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Key messages:  

What is already known on this topic  

• Systemic sclerosis (SSc) and primary biliary cholangitis (PBC) are autoimmune disorders that 

exhibit overlapping clinical and histological features. 

• The prevalence of PBC is higher in patients with SSc compared to the general population. 

• Multiple susceptibility genomic loci have been identified for SSc and PBC through genome-wide 

association studies (GWAS). 

What this study adds 

• There is a strong genetic correlation between SSc and PBC, comparable in magnitude to the 

genetic correlation between SSc and systemic lupus erythematosus (SLE). This shared genetic 

susceptibility aligns with the observed increased relative risk of developing PBC and SLE in 

individuals with SSc. 

• Using cross-phenotype GWAS and colocalization analysis, we have discovered nine genomic loci 

that account for the shared genetic etiology. Five of the nine loci were novel.  

• Using an integrative approach, we have prioritized five novel candidate causal genes: CD40, 

ERAP1, PLD4, SPPL3 and CCDC113.  

• The CD40 risk allele for SSc and PBC is paradoxically associated with reduced CD40 levels. Causal 

inference analyses indicate that this reduction in CD40 levels, due to CD40 locus polymorphism, 

leads to an increase in various plasma proteins involved in B cell activation, including the CD40 

ligand. 

How this study might affect research, practice or policy  
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• Mechanistic studies are needed to confirm the candidate causal genes prioritized by our in silico 

analyses. 

• Our study advocates for heightened awareness among rheumatologists regarding the possibility 

of concurrent PBC in patients with SSc. 
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Abstract 

Objective 

An increased risk of primary biliary cholangitis (PBC) has been reported in patients with systemic 

sclerosis (SSc). Our study aims to investigate the shared genetic susceptibility between the two disorders 

and to define candidate causal genes using cross-phenotype GWAS meta-analysis.  

Methods 

We performed cross-phenotype GWAS meta-analysis and colocalization analysis for SSc and PBC. We 

performed both genome-wide and locus-based analysis, including tissue and pathway enrichment 

analyses, fine-mapping, colocalization analyses with expression quantitative trait loci (eQTL) and protein 

quantitative trait loci (pQTL) datasets, and phenome-wide association studies (PheWAS). Finally, we used 

an integrative approach to prioritize candidate causal genes from the novel loci.  

Results 

We detected a strong genetic correlation between SSc and PBC (rg = 0.84, p = 1.7 x 10
-6

). In the cross-

phenotype GWAS meta-analysis, we identified 44 non-HLA loci that reached genome-wide significance 

(p < 5 x 10
-8

). Evidence of shared causal variants between SSc and PBC was found for nine loci, five of 

which were novel. Integrating multiple sources of evidence, we prioritized CD40, ERAP1, PLD4, SPPL3, 

and CCDC113 as novel candidate causal genes. The CD40 risk locus colocalized with trans-pQTLs of 

multiple plasma proteins involved in B cell function.  

Conclusion 

Our study supports a strong shared genetic susceptibility between SSc and PBC. Through cross-

phenotype analyses, we have prioritized several novel candidate causal genes and pathways for these 

disorders. 
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Introduction 

Systemic sclerosis (SSc) is a multi-system autoimmune disease characterized by a complex interplay of 

fibrosis, vasculopathy, and inflammation. Unlike in other systemic autoimmune rheumatic diseases, the 

therapeutic response to immunosuppressive medications in SSc is organ-dependent. Certain organ 

involvement, including gastrointestinal tract fibrosis, has not been found to be responsive 

to immunosuppressive therapy.
1
 

Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by inflammation of the 

intrahepatic bile ducts leading to liver fibrosis. Similar to the gastrointestinal involvement of SSc, the 

efficacy of immunosuppressive therapies in PBC has not yet been established.
2
 The prevalence of PBC in 

patients with SSc is 2-2.5%, substantially higher than its prevalence of 0.4% in the general population.
3,4

 

Thus, there is likely an overlap of etiopathogenesis between SSc and PBC. 

Genome-wide association studies (GWAS) have been conducted in both SSc and PBC, identifying 

numerous genomic loci associated with these two disorders.
5,6

 Cross-phenotype GWAS analytic 

approaches that leverage existing GWAS summary statistics have emerged as a powerful new strategy 

for identifying shared mechanisms and novel risk loci.
7
 We used this approach to systematically assess 

overlapping susceptibility and identify novel candidate causal genes that contribute to the common 

etiopathogenesis of the two disorders. 

 

Methods 

Study Design 

An overview of the study design is shown in Figure 1.  

