in the Phenoscanner or PubMed has linked it to TBA or ICP² specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank of pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14) 	d as a sodium/bile acid eceptor for HBV infection ²⁹ . he GWAS catalog,
 cotransporter and has been implicated as the cellular re Despite this, none of the GWAS studies cataloged in th Phenoscanner or PubMed has linked it to TBA or ICP² specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14) 	eceptor for HBV infection ²⁹ . he GWAS catalog,
275 Despite this, none of the GWAS studies cataloged in th 276 Phenoscanner or PubMed has linked it to TBA or ICP ² 277 specificity. To elucidate the function of the East Asian- 278 alleles, we scrutinized 246 phenotypes in the Biobank 279 pregnancy phenotypes in our dataset (see Materials and 280 that lead SNPs of TBA and ICP (rs137983251 and rs14	ne GWAS catalog,
 Phenoscanner or PubMed has linked it to TBA or ICP² specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14) 	
 specificity. To elucidate the function of the East Asian- alleles, we scrutinized 246 phenotypes in the Biobank pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14) 	^{24,25} , likely due to its population
 alleles, we scrutinized 246 phenotypes in the Biobank pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14) 	-specific 14q24.1 ICP risk
 pregnancy phenotypes in our dataset (see Materials and that lead SNPs of TBA and ICP (rs137983251 and rs14) 	of Japan (BBJ) ³⁰ and over 100
that lead SNPs of TBA and ICP (rs137983251 and rs14	d Methods for URL). We found
	47525023) and the rs2296651-A
281 (<i>p.Ser267Phe</i>) variant were significantly associated wi	ith the traits related to Hepatitis
282 B virus (HBV) infection. In our GWAS of six HBV tra	aits, the 14q24.1 locus stands
out as the second most significantly associated locus w	vith HBV infection, exhibiting
284 strong associations with Hepatitis B surface antigen (H	HBsAg), Hepatitis B e antibody
285 (HBeAb) and Hepatitis B core antibodies (HBcAb) (<i>P</i> -	<5×10 ⁻⁸) (Fig. S9). Stacked
286 LocusZoom plots further confirmed the shared genetic	e effect between TBA/ICP, and
287 HBV/HBsAg/HBeAb/HBcAb in the 14q24.1 locus (Fi	ig. S10). Other traits affected by

288	the 14q24.1 locus include Alanine transaminase level during pregnancy (Materials
289	and Methods for URL).

290

291	To fine map the	potential causal	variants	contributing to	both	TBA/ICP	and HBV

- 292 infection, we conducted a colocalization analysis of TBA & ICP and six HBV-related
- traits on a 1Mbp region (chr14:69-70Mbp) consisting of 1,909 genetic variants
- 294 (MAF>0.01). We found that TBA and ICP were both colocalized with HBV with at
- least one variant overlapping in their 95% credible set (PP.H4>0.75 & H4/H3>3) (Fig.
- 296 **2A-B, Fig. S11, Table S7)**. Evidence for the strongest colocalization of GWAS
- signals between TBA and HBV was found for *SLC39A9* (rs138089855, intron variant),
- and that between ICP and HBV was found for SCL10A1 (rs2296651, p.Ser267Phe,
- 299 missense variant). The rs138089855-C mutation and rs2296651-A mutation
- significantly affect immune evasion of HBV infection (OR ranging from 0.57 to 0.82,

301 $P < 4.63 \times 10^{-10}$), reducing risks of HBsAg (*OR* ranges from 0.60 to 0.83, $P < 10^{-10}$)

302 3.72×10⁻⁵), HBeAb (OR ranges from 0.65 to 0.82, $P < 3.24 \times 10^{-7}$) and HBcAb (OR

303 ranges from 0.63 to 0.79, $P < 2.24 \times 10^{-11}$) (**Fig. 2C-D**).

