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Rapid genotype-based drug susceptibility testing for the Mycobacterium tuberculosis 

complex (MTBC) relies on a comprehensive knowledgebase of the genetic determinants of 

resistance. We built a catalog of resistance-associated mutations in MTBC using a novel 

regression-based approach and benchmarked it against the 2nd edition of the World Health 

Organization mutation catalog. We trained multivariate logistic regression models on over 

50,000 MTBC isolates to associate binary resistance phenotypes for 15 antitubercular drugs 

with variants extracted from candidate resistance genes. Regression detects 452/457 (99%) 

resistance-associated variants identified using the existing method (a.k.a, SOLO method) and 

grades 218 (29%) more total variants than SOLO. The regression-based catalog achieves 

higher sensitivity on average (+3.2 percentage points, pp) than SOLO with smaller average 

decreases in specificity (-1.0 pp) and positive predictive value (-1.8 pp). The regression pipeline 

also detects isoniazid resistance compensatory mutations in ahpC and variants linked to 

bedaquiline and aminoglycoside hypersusceptibility. These results inform the continued 

development of targeted next generation sequencing, whole genome sequencing, and other 

commercial molecular assays for diagnosing resistance in MTBC. In addition to grading genetic 

variants by their associations with phenotype, regression models could potentially provide an 

accurate and scalable method of predicting antibiotic resistance from bacterial genetic profiles. 
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Introduction 

The current method used by the World Health Organization to build catalogs of 

mutations associated with antibiotic resistance focuses on univariate association between 

solitary mutations and binary resistance phenotype (resistant vs. susceptible), excluding isolates 

with multiple possibly causative resistance mutations. Additional confidence grading rules are 

applied to the output of this association analysis and integrated with independent data from the 

literature (e.g. allelic exchange data) to generate the final grading of mutations into 5 categories: 

Group 1) Associated with resistance, Group 2) Associated with Resistance - Interim, Group 3) 

Uncertain significance, Group 4) Not associated with Resistance - Interim, and Group 5) Not 

associated with resistance.  

This univariate association method1,2 is based upon the assumption that most resistant 

strains have just one non-synonymous, non-lineage defining mutation in candidate genes 

whereas most susceptible strains have none2. Evidence implicating a mutation with resistance is 

derived solely from isolates in which it is the only mutation occurring in a drug-resistant isolate 

(after exclusion of a pre-specified list of neutral variants). This approach considers the mutation 

independently of potential additive effects with other mutations. Mutations that do not fit those 

criteria are graded using additional grading rules (i.e. predicted effect on protein function, 

proximity to the drug’s active site) or evidence from the literature. If none of the above is 

possible, then it is graded as uncertain3,4.  

Different from univariate association, multivariable regression can perform phenotypic 

association of solitary or multiple co-occurring mutations, estimating the effect of each mutation 

on phenotype, conditional on the presence or absence of other mutations. Regression is used to 

generate polygenic risk scores for predicting human disease5. Similarly, given the known high 

heritability of antibiotic resistance in bacteria6,7, this approach can also be used to predict 

antibiotic resistance from genotypic data. Both binary and semi-continuous outcomes (e.g. 

minimum inhibitory concentrations, or MICs, are typically measured at serial doubling dilutions) 
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can be predicted. However, genetic association using regression requires an assumption that 

the relationship between mutation presence and the probability of phenotypic resistance follows 

a logistic function and that the effects of co-occurring mutations on resistance are additive. 

Strong co-linearity between mutations can bias the fit of a regression model and affect its 

attribution of effects between linked mutations and the phenotype. Further, accurate association 

using regression requires genotypic and phenotypic data from a large and diverse sample set.   

Motivated by the potential advantages of regression for genotype to phenotype 

association and enabled by the WHO global collection of MTBC genomes (N = 52,567), we 

tested the accuracy and predictive performance of a multivariable penalized regression model 

compared with the SOLO method currently used in the World Health Organization (WHO)  

catalog of mutations in Mycobacterium tuberculosis complex and their association with drug 

resistance (“WHO mutation catalog”)4. This approach may also lower dependence on literature 

sources external to the data to grade mutations and improve scalability and future automation of 

catalog production.  

 

Methods 

A. Definitions, Abbreviations, and Curation of MTBC data 

Regression models were trained using the same genotypic and phenotypic data as the 

2nd edition of the published WHO mutation catalog4. These phenotypic and genotypic data were 

curated from published datasets, consortium initiatives, and direct submissions in response to 

public calls for contributions by the WHO Global Tuberculosis Programme8. Quality control was 

previously performed for the 2nd edition of the mutation catalog, with 52,567 isolates passing 

both phenotypic and genotypic data quality control4. 

The pDST data were subset into two groups: the “WHO dataset” (N = 41,141) consists of 

higher confidence phenotypes tested using WHO-approved phenotypic testing methods, and 

the “ALL dataset” (N = 52,567) includes the entire WHO dataset as well as pDST results 
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measured using phenotypic approaches not endorsed by the WHO (e.g. UKMYC 96-well 

plates)9. 