GWAS Summary Statistics 
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We obtained summary statistics of SSc and PBC from their recent GWAS meta-analyses. The GWAS for 

SSc was comprised of 26,679 individuals (9,095 cases and 17,584 controls),
5
 while the GWAS for PBC was 

comprised of 24,510 individuals (8,021 cases and 16,489 controls).
6
 For comparison, we also obtained 

GWAS summary statistics for rheumatoid arthritis (RA)
8
 and systemic lupus erythematosus (SLE)

8,9
 since 

both are prevalent in patients with SSc. We also obtained GWAS summary statistics from expression 

quantitative trait locus (eQTL) datasets, including the eQTLGen, Genotype-Tissue Expression (GTEx, for 

skin, liver, and lung) and Correlated Expression and Disease Association Research (CEDAR), as well as 

plasma proteomics quantitative trait locus (pQTL) datasets from the UK Biobank.
10-13

 The GWAS 

summary statistics were harmonized using reference data from the 1000 Genome Project (phase 3) and 

underwent quality control with MungeSumstats.
14,15

 The included GWAS datasets are summarized in 

Table 1. 

Genetic Correlation Analysis 

To quantify the degree of shared genetic susceptibility, we used linkage disequilibrium score regression 

(LDSC) to estimate the global genetic correlation (rg), excluding the human leukocyte antigens (HLA) 

region, between each phenotype pair (SSc, PBC, RA, and SLE).
16,17

 A Bonferroni-corrected p-value of 8.3 x 

10
-3

 was used as the significance threshold. 

Cross-Phenotype GWAS Meta-Analysis 

We performed a cross-phenotype GWAS meta-analysis to identify pleiotropic loci shared between SSc 

and PBC. We combined the summary statistics of SSc and PBC using the fixed-effect model with effect 

size estimates and standard errors using METAL.
18

 Genomic control correction was applied to the 

summary statistics of each phenotype before the meta-analysis.
19

 After the meta-analysis, we excluded 

SNPs in the HLA region or with evidence of heterogeneity (heterogeneity p < 0.05). We used wANNOVAR 

to annotate the lead SNPs of the significant loci.
20

 We defined novel loci as those that were significant in 
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the cross-phenotype meta-analysis but not significant in either SSc or PBC input GWAS. The loci were 

named based on the annotation of the lead SNPs from wANNOVAR, which relies on the distance to 

nearby genes.
20

 

The fixed-effect model is limited in examining SNPs with heterogeneity of effects. Therefore, we 

performed a sensitivity analysis using the PLEIO (Pleiotropic Locus Exploration and Interpretation using 

Optimal test) method.
21

 PLEIO is designed for cross-phenotype meta-analysis and can account for 

heritability, genetic correlation, and sample overlap. There is no established method for extrapolating Z-

scores from PLEIO statistics. Therefore, we used the fixed-effect model statistics for subsequent analyses. 

Fine-Mapping and Credible Set Analyses 

We prioritized the most likely causal SNPs from the cross-phenotype meta-analysis statistics by 

calculating the 99% credible sets using CARMA (CAusal Robust Mapping method with Annotations).
22

 

These sets represent the smallest sets of SNPs with the probability of including the causal variant 

exceeding 99%. CARMA is a novel Bayesian model for fine-mapping that can better account for the 

uneven measurement of SNPs in each GWAS study of a meta-analysis, as well as the discrepancies 

between summary statistics and LD from external reference panels. We incorporated functional 

annotation into CARMA using the prior causal probabilities based on the meta-analysis of 15 UK Biobank 

traits from PolyFun (POLYgenic FUNctionally-informed fine-mapping).
23

 

Tissue and Pathway Enrichment Analyses 

We used two methods to prioritize the pathways and tissues that contribute to the pleiotropy of SSc and 

PBC: MAGMA (Multi-marker Analysis of GenoMic Annotation) and DEPICT (Data-driven Expression 

Prioritized Integration for Complex Traits).
24-26

 MAGMA and DEPICT perform enrichment analyses at 

pathway and tissue levels but use different approaches to associate loci with genes. MAGMA annotates 

SNPs based on their locations relative to genic regions (transcription start and stop sites +/- 10 kb 
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window). DEPICT prioritizes genes in a locus if genes in different loci have similar predicted functions. We 

reported the Bonferroni-corrected p values. 