304

The *p.Ser267Phe* mutation of the *SLC10A1* variant became prevalent within the last 3,000 years in the areas of East and Southeast Asia

- 307 The Geography of Genetic Variants Browser (https://popgen.uchicago.edu/ggv/)
- 308 illustrates that the lead SNP of TBA (rs137983251-G) and ICP (rs147525203-G), as

309	well as the rs138089855-C and missense locus rs2296651-A identified in
310	colocalization analysis, are only present in East and Southeast Asia (Fig. S12). To
311	delve further into the historical evolutionary history of ICP genetic loci, we assessed
312	the spatio-temporal frequency differences of rs2296651-A globally and since the
313	Holocene using the Allen Ancient Data Resource (AADR) ³¹ . In the Holocene era
314	(10,000 BP before now), only one sample with the <i>p.Ser267Phe</i> mutation exists in
315	Morocco (Fig. 3A, Table S8). In the Neolithic era (10,000~3,000BP), several
316	p.Ser267Phe variations appear sporadically, with single samples distributed in Italy,
317	Russia, Spain and California, USA (Fig. 3B, Table S9). Notably, until the Historic
318	(<3,000BP), a large number of mutations occurred at this locus, especially within the
319	range of 1,000 to 2,000BP (Fig. 3C, Table S10). Currently, the ICP risk mutations of
320	this locus are only distributed in East Asia and Southeast Asia (Fig. 3D, Table S11).
321	

322 Natural selection signals in the 14q24.1 locus

323 The distinctive prevalence of the 14q24.1 locus in different geographical regions may

324 indicate natural selection. To further understand the genetic diversity in the 14q24.1

325 locus, we employed 1KGP high-depth sequencing data for selection analysis. We

- 326 calculated several metrics based on the site-frequency spectrum in this region for
- 327 three representative populations: Southern Han Chinese (CHS), Northern Europeans
- 328 from Utah (CEU), and Yoruba in Ibadan, Nigeria (YRI). We observed a decrease in
- nucleotide diversity in chr14:69.0-69.2Mbp and around chr14:69.8-69.9 regions in

330	CHS compared to CEU and YRI. Tajima's D and Fay and Wu's F statistics also
331	suggested an excess of high-frequency derived SNPs in these two regions (Fig. S13).
332	
333	Furthermore, we conducted a selection analysis based on population differentiation
334	and linkage disequilibrium. The chr14:69.0-69.2Mbp region shows the highest
335	locus-specific branch length (LBSL) statistics for CHS compared with the CEU using
336	AFR as the reference panel, indicating a signal of positive selection in East Asia. The
337	results of iHS and the negative XP-EHH values also support that the selection
338	occurred in the CHS population (Fig. S14).
339	
340	Regarding the high linkage between lead SNPs of TBA and ICP, we explored whether
341	there are differences in haplotype frequencies among different races. We extracted
342	SNPs at high linkage disequilibrium with SNP rs147525203, rs137983251,
343	rs138089855, or rs2296651, resulting in 16 SNPs which were phased into haplotypes.
344	Having examined differences between different races, we found significant
345	differences in haplotypes in East Asians compared to other populations. Of the top 10
346	haplotypes, 4 types (H4, H5, H6, and H9) were almost exclusively found in 10.8% of
347	Asian individuals (Fig. S15, Table S12). The origin of these haplotypes was not
348	linked to known archaic ancestry. However, we cannot be ruled out that these
349	haplotypes may have originated from unknown East and Southeast Asian archaic
350	hominins, which are currently underrepresented in human genetic investigations ^{32,33,34} .

351

352 **Discussion**

353	Pregnancy constitutes a critical period for human reproduction, and ICP emerges as a
354	high-risk liver disorder during this phase. Characterized by maternal pruritus and
355	elevated serum bile acid concentrations ² , ICP is associated with an elevated risk of
356	severed pregnancy outcomes, including intrauterine fetal growth restriction, preterm
357	birth, fetal asphyxia, still birth and lower birth weight ^{3,4} . Standard clinical practice
358	typically designates pregnancies diagnosed with ICP as high-risk, administering
359	UDCA post-diagnosis, and often inducing labor toward full term. However, recent
360	evidence from an RCT challenges the efficacy of UDCA in reducing adverse perinatal
361	outcomes in women with ICP ¹ . The high risk and lack of effective treatment of ICP
362	underscores the need for a more comprehensive understanding of the factors leading
363	to ICP. In the present study, we conducted the first-ever GWAS meta-analysis of TBA
364	and ICP traits in East Asians, encompassing 101,023 participants, including 4,703
365	cases and 96,320 controls, with signals verified in two independent Chinese cohorts.
366	We identified eight and three genome-wide significant associated loci for TBA and
367	ICP, respectively, including seven and three novel association loci.
368	
369	Of particular interest is the revelation that the most significant 14q24.1 locus
370	contributes to an average odds ratio of 15.23 for ICP in Chinese pregnancies. This is

371 much higher compared to the 1.70 odds ratio for ICP associated with the known

372	ABCG5 and ABCB11 loci reported in the European population. The high-risk allele in
373	the 14q24.1 locus, comprising the SLC39A9 (lead SNP rs137983251), ERH (lead SNP
374	rs147525023), and SLC10A1 (missense variant rs2296651-A, p.Ser267Phe) genes, is
375	uniquely present in the East and Southeast Asia and conspicuously absent in other
376	global populations. Comprehensive phenome-wide association scans based on BBJ
377	data and our own dataset revealed a significant association between the ICP-high-risk
378	allele and a protective effect against HBV infection, reflected by a decreased risk of
379	HBV infection, HBsAg, HBcAb, and HBeAb serological positivity. Spatiotemporal
380	and natural selection analyses further suggest that the prevalence of the ICP risk allele
381	dates back within the last 3000 years, putatively due to selection over resistance of
382	HBV infection.

383

Currently, Hepatitis B virus (HBV) infection remains a significant public health 384 concern, affecting over 296 million people worldwide chronically infected³⁵. However, 385 little is known about the origin and historical spread of HBV. In 1964, American 386 physician and geneticist Blumberg et al discovered a new antigen in the serum of an 387 Australian Aborigine named Australian antigen (AuAg)³⁶, and subsequently identified 388 it as the surface antigen (HBsAg), marking the first specific indicator of hepatitis B 389 virus (HBV)³⁷. Recent evidence of HBV's historical existence extends to mummies in 390 Korea and Italy from 400 years ago^{38,39}. Moreover, in 2018, the discovery of HBV 391 genomes from ancient DNA derived from human skeletal remains fossilized in the 392

393	Neolithic period around 7,000 years ago was documented ⁴⁰ . Our study suggests that a
394	potential HBV epidemic occurred 3,000 years ago in East and Southeast Asia, leading
395	to a balancing or positive selection of the ICP risk allele. This selection resulted in a
396	higher prevalence of ICP observed currently in these regions, shaping a distinct
397	genetic etiology of ICP between East Asians and Europeans.
398	

What are the medical implications arising from these findings? The first takeaway is 399 that the genetic etiology of ICP differ substantially between Asian and European 400 populations. Clinical practice should take into account the ethnic ancestry of patients 401 for informed clinical decisions, with particular attention to the presence of the 402 14q24.1 ICP risk allele. Secondly, the prevalence of ICP in East and Southeast Asia is 403 an outcome of evolutionary processes. Pregnant individuals carrying the risk alleles 404 405 exhibited enhanced biological resistance to HBV infection and are likely descendants of survivors from a historical HBV epidemic. Mothers carrying the risk allele need 406 not bear any stigma regarding their infants. Thirdly, evidence on the clinical risk of 407 ICP primarily stems from large-scale cohort-based observational studies⁵, susceptible 408 to confounding by unknown factors. Given the cumulative substantial impact of TBA 409 and ICP risk alleles identified in this study, more refined causal inference regarding 410 the relationship between TBA and ICP and the short-term birth outcomes and 411 412 long-term offspring health, can be achieved using methods such as Mendelian randomization applied to East-Asian birth cohorts^{41,42}. 413

415	Building upon these discoveries, more precise clinical decisions can be tailored for
416	pregnancies, preventing unnecessary over-treatment. Additionally, novel therapeutics
417	can be developed specifically for high-risk patients based on their genetic origins,
418	compensating for the limited effectiveness of UDCA in reducing adverse outcomes
419	for ICP patients. For example, as HBV vaccinations are mandatorily implemented for
420	newborns in countries like China, it may be worthwhile to explore whether increasing
421	NTCP activity may benefit the ICP patients in clinics while not increasing their risk
422	for HBV infection.

424 Materials and Methods

425 Cohort description

- 426 The study encompassed 70,608 pregnancies recruited from Longgang District
- 427 Maternity & Child Healthcare Hospital of Shenzhen City (Longgang cohort) and
- 428 50,948 pregnancies from Shenzhen Baoan Women's and Children's Hospital (Baoan
- 429 cohort). These participants engaged in a routine pregnancy screening program in
- 430 Shenzhen between 2017 and 2022. Pregnancies involving multiple gestations and
- those lacking TBA level measurements were excluded. Finally, our study comprised
- 432 101,023 pregnant women who underwent at least one TBA level assessment during
- 433 gestational weeks 13 to 42.
- 434