Colocalization between SSc and PBC 

We performed colocalization analyses between SSc and PBC in loci that are significant in the cross-

phenotype meta-analysis with the fixed-effect model. Colocalization analyses infer the probability that a 

single genetic variant is causal to both traits of interest – SSc and PBC. We performed colocalization using 

the Wakefield's method from the R package “coloc”.
27

 For loci with independent signals in the 

conditional analysis (p < 5 x 10
-8

), we performed additional colocalization analyses using statistics from 

the conditional analyses. Evidence of colocalization was defined as at least one signal with a 

colocalization probability (PP4) above 70%. 

Colocalization between Meta-Analysis Statistics and eQTL/pQTL Datasets 

We prioritized loci that met the following criteria for additional colocalization analyses: (1) lead SNPs 

without evidence of heterogeneity (Phet ≥ 0.05); (2) significant in the fixed-effect cross-phenotype meta-

analysis; and (3) colocalized between SSc and PBC. We performed colocalization analyses between the 

SSc-PBC meta-analysis statistics of these loci and cis-eQTL and cis-pQTL datasets to predict transcripts or 

proteins associated with the genomic signal. For the eQTL colocalization analyses, we included relevant 

tissues and cells, including blood, skin, lung, liver, and immune cells. We first screened genes using SNPs 

in that locus's 99% credible set to query the eQTL databases. Next, we selected genes with significant 

eQTL signals for the colocalization analyses. For loci that colocalized with a cis-pQTL signal, we 

performed additional colocalization analyses between the meta-analysis statistics and trans-pQTLs 

measured at that locus to investigate the downstream effects of the candidate causal gene. A 

colocalization probability (PP4) above 70% was used as the significance threshold, and 50% as the 

suggestive threshold. 
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Phenome-wide association studies (PheWAS) 

We performed PheWAS for the lead SNP for each novel locus that colocalized between SSc and PBC. The 

PheWAS was performed within three biobanks: the Electronic Medical Records and Genomics III 

(eMERGE-III), All of Us, and the UK Biobank. Meta-PheWAS statistics were then calculated by fixed-effect 

meta-analysis of PheWAS results across the three biobanks.
28-30

 The details of the genotyping methods, 

imputation, quality control, ancestry inference, covariate adjustment, and phenotype identification were 

described in our previous studies.
31-33

 

To further explore pleiotropic associations, we performed meta-PheWAS analyses on the polygenic risk 

scores (PRS) of the cross-phenotype meta-analysis (PRS-meta-PheWAS). We used PRS-CS (continuous 

shrinkage), a method based on high-dimensional Bayesian regression, to generate the weights for PRS.
34

 

The HLA region was excluded. We set the Bonferroni-corrected statistical significance threshold for 

phenome-wide significance at 2.75x10
-5

 (0.05/1,817 phecodes tested). Lastly, we manually queried the 

top SNPs using PheWAS results from the Open Targets Genetics webpage
35,36

, which includes data from 

the GWAS Catalogue, UK Biobank, and FinnGen. We designated the effect allele as the GWAS risk allele 

in SSc-PBC cross-phenotype analysis. 

Integrative prioritization of novel candidate causal genes 

For each novel locus, we prioritized candidate causal genes using an integrative approach. Each 

candidate causal gene was scored with the following criteria and we then calculated the number of the 

satisfied criteria (“priority score”): (1) genes most proximal to the lead SNP at the locus; (2) genes 

colocalizing with the locus in the examined cis-eQTL datasets; (3) genes colocalizing with the locus in the 

examined cis-pQTL datasets; (4) genes with a nonsynonymous coding variant in the credible set; (5) 

Genes prioritized by MAGMA (false discovery rate [FDR] q-value < 0.05 )
24

; (6) genes prioritized by 

DEPICT (FDR q-value < 0.05)
26

; (7) genes receiving the top score from the Variant-to-Gene (V2G) pipeline 
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on the Open Targets Genetics webpage
35,36

, using the fine-mapped SNPs (PIP > 10%); (8) genes whose 

predicted regulatory elements from the ENCODE-rE2G model
37

 intersected with the fine-mapped SNPs 

(PIP > 10%); (9) genes prioritized by the large language model (LLM) GPT-4, which was recently 

suggested as a systematic way to mine literature for candidate causal gene prioritization (input described 

in the Supplemental Note).
38

 We prioritized the genes with the highest priority scores within each locus. 

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of 

our research. 

Results 

Global Genetic Correlation 

There was a strong global genetic correlation between SSc and PBC (rg = 0.84, p = 1.7 x 10
-5

), in which 

the effect estimate is comparable to the genetic correlation between SSc and SLE (rg = 0.84, p = 1.6 x 10
-

15
). The pairwise comparison of global genetic correlation in SSc, PBC, RA and SLE is shown in Figure 2. 

Cross-Phenotype GWAS Meta-Analysis 

We performed a cross-phenotype meta-analysis for SSc and PBC using the fixed-effect model. The 

Manhattan plot is shown in Figure 3. There were 44 non-HLA loci that reached genome-wide significance 

(p < 5 x 10
-8

, Supplemental Table 1). The genomic inflation factor (λ) was 1.065 and the LDSC intercept 

was 1.010 (standard error 0.012). In 16 out of the 44 significant loci (36%), there was evidence of 

heterogeneity in the lead SNPs (Phet < 0.05). However, these loci remained significant after removing 

SNPs with heterogeneity.  

Given the high proportion of loci with evidence of heterogeneity, we performed another cross-

phenotype meta-analysis between SSc and PBC using PELIO as a sensitivity analysis. There were 58 non-

HLA loci that reached genome-wide significance (p < 5 x 10
-8

, Supplemental Table 2). The genomic 
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inflation factor (λ) was 1.091. Forty-one of the 44 loci (93%) that were significant in the fixed-effect 

model were also significant in PLEIO. Regarding the novel loci, five out of the seven (71%) identified in 

the fixed-effect model were also significant in PLEIO. The two novel loci that were only significant in the 

fixed-effect model, CD40 and AHNAK2, had p-values of 7.37 x 10
-8

 and 3.37 x 10
-7

 in PLEIO. Two novel loci, 

NDFIP1 and PPHLN1, were significant only in PLEIO but not in the fixed-effect model. However, the 

evidence for the association of these loci with SSc was insufficient (lead SNP p values 3.93 x 10
-2

 and 1.33 

x 10
-2

, respectively). Thus, no further analyses were performed for these loci. 

Tissue and Pathway Enrichment Analyses 

We used two data-driven genome-wide methods, MAGMA and DEPICT, to explore pathway and tissue 

enrichment across SSc and PBC. Tissue enrichment analysis using MAGMA prioritized spleen (p = 1.21 x 

10
-6

), whole blood (p = 1.59 x 10
-6

), Epstein-Barr Virus (EBV)-transformed lymphocytes (p = 4.16 x 10
-4

), 

lung (p = 2.81 x 10
-3

), and terminal ileum (p = 4.63 x 10
-3

) (Figure 4a, Supplemental Table 3). 

Concurrently, the DEPICT method significantly enriched 20 tissues and cells, most related to the immune 

system or respiratory tract. The top-ranked tissues/cells were mononuclear leukocytes (p = 2.95 x 10
-5

), 

oropharynx (p = 3.80 x 10
-5

), palatine tonsil (p = 3.80 x 10
-5

), and synovial fluid (p = 2.63 x 10
-4

) (Figure 4b, 

Supplemental Table 4). 

Pathway enrichment analysis using MAGMA revealed significant enrichment in 73 gene sets (Figure 4c, 

Supplemental Table 6). The top-ranked gene sets were “Th1/Th2 pathway” (p = 4.92 x 10
-12

), “positive 

regulation of immune system process” (p = 3.67 x 10
-9

), “IL-27 pathway” (p = 5.60 x 10
-9

) and “IL-35 

pathway” (p = 7.63 x 10
-9

). A separate pathway enrichment analysis using DEPICT revealed significant 

enrichment in 263 gene sets, which similarly involved multiple aspects of the human immune system 

(Supplemental Data 1). 

Fine-Mapping and Credible Set Analyses 
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To infer the causal SNPs underlying the association signals, we performed fine-mapping and generated 

99% credible sets. There were 53 predicted causal signals across the 44 significant loci. Eleven (21%) of 

the credible sets contained only one SNP. Twenty-six (49%) credible sets contained fewer than five SNPs. 

Thirty-nine (74%) credible sets contained fewer than ten SNPs. In 30 (68%) loci, the maximum posterior 

inclusion probability (PIP) in their credible sets contained the lead SNPs of that loci. There were no 

nonsynonymous coding variants in any of the credible sets. The credible SNP sets in each locus are 

summarized in Supplemental Table 5. 

Colocalization between SSc and PBC 

Due to LD, significant SNPs within genomic loci may not necessarily be causal for the associated trait. 