435	To conduct GWAS of TBA and ICP, we integrated NIPT data with clinical phenotypic

436 data (see Supplementary Methods). All participants provided written informed

- 437 consent. The study received approved from the Medical Ethics Committee of the
- 438 School of Public Health (Shenzhen), Sun Yat-sen University (No. 2022-021),
- 439 Longgang District Maternity and Child Healthcare Hospital of Shenzhen City
- 440 (LGFYYXLLL-2022-024), and Shenzhen Baoan Women's and Children's Hospital
- 441 (LLSC-2021-04-01-10-KS). Data collection was also approved by the Human Genetic
- 442 Resources Administration of China (HGRAC) (Baoan cohort: [2023]CJ1415,

443 Longgang cohort:[2023]CJ1455).

Phenotype definition

446	The TBA level was defined as the peak level observed for each individual during
447	gestational weeks 13 to 42 after removing outliers ($N = 94,360$). ICP cases were
448	identified as pregnancies with TBA concentrations $\geq 10 \mu mol/L$ during the same
449	gestational period. In total, 4,703 cases and 96,320 controls for ICP were included in
450	the study.
451	
452	We also obtained the hepatitis B antigen and antibody measurements from data of the
453	pregnant screening program. The phenotype of hepatitis B virus (HBV) infection was
454	defined based on hepatitis B antigen and antibody. Detailed information can be found
455	in Supplementary Methods.
456	
456 457	Genome-wide association analysis
456 457 458	Genome-wide association analysis We conducted the GWAS analysis using PLINK 2.0 ⁴³ . Covariates such as gestational
456 457 458 459	Genome-wide association analysis We conducted the GWAS analysis using PLINK 2.0 ⁴³ . Covariates such as gestational week, maternal age, and the top ten principal components accounting for population
456 457 458 459 460	Genome-wide association analysis We conducted the GWAS analysis using PLINK 2.0 ⁴³ . Covariates such as gestational week, maternal age, and the top ten principal components accounting for population stratification were included in the analysis. The quantitative phenotype (TBA)
456 457 458 459 460 461	Genome-wide association analysis We conducted the GWAS analysis using PLINK 2.0 ⁴³ . Covariates such as gestational week, maternal age, and the top ten principal components accounting for population stratification were included in the analysis. The quantitative phenotype (TBA) underwent a rank-based transformation to achieve a normal distribution.
456 457 458 459 460 461 462	Genome-wide association analysis We conducted the GWAS analysis using PLINK 2.0 ⁴³ . Covariates such as gestational week, maternal age, and the top ten principal components accounting for population stratification were included in the analysis. The quantitative phenotype (TBA) underwent a rank-based transformation to achieve a normal distribution.
456 457 458 459 460 461 462 463	Genome-wide association analysis We conducted the GWAS analysis using PLINK 2.0 ⁴³ . Covariates such as gestational week, maternal age, and the top ten principal components accounting for population stratification were included in the analysis. The quantitative phenotype (TBA) underwent a rank-based transformation to achieve a normal distribution.

465	(version 2011-03-25) ⁴⁴ . Variants with a minor allele frequency (MAF) less than 0.01
466	were excluded. Conditional and joint analysis (GCTA-COJO) was performed using
467	GCTA software ^{45,46} to identify independent genome-wide significant signals. A
468	stepwise model selection procedure (cojo-slct) with a collinearity threshold of 0.2
469	was employed to choose independently associated SNPs, with the reference panel
470	from the Born in Guangzhou Birth cohort (BIGCS) ⁴² for the LD structure of the
471	variants. Subsequently, we delineated the range of 500kb upstream and downstream
472	blocks of a significant signal into separate locus, considering the SNP with the lowest
473	P value as the lead SNP.
474	

475 Statistic power calculation

476 All statistical analyses were executed in R (version 4.2.1). Post hoc power

477 calculations were performed to access the spectrum of effect size (β) /odds ratio (*OR*)

and allele frequencies at which associations could be detected at genome-wide

479 significance ($P < 5 \times 10^{-8}$) within a specified number of samples/cases and controls in

- 480 the meta-analysis. The calculation was performed using the R package "genpwr"⁴⁷
- 481 (version 1.0.4) using a linear or logistic model under a genetic additive mode.

482

483 Replication and comparison

484 For internal replication, we applied stringent criteria to define a locus as replicated,

485	requiring the same beta direction and P values reaching the Bonferroni correction
486	threshold in both the Baoan and Longgang cohorts.