Therefore, we conducted colocalization analyses to determine whether there was at least one shared 

causal variant between SSc and PBC in loci significant in the cross-phenotype meta-analysis. We 

identified 9 loci that colocalized between SSc and PBC (PP4 > 70%) and did not have evidence of 

heterogeneity (Phet ≥ 0.05), as detailed in the Table 2 and Supplemental Figure 1. Notably, five were 

novel: CSNK2A2/CCDC113, SPPL3, CAST/ERAP1, AHNAK2, and CD40. 

Colocalization with Tissue- and Immune Cell-Specific cis-eQTL  

In the nine loci that were significant in cross-phenotype meta-analysis without evidence of 

heterogeneity and colocalized with SSc and PBC, we further performed colocalization between SSc-PBC 

meta-analysis statistics and eQTL statistics in blood, skin, lung, liver and immune cells. In seven of the 

nine loci, the SSc-PBC meta-analysis statistics colocalized with at least one transcript in the examined 

eQTL statistics (PP4 > 50%), prioritizing candidate causal genes at these loci (Figure 5). The eQTL 

colocalized transcripts were IRF5, TNPO3, ANP32B, IL12RB1, ERAP1, ERAP2, SPPL3, AKT1, PLD4, 

LINC00638 and CD40. 

Colocalization with plasma cis- and trans-pQTL 
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Across the nine loci mentioned above, only the IL12RB1 and CD40 loci encode secreted proteins 

previously assessed in blood pQTL datasets. These plasma proteins include interleukin 12 receptor 

subunit beta 1 (IL12RB1) and CD40, respectively. The SSc-PBC meta-analysis statistics colocalized with 

cis-pQTL for CD40 protein levels (PP4 = 98%) but not with IL12RB1 protein levels (PP4 = 0.4%). The SSc-

PBC risk allele was associated with lower plasma CD40 levels. Moreover, the SSc-PBC risk alleles at the 

CD40 locus colocalized in trans to reduced BAFF levels (PP4 = 99%) and increased levels of CD40L (PP4 = 

99%), FCER2 (PP4 = 99%), CD22 (PP4 = 99%), TRAF2 (PP4 = 97%), FCLR1 (PP4 = 99%), and TCL1A (PP4 = 

99%). 

PheWAS 

We performed a meta-PheWAS for the five novel loci that colocalized between SSc and PBC. Three novel 

loci had significant associations with at least one phecode (Supplemental Figure 3). Rs10083496-G 

(ANNAK2 locus) was associated with “Systemic lupus erythematosus” (OR = 1.12, p = 2.05 x 10
-7

). 

Rs4810485-T (CD40 locus) was associated with “Non-Hodgkins lymphoma” (OR = 1.11, p = 1.38 x 10
-6

) 

and “Anxiety disorders” (OR = 1.04, p = 2.86 x 10
-6

).  

We subsequently performed an additional meta-PheWAS analysis to evaluate phenotypic associations of 

a genome-wide PRS based on the SSc-PBC meta-analysis statistics, excluding the HLA region (“SSc-PBC 

PRS”). We identified a total of 134 significant associations, the majority of which were related to immune 

dysregulation. As expected, SSc (OR = 1.78, p = 9.19 x 10
-30

) and PBC (OR = 3.01, p = 5.55 x 10
-86

) were 

top-ranked in their effect estimates associated with the SSc-PBC PRS, confirming that the PRS captures 

the risk for both diseases in the external datasets. Moreover, the PRS was associated with systemic 

autoimmune rheumatic diseases including “Rheumatoid arthritis” (OR = 1.24, p = 2.16 x 10
-55

), “Systemic 

lupus erythematosus” (OR = 1.75, p = 3.34 x 10
-64

), “Sicca syndrome” (OR = 1.58, p = 9.46 x 10
-43

), 

“Polyarteritis nodosa and allied conditions” (OR = 1.18, p = 6.72 x 10
-10

), as well as with non-rheumatic 
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autoimmune diseases including “Hypothyroidism” (OR = 1.12, p = 4.42 x 10
-55

), “Multiple sclerosis” (OR = 

1.30, p = 1.15 x 10
-23

), “Inflammatory bowel disease and other gastroenteritis and colitis” (OR = 1.14, p = 

3.23 x 10
-21

) and “Idiopathic fibrosing alveolitis” (OR = 1.19, p = 2.00 x 10
-8

) (Supplemental Figure 5 and 

Supplemental Table 8).  

Additionally, we manually queried the top SNP from the novel loci using PheWAS results from the Open 

Targets Genetics webpage. Rs4810485-T (CD40 locus) was associated with multiple autoimmune 

disorders, including “rheumatoid arthritis” (OR = 0.85, p = 5.7 x 10
-9

), “inflammatory bowel disease” (OR 

= 1.08, p = 4.6 x 10
-10

) and “multiple sclerosis” (OR = 1.08, p = 1.8 x 10
-5

). Rs27524-G (CAST/ERAP1 locus) 

was associated with “ankylosing spondylitis” (OR = 0.84, p = 5.4 x 10
-7

), “iridocyclitis” (OR = 0.88, p = 6.9 

x 10
-8

) and “psoriasis” (OR = 0.85, p = 1.6 x 10
-6

).  

Integrative prioritization of novel candidate causal genes 

We prioritized five candidate causal genes from the novel loci using a scoring approach that integrates 

nine in silico annotation methods (Figure 6. MAGMA, DEPICT and ENCODE-rE2G results in the 

Supplemental Table 9-11. GPT-4 output described in the Supplemental Note). CD40 received the highest 

priority score of 8, meeting all criteria except for credible sets containing a non-synonymous coding 

variant. ERAP1 received a priority score of 6, followed by PLD4 with a score of 5. SPPL3 and CCDC113 

received priority scores of 4 and 3, respectively.  

Discussion 

Our study demonstrates a strong genetic correlation between SSc and PBC, with the correlation effect 

estimate comparable to that between SSc and SLE. The prevalence of PBC in SSc was 2-2.5%, lower than 

the 8.4-14.7% prevalence of SLE in SSc.
3,4,39-41

 Nevertheless, the prevalence of PBC in the general 

population, ranging from 19-402 per million persons, was also much lower than that of SLE, which 

ranges from 200-1500 per million persons.
42-46

 Consequently, compared to the general population, the 
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relative risk (RR) of PBC and SLE in SSc likely mirrors their genetic correlation. Hence, our genetic 

correlation results, corroborated by the extent of phenotypic overlaps, support the existence of shared 

genetic susceptibilities and biological mechanisms between SSc and PBC. 

We identified 44 significant non-HLA genomic loci in the fixed-model cross-phenotype GWAS meta-

analysis. The robustness of our meta-analysis was supported by the PRS-meta-PheWAS analysis. In this 

analysis, using independent external datasets, SSc and PBC ranked among the top hits associated with 

the PRS, derived from our SSc-PBC meta-analysis statistics. Moreover, the SSc-PBC PRS demonstrated 

associations with a broad spectrum of autoimmune disorders, highlighting that the shared genetic 

susceptibilities between SSc and PBC captured by our cross-phenotype meta-analysis represent 

pleiotropic genomic regions.  

We identified five novel loci that were significant in the cross-phenotype GWAS meta-analysis and 

colocalized between SSc and PBC: CSNK2A2/CCDC113, SPPL3, CAST/ERAP1, AHNAK2, and CD40. Three of 

the five loci were independently confirmed in a GWAS in another population: CD40 and AHANK2 loci 

were significant in a recent SSc GWAS meta-analysis that included the Japanese population,
47

 and the 

CSNK2A2/CCDC113 locus was significant in a PBC GWAS from the Chinese population.
48

 Moreover, we 

found that the lead SNP in the CD40, AHNAK2, and CAST/ERAP1 loci was associated with other 

autoimmune disorders in PheWAS. The pleiotropic effects observed at these loci underscore their 

potential role in promoting autoimmunity. We subsequently prioritized five novel candidate causal genes 

for SSc and PBC based on integrating nine analytic approaches: CD40, ERAP1, PLD4, SPPL3, and CCDC113. 

At the CD40 locus, the SSc-PBC meta-analysis statistics colocalized with not only the reduced transcript 

but also reduced plasma protein levels of CD40. Such associations have also been observed in other 

autoimmune diseases, including inflammatory bowel disease and multiple sclerosis, as well as 

malignancy in our PheWAS analysis.
49,50

 This seems paradoxical given CD40's established role in 
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promoting autoimmunity.
51

 However, CD40 deficiency, a rare monogenic disorder caused by bi-allelic 

loss-of-function variants in CD40, is characterized not only by humoral immunodeficiency but also by 

malignancy and autoimmunity, including sclerosing cholangitis and colitis.
52

 Thus, a causal relationship 

between reduced CD40 expression due to polymorphisms and an increased risk of autoimmunity and 

malignancy is biologically plausible, mimicking the phenotypic manifestations of its monogenic disease 

counterpart. Interestingly, at the CD40 locus, the SSc-PBC meta-analysis statistics also colocalized with 

increased levels of multiple plasma proteins involved in B cell functions, including CD40L, FCER2, CD22, 

TRAF2, and TCL1A. This suggests a potential compensatory response. Soluble CD40L (sCD40L), the 

circulating form measured in the proteomics assay, is the ligand of CD40, which also binds to other 

receptors on endothelial cells and promotes vascular pathology.
53

 Elevated soluble CD40L levels have 

been found in patients with SSc and are associated with its vascular manifestations.
54

 Overall, the 

complex B cell dysregulation mediating genetically determined reduced CD40 expression in SSc warrants 

further investigation.  