487

488	In the external replication,	we replicated genom	e-wide significant Sl	NPs using two
-----	------------------------------	---------------------	-----------------------	---------------

- 489 independent study cohorts (Baoan NIPT PLUS cohort and BIGCS cohort). SNPs
- 490 meeting the following criteria were regarded as replicated: 1) they exhibited a
- 491 consistent direction of effect for lead SNPs between the discovery and the replication
- 492 cohorts and 2) they reached Bonferroni-corrected P values or passed a two-sided
- 493 two-sample t-test. Further details on external replication can be found in

494 Supplementary methods.

495

496	Furthermore,	we compared	the genetic	influence	of SNPs	with a	ı previously	[,] published
-----	--------------	-------------	-------------	-----------	---------	--------	--------------	------------------------

497 European cohort¹⁶. This comparison involved assessing the direction of genetic effects

498 and Bonferroni-corrected P values of lead SNPs between our meta-analysis results

499 and the European cohort.

500

501 PheWAS and Colocalization analysis

502 A PheWAS was conducted using 246 phenotypes from BBJ (https://pheweb.jp/) and

503 131 pregnancy phenotypes from the MONN PheWeb established by our research

504 group (http://47.112.105.165/). Regions showing evidence of colocalization between

505 the GWAS and GWAS signals were identified utilizing pre-defined thresholds: PP4

506	(posterior probability that there exists a single causal variant common to both traits) \geq
507	0.75 and PP4/PP3 \geq 3, employing the R package "coloc" (version 5.1.0.1) ⁴⁸ . The prior
508	probabilities for SNP association with either of the two traits or with both traits were
509	set to 1×10^{-4} and 1×10^{-5} , the default values, respectively.
510	
511	Geographical frequency distribution analysis
511 512	Geographical frequency distribution analysis To examine the frequency distribution of identified SNPs across various ancient age
511 512 513	Geographical frequency distribution analysis To examine the frequency distribution of identified SNPs across various ancient age groups, we employed ancient DNA data from the compiled 1240K dataset sourced

supplemented with pie charts, was created using R packages "maps" and "mapplots"

516 to illustrate the geographical frequency distribution.

517

518 Modern DNA-based selection test

- 519 We performed three types of selection tests for modern DNA, encompassing analyses
- 520 based on site-frequency spectrum (SFS), population differentiation, and haplotype
- selection to explore signals of positive or balancing selection within East Asia
- 522 populations. SNPs with minor allele frequencies (MAF) < 0.01 in all five
- 523 super-populations (AFR, CEU, SAS, EAS and AMR) and genetic variants lacking
- ancestral information were excluded. Ultimately, 18,221,282 SNPs were used for the
- 525 natural selection analysis (Supplementary Methods for details).

526 Haplotype analysis

527	The data used for haplotype analysis corresponds to that employed in the
528	aforementioned natural selection analysis. SNPs with an MAF < 0.05 in all 5
529	super-populations and genetic variants lacking ancestral information were excluded.
530	We extracted SNPs exhibiting high linkage disequilibrium ($R^2 > 0.20$) with
531	rs137983251, rs138089855, rs147525203, or rs2296651 variants, resulting in 16
532	SNPs that were used to construct 31 haplotype types. To further streamline haplotype
533	diversity, the rs79422091 variation was excluded to merge similar haplotypes.
534	Consequently, 16 SNPs were selected to form 25 distinct haplotypes.
535	

536 Abbreviations

- 537 AADR, Allen Ancient DNA Resource; BRN, Brunei; CDX, Chinese Dai in
- 538 Xishuangbanna; CHB, Han Chinese in Beijing; CHS, Southern Han Chinese; CI,
- 539 confidence interval; COJO, conditional and joint analysis; CQ, Chongqing (China);
- 540 DE, Germany; DK, Denmark; ES, Spain; FJ, Fujian (China); FSM, Federated States
- of Micronesia; GWAS, genome-wide association study; GX, Guangxi (China); HA,
- 542 Henan (China); HBcAb, hepatitis B core antibody; HBeAb, hepatitis B e antibody;
- 543 HBeAg, hepatitis B e antigen; HBsAb, hepatitis B surface antibody; HBsAg, hepatitis
- 544 B surface antigen; HBV: hepatitis B virus; HCV, hepatitis C virus; HR, hazard ratio;
- 545 ICP, intrahepatic cholestasis of pregnancy; ID, Indonesia; iHS, integrated Haplotype

546	Score; IS,	Iceland; 1	IT, Italy;	JPN, Japa	ın; KH,	Cambodia;	LB,	Lebanon;	LD,	linkage
-----	------------	------------	------------	-----------	---------	-----------	-----	----------	-----	---------

- 547 disequilibrium; MA, Morocco; MAF, minor allele frequency; MY, Malaysia; NIPT,
- 548 non-invasive prenatal testing; OR, odds ratio; PCs, principal components; PH,
- 549 Philippines; PNG, Papua New Guinea; PP.H, posterior probability for hypothesis; RU,
- 550 Russia; SFS, site-frequency spectrum; SNP, single nucleotide polymorphism; TBA,
- total serum bile acids; TWN, Taiwan (China); USA, United States of America; VAN,
- 552 Vanuatu; VEP, Ensembl Variant Effect Predictor; VN, Vietnam; XJ, Xinjiang (China);
- 553 XP-EHH, Cross Population Extended Haplotype Homozygosity.

Reference

556	1.	Chappell, L. C. et al. Ursodeoxycholic acid versus placebo in women with
557		intrahepatic cholestasis of pregnancy (PITCHES): a randomised controlled trial.
558		Lancet 394 , 849–860 (2019).
559	2.	Puljic, A. et al. The risk of infant and fetal death by each additional week of
560		expectant management in intrahepatic cholestasis of pregnancy by gestational
561		age. Am. J. Obstet. Gynecol. 212, 667.e1-667.e5 (2015).
562	3.	Glantz, A., Marschall, H. U. & Mattsson, L. Å. Intrahepatic cholestasis of
563		pregnancy: Relationships between bile acid levels and fetal complication rates.
564		Hepatology 40, 467–474 (2004).
565	4.	Geenes, V. et al. Association of severe intrahepatic cholestasis of pregnancy
566		with adverse pregnancy outcomes: A prospective population-based case-control
567		study. Hepatology 59, 1482–1491 (2014).
568	5.	Ovadia, C. et al. Association of adverse perinatal outcomes of intrahepatic
569		cholestasis of pregnancy with biochemical markers: results of aggregate and
570		individual patient data meta-analyses. Lancet 393, 899-909 (2019).
571	6.	Alsulyman, O. M., Ouzounian, J. G., Ames-Castro, M. & Goodwin, T. M.
572		Intrahepatic cholestasis of pregnancy: perinatal outcome associated with
573		expectant management. Am. J. Obstet. Gynecol. 175, 957-960 (1996).
574	7.	Sentilhes, L., Verspyck, E., Pia, P. & Marpeau, L. Fetal death in a patient with
575		intrahepatic cholestasis of pregnancy. Obstet. Gynecol. 107, 458-460 (2006).

576	8.	Ovadia, C. et al. Ursodeoxycholic acid in intrahepatic cholestasis of pregnancy:
577		a systematic review and individual participant data meta-analysis. Lancet
578		Gastroenterol. Hepatol. 6, 547–558 (2021).
579	9.	Arrese, M., Macias, R. I. R., Briz, O., Perez, M. J. & Marin, J. J. G. Molecular
580		pathogenesis of intrahepatic cholestasis of pregnancy. Expert Rev. Mol. Med.
581		10 , 1–18 (2008).
582	10.	Lammert, F., Marschall, H. U., Glantz, A. & Matern, S. Intrahepatic cholestasis
583		of pregnancy: molecular pathogenesis, diagnosis and management. J. Hepatol.
584		33 , 1012–1021 (2000).
585	11.	Jacquemin, E., Cresteil, D., Manouvrier, S., Boute, O. & Hadchouel, M.
586		Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic
587		cholestasis of pregnancy. Lancet 353, 210-211 (1999).
588	12.	Schneider, G. et al. Linkage between a new splicing site mutation in the MDR3
589		alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology 45,
590		150–158 (2007).
591	13.	Dixon, P. H. et al. A comprehensive analysis of common genetic variation
592		around six candidate loci for intrahepatic cholestasis of pregnancy. American
593		Journal of Gastroenterology vol. 109 76–84 at
594		https://doi.org/10.1038/ajg.2013.406 (2014).