Our study also suggests that SSc and PBC may be associated with reduced major histocompatibility 

complex (MHC)-I-mediated immune response, potentially affecting cancer immunosurveillance. The SSc-

PBC meta-analysis statistics in CAST/ERAP1 and SPPL3 loci colocalized with reduced transcripts of 

endoplasmic reticulum aminopeptidase 1 (ERAP1), increased transcripts of endoplasmic reticulum 

aminopeptidase 2 (ERAP2) and reduced transcripts of signal peptide peptidase-like 3 (SPPL3). These 

genes are implicated in the MHC-I-mediated immune response. ERAP1 and ERAP2 process and trim 

antigen peptides prior to their binding to MHC-I. Conditions referred to as “MHC-I-opathy”, including 

psoriasis and ankylosing spondylitis, were associated with MHC-I and ERAP1 alleles.
10,36,55-57

 In contrast, 

both SSc and PBC are associated with MHC-II and the risk alleles in CAST/ERAP1 identified in our study 

are in the opposite direction of ERAP1 and ERAP2 expression compared to those found in the MHC-I-

opathy entities.
58,59

 Recent research has shown that reduced SPPL3 activity can dampen the MHC-I-
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mediated response and promote tumor immune evasion.
60

 Both SSc and PBC have been associated with 

an elevated risk of cancer, and recent findings indicate that SSc carries a higher burden of somatic 

mutations and genomic instability.
61-64

 It is possible that these changes could be related to diminished 

immunosurveillance from a dampened MHC-I-mediated response. 

Our study has several limitations. First, we used summary statistics from published GWAS meta-analyses 

and were unable to perform standardized quality control with individual-level genotype data. 

Nevertheless, the GWAS studies included in our study were recent, comprised of large sample sizes from 

multiple cohorts, and led by international experts. Second, our study was performed in European 

ancestries; thus, our results may not be generalizable to other populations. Third, the sample size of SSc 

and PBC in our external datasets was limited, which precluded us from performing a replication GWAS to 

validate the newly discovered loci. Instead, we conducted a PRS-meta-PheWAS analysis to confirm that 

the PRS derived from our SSc-PBC meta-analysis captures the overall genetic risk of SSc and PBC in 

independent EHR-based datasets. Fourth, the sample size of GTEx and CEDAR was smaller than that of 

eQTLGen, which could limit statistical power in our eQTL colocalization analyses for the relevant tissues 

and cells. Finally, for our meta-PheWAS analyses, the diagnoses in the EHR-based datasets rely on 

administrative codes, which may have non-random missingness and low sensitivity for phenotype 

detection.
65

 

In conclusion, our study revealed a strong genetic correlation between SSc and PBC and provided 

insights into their shared genetic susceptibility. We prioritized seven novel genes that were potentially 

involved in the common causal mechanisms between SSc and PBC. These discoveries prioritize 

therapeutic targets for both SSc and PBC. Moreover, our study advocates for heightened awareness 

among rheumatologists about the possibility of concurrent PBC in patients with SSc. 
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Table 1 GWAS summary statistics included in this study. 

SSc: systemic sclerosis. PBC: primary biliary cholangitis. RA: Rheumatoid arthritis. SLE: systemic lupus erythematosus. eQTL: expression 

quantitative trait loci. pQTL: protein quantitative trait loci. GTEx: Genotype-Tissue Expression. CEDAR: Correlated Expression and Disease 

Association Research 

 

 

 

 

 

 

Autoimmune Disease GWAS Datasets 

Phenotype Ncases Ncontrols Ancestry Publication year Reference 

SSc 9,095 17,584 European 2019 
5
 

PBC 8,021 16,489 European 2021 
6
 

RA 22,350 78,823 European 2022 
8
 

SLE 7,219 15,991 European 2015 
9
 

eQTL datasets 

Dataset Tissue N Ancestry Publication year Reference 

eQTLGen blood 31,864 Predominantly European 2020 
10

 

GTEx V8 skin, lung, liver 508 (skin), 436 (lung), 178 (liver) European 2021 
12

 