595	14.	Wasmuth, H. E. et al. Intrahepatic cholestasis of pregnancy: The severe form is
596		associated with common variants of the hepatobiliary phospholipid transporter
597		ABCB4 gene. Gut 56, 265–270 (2007).
598	15.	Chen, R. et al. Intrahepatic cholestasis of pregnancy as a clinical manifestation
599		of sodium-taurocholate cotransporting polypeptide deficiency. Tohoku J. Exp.
600		Med. 248, 57–61 (2019).
601	16.	Dixon, P. H. et al. GWAS meta-analysis of intrahepatic cholestasis of
602		pregnancy implicates multiple hepatic genes and regulatory elements. Nat.
603		<i>Commun.</i> 13 , (2022).
604	17.	Devin D Smith, K. M. R. Intrahepatic Cholestasis of Pregnancy. Clin. Obstet.
605		<i>Gynecol.</i> 63 , 134–151 (2020).
606	18.	Lee, R. H., Goodwin, T. M., Greenspoon, J. & Incerpi, M. The prevalence of
607		intrahepatic cholestasis of pregnancy in a primarily Latina Los Angeles
608		population. J. Perinatol. Off. J. Calif. Perinat. Assoc. 26, 527–532 (2006).
609	19.	Reyes, H. Sex hormones and bile acids in intrahepatic cholestasis of pregnancy.
610		Hepatology 47, 376–379 (2008).
611	20.	Arrese, M. & Reyes, H. Intrahepatic cholestasis of pregnancy: A past and
612		present riddle. Ann. Hepatol. 5, 202-205 (2006).
613	21.	Gao, X. X. et al. Prevalence and risk factors of intrahepatic cholestasis of
614		pregnancy in a Chinese population. Sci. Rep. 10, 16307 (2020).

013 22. 110, 5. ci ui. Ochonne Anaryses non ron-myasive rienaur resultg $Reve$	615	22.	Liu, S. et al.	Genomic Analy	vses from	Non-invasive	e Prenatal	Testing Rev	ea
--	-----	-----	----------------	---------------	-----------	--------------	------------	-------------	----

- 616 Genetic Associations, Patterns of Viral Infections, and Chinese Population
- 617 History. *Cell* **175**, 347-359.e14 (2018).
- 618 23. Liu, S. et al. Utilizing Non-Invasive Prenatal Test Sequencing Data Resource
- 619 for Human Genetic Investigation. *bioRxiv* (2023).
- 620 24. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and
- deposition resource. *Nucleic Acids Res.* **51**, D977–D985 (2023).
- 622 25. Kamat, M. A. et al. PhenoScanner V2: An expanded tool for searching human
- genotype-phenotype associations. *Bioinformatics* **35**, 4851–4853 (2019).
- 624 26. Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human
- 625 proteome. *Protein Sci.* **27**, 233–244 (2018).
- 626 27. Consortium, Gte. The GTEx Consortium atlas of genetic regulatory effects
- 627 across human tissues. *Physiol. Behav.* **369**, 1318–1330 (2020).
- 628 28. Machiela, M. J. & Chanock, S. J. LDlink: A web-based application for
- 629 exploring population-specific haplotype structure and linking correlated alleles
- of possible functional variants. *Bioinformatics* **31**, 3555–3557 (2015).
- 631 29. Park, J. H. et al. Structural insights into the HBV receptor and bile acid
- 632 transporter NTCP. *Nature* **606**, 1027–1031 (2022).
- 633 30. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human
- 634 phenotypes. *Nat. Genet.* **53**, 1415–1424 (2021).

635	31.	Mallick, S. et al. The Allen Ancient DNA Resource (AADR): A curated
636		compendium of ancient human genomes. <i>bioRxiv</i> Prepr. Serv. Biol. (2023)
637		doi:10.1101/2023.04.06.535797.
638	32.	Yang, M. A. et al. Ancient DNA indicates human population shifts and
639		admixture in northern and southern China. Science (80). 369, 282-288
640		(2020).
641	33.	Wang, C. C. et al. Genomic insights into the formation of human populations in
642		East Asia. Nature 591, 413–419 (2021).
643	34.	Wang, T. et al. Human population history at the crossroads of East and
644		Southeast Asia since 11,000 years ago. Cell 184, 3829-3841.e21 (2021).
645	35.	Kramvis, A. et al. A roadmap for serum biomarkers for hepatitis B virus:
646		current status and future outlook. Nat. Rev. Gastroenterol. Hepatol. 19,
647		727–745 (2022).
648	36.	Blumberg, B. S., Alter, H. J. & Visnich, S. A "New" Antigen in Leukemia Sera.
649		<i>JAMA</i> 191 , 541–6 (1965).
650	37.	Prince, A. M. Relation of Australia and SH antigens. Lancet 292, 462–463
651		(1968).
652	38.	Kahila Bar-Gal, G. et al. Tracing hepatitis B virus to the 16th century in a
653		Korean mummy. <i>Hepatology</i> 56 , 1671–80 (2012).
654	39.	Patterson Ross, Z. et al. The paradox of HBV evolution as revealed from a 16th
655		century mummy. PLoS Pathog. 14, e1006750 (2018).

656	40.	Krause-Kyora, B. et al. Neolithic and medieval virus genomes reveal complex
657		evolution of hepatitis B. Elife 7, e36666 (2018).
658	41.	Qiu, X. et al. The Born in Guangzhou Cohort Study (BIGCS). Eur. J.
659		<i>Epidemiol.</i> 32 , 337–346 (2017).
660	42.	Huang, S. et al. Whole genome sequencing and analysis of 4,053 individuals in
661		trios and mother-infant duos from the Born in Guangzhou Cohort Study.
662		Research Square (2022).
663	43.	Purcell, S. et al. PLINK: A tool set for whole-genome association and
664		population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007).
665	44.	Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis
666		of genomewide association scans. Bioinformatics 26, 2190-2191 (2010).
667	45.	Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA : A Tool for
668		Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 88, 76-82 (2011).
669	46.	Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary
670		statistics identifies additional variants influencing complex traits. Nat. Genet.
671		44 , 369–S3 (2012).
672	47.	Moore, C. M., Jacobso, S. A., Fingerlin, T. E. & Health, N. J. Power and
673		Sample Size Calculations for Genetic Association Studies in the Presence of
674		Genetic Model Mis-Specification. 84, 256–271 (2019).

- 675 48. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of
- 676 Genetic Association Studies Using Summary Statistics. *PLoS Genet.* **10**,
- 677 e1004383 (2014).
- 678
- 679

680 Figure legends

- 681 Abstract Figure: Genetic basis and evolutionary history of intrahepatic
- 682 cholestasis of pregnancy in East Asia.
- TBA: Total bile Acid. ICP: Pregnancy intrahepatic cholestasis. Refer to the main text
- 684 for the illustration.

685

686 Fig. 1. Meta-analysis of Genome-wide association study for total bile acid (TBA)

- 687 and intrahepatic cholestasis of pregnancy (ICP).
- (A) Manhattan plot for TBA GWAS meta-analysis, encompassing 94,360 samples. (B)

689 Manhattan plot for ICP GWAS meta-analysis, involving 4,703 cases and 96,320

- 690 controls. Chromosomes are ordered on the x-axis and the $-\log_{10}(P)$ values for the
- 691 association tests are shown on the y-axis. Horizontal dashed lines delineate the
- 692 genome-wide significance threshold ($P = 5 \times 10^{-8}$, in grey). Eight and five independent
- loci achieved genome-wide significance ($P < 5 \times 10^{-8}$) with TBA and ICP, respectively.
- 694 Labels in black denote known loci and labels in red highlight novel loci.

695

Fig. 2. GWAS-GWAS colocalization of TBA & ICP with HBV and forest plots for the shared SNPs with HBV-related traits.

698 (A) The purple diamond in the plot indicates the colocalized SNP, rs138089855,

699	shared between TBA and HBV. (B) Another SNP, rs2296651, is identified as the
700	colocalized SNP between ICP and HBV. The color coding on the plot signifies
701	the R^2 measure of linkage disequilibrium of the colocalized SNP. The forest plot
702	illustrates the genetic effect of (C) rs138089855-C allele and (D) rs2296651-A allele
703	at 14q24.1 on the meta-analysis for HBV and five HBV antigen & and antibody status.
704	The error bars represent the 95% confidence interval of the odds ratio (OR).

705

Fig. 3. Temporal and geographical changes of allele frequency of rs2296651.

707	The geographical frequency distribution of SNP rs2296651 is depicted in (A) the
708	Holocene age (> 10,000BP), (B) the Neolithic age (10,000~3,000BP), (C) the Historic
709	(<3,000BP), and (D) the present-day global populations, utilizing the "1240K" dataset
710	("Allen Ancient DNA Resource", version 54.1). The ancestral allele (reference allele)
711	rs2296651-G is represented in orange and the derived allele (alternative allele A, the
712	ICP risk allele) is shown in blue. The color of the pie chart border indicates the
713	detailed archaeological period in the plot in (C) (i.e., red: 0~1,000BP, black:
714	1,000~2,000BP, green: 2,000~3,000BP). Plots (C) and (D) exclusively display
715	populations where rs2296651-A is present. The frequency or quantity of the A allele
716	in different populations is shown in parentheses. Detailed allele frequencies are
717	provided in Supplementary Table 8-11.

Phenotype

Genotype

Chromosome