CEDAR 

B cells, CD4+ T cells, 

CD8+ T cells, 

monocytes, neutrophils 

323 European 2018 
11

 

pQTL datasets 

UK Biobank plasma 54,219 Predominantly European 2023 
13
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Table 2 Genomic loci significant in the cross-phenotype GWAS, colocalized between SSc and PBC and do 

not have evidence of heterogeneity   

Locus Lead SNP CHR BP A1 A2 FE OR FE p-values PLEIO p-values Colocalization PP4 Novel loci 

TNPO3 rs17338998 7 128618559 T C 1.52 2.37E-40 4.16E-73 98% No 

CSNK2A2/CCDC113 rs2731783 16 58253460 A G 1.15 7.79E-11 1.50E-09 96% Yes 

IL12RB1 rs2305743 19 18193191 A G 0.86 1.95E-14 7.42E-14 96% No 

LOC100506023 rs2022449 1 173238736 T G 1.12 1.69E-10 2.82E-09 92% No 

SPPL3 rs551125 12 121203427 C T 0.91 1.65E-09 2.59E-08 91% Yes 

CAST/ERAP1 rs27524 5 96101944 A G 0.9 4.89E-10 6.04E-09 85% Yes 

HEMGN/ANP32B rs4743150 9 100740124 T C 0.88 8.29E-11 2.80E-10 85% No 

AHNAK2 rs10083496 14 105402786 G A 1.09 2.56E-08 7.37E-08 80% Yes 

CD40 rs4810485 20 44747947 T G 1.13 1.44E-08 7.37E-08 73% Yes 

SSc: systemic sclerosis. PBC: primary biliary cholangitis. PLEIO: Pleiotropic Locus Exploration and Interpretation using Optimal 

test. FE: fixed-effect model. PP4: posterior probability of hypothesis 4 that there is one variant causal to both traits. A1: effect 

allele. A2: non-effect allele. 
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Figure Legends 

Figure 1 Flowchart for the overview of the study. 

We performed multiple cross-phenotype GWAS analyses to identify the shared genetic susceptibility 

between SSc and PBC. Additionally, we also performed a single-center retrospective chart review to 

evaluate the prevalence of PBC, including potentially undiagnosed cases, in patients with SSc. 

SSc: systemic sclerosis. PBC: primary biliary cholangitis. GWAS: genome-wide association studies. PLEIO: 

Pleiotropic Locus Exploration and Interpretation using Optimal test. eQTL: expression quantitative trait 

loci. PheWAS: phenome-wide association studies.  

Figure 2 Pairwise genetic correlation in SSc, PBC, RA and SLE. 

We performed genetic correlation analyses using linkage disequilibrium score regression pairwise among 

SSc, PBC, RA and SLE. The effect estimates of genetic correlation between SSc and PBC, and between SSc 

and SLE, were both 0.84, higher than other pairwise estimates. 

Figure 3 Manhattan plot of the cross-phenotype GWAS meta-analysis in SSc and PBC using the fixed-

effect model. 

We performed a cross-phenotype GWAS meta-analysis in SSc and PBC using the fixed-effect model. We 

identified 44 significant genomic loci (p < 5 x 10
-8

). We found 9 loci that colocalized between SSc and PBC 

and did not show evidence of heterogeneity (indicated in red), among which five were novel (indicated 

with an asterisk). SNPs with evidence of heterogeneity (Phet < 0.05) were excluded. 

Figure 4 Tissue and pathway enrichment analyses. 

a Tissue enrichment analysis using MAGMA prioritized tissues related to the immune system (spleen, 

whole blood and EBV-transformed lymphocytes), respiratory system (lung) and digestive system 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.07.01.24309721doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.01.24309721


(terminal ileum). b Tissue enrichment analysis using DEPICT prioritized multiple tissues and cells related 

to the immune system, respiratory system and musculoskeletal system. c Significant enrichment of 

multiple immune-related pathways associated with SSc and PBC using MAGMA. 

Figure 5 Colocalization analysis with expression quantitative trait loci (eQTL) in blood, skin, lung, liver 

and immune cells. 

Out of the nine loci that were significant in the fixed-model cross-phenotype meta-analysis, showed no 

evidence of heterogeneity, and colocalized between SSc and PBC, seven colocalized with expressed 

genes in at least one of the examined tissues. 

Figure 6 Integrative prioritization of novel candidate causal genes 

We prioritized five novel candidate causal genes based on a priority score integrating nine criteria: CD40, 

ERAP1, PLD4, SPPL3 and CCDC113 
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