Candidate resistance genes were assigned to two tiers based on published literature, 

including the first edition of the catalog3, and discussions among an international panel of expert 

advisors: Tier 1 is composed of genes and associated promoter regions deemed by the expert 

panel to contain resistance mutations with high probability and Tier 2 is composed of genes that 

may contain resistance mutations based on new or less established evidence4. We focused the 

regression on associating variants in Tier 1 genes only (Supplementary Table 1) because 

evidence from the 2nd edition of the mutation catalog did not support the association of variants 

in Tier 2 genes with drug resistance4. 

Variants not covered by at least 10 reads in the read alignment were labeled as missing 

calls4. For variants with at least 10 reads of support, a variant was considered present if it had a 

within-isolate allele frequency (AF) > 0.75 and absent if AF ≤ 0.25. We did not attempt to 

associate variants with intermediate allele frequencies with resistance in the regression models. 

Regression models cannot be trained on missing data, so for a given single-drug model, we 

excluded all isolates with variant calls (Supplementary Table 2) with an AF in the range (0.25, 

0.75] and isolates with missing variant calls. After association, resistance prediction to assess 

sensitivity, specificity, and PPV did use isolates with intermediate allele frequencies as 

described in the results section. The genes rrs and rrl are known to have a high degree of 

homology across bacteria, and false low frequency variant calls are common due to 

contamination in the sequencing process. For this reason, the ribosome-targeting drugs have 

the largest numbers of excluded isolates and associated variants (Supplementary Table 2). 

 

B. Regression Model Design 

To maintain high statistical power, we built a series of nested models (Supplementary 

Table 3). The “base” model for a given phenotypic group was fit on all non-silent variants with 
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no pooling of LoF variants. Two additional models were fit: one in which LoF variants were 

pooled on a per-gene basis and another with silent variants in addition to unpooled non-silent 

variants. The expected effect size of silent variants was significantly smaller than those of non-

silent mutations, so no model was trained only on silent variants. Definitions of silent variants 

and LoF mutations were the same as for the SOLO method (Table 1). To pool LoFs, for a given 

gene, all frameshift, start_lost, stop_gained, and feature_ablation mutations were combined into 

a single “LoF” variant. The component mutations were then removed from the variant matrix so 

that a variant was not multiply considered during model fitting.  

Non-silent non-indel variants were tested in all three models in Supplementary Table 3, 

but we used only the results from the unpooled model to grade them. The only results derived 

from the models with LoF pooling and silent variants were the pooled LoF and silent variants 

themselves, respectively. We separately fit models on the WHO and ALL datasets. Models were 

trained to regress single-drug binary pDST on genotype. The MIC models were not used for 

grading but were instead used to add supportive evidence for associations between genotype 

and pDST. 

We trained single-drug regression models with L2 penalties due to expected multi-

collinearity in the data, which is caused by clonality and population structure in bacteria. We 

performed a series of statistical tests to grade mutations into five categories. Because genes 

were selected for inclusion into the models based on the literature and known or putative 

mechanisms of action, all mutations in the genes in Supplementary Table 1 were included. To 

select the strength of L2 regularization for each model, we performed five-fold cross-validation 

using all powers of ten from 10-6 to 106 and selected the regularization parameter with the lowest 

binary cross-entropy, with class balancing. Coefficient significance was determined using a 

permutation test with 1000 re-shufflings of phenotype across the full dataset and the same 

regularization parameter determined on the original model (Supplementary Figure 1a-b).  
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C. Principal Component Analysis 

MTBC is a clonally evolving bacterium with strong population structure, which can lead 

to systematic false positives when estimating the effects of mutations on resistance that may not 

be sufficiently corrected for through L2 regularization10,11. Therefore, we additionally adjusted for 

population structure using principal components analysis (PCA) on a kinship matrix. 6,938 

single nucleotide variants (SNVs) more than 50 base pairs away from any PE or PPE gene 

across the MTBC genome and with a variant allele frequency of at least 1% were included. We 

excluded previously identified homoplastic sites12, putative drug resistance regions13, and sites 

at which more than 1% of isolates have a variant occurring at a within-isolate read frequency 

<75%, leaving 6,190 SNV sites for the kinship matrix. 

We performed PCA on the covariance matrix of these 6,190 sites. The resulting principal 

components are latent variables the first of which are expected to describe major axes of 

ancestral variation (i.e., lineage) in the MTBC. We included the first 50 principal components, 

which explain 99.995 % of the total variance in the genotype, as covariates in every model. We 

ran fast-lineage-caller14 on the variant call format (VCF) files to obtain lineage designations 

(Supplementary Table 4). We considered an isolate’s lineage to be the most specific lineage 

that fast-lineage-caller identified. Eight isolates did not have a lineage by the Coll scheme15 but 

were classified as Mycobacterium canettii by the Lipworth scheme16. Several principal 

components are highly correlated with lineages and sublineages (Supplementary Figure 2). 

Many of the principal components (Supplementary Figure 2e-h) separate sublineages of L4, 

which is the most diverse of the MTBC lineages. 395/52,567 (0.75%) of isolates have more than 

one lineage assigned according to the Coll scheme15. These are excluded from Supplementary 

Figure 2 but are in all models and analyses.  

 

D. Likelihood Ratio Test 
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To further discriminate between the strengths of association of different mutations, we 

performed a likelihood ratio test (LRT). This test compares two nested models and determines if 

adding additional variants significantly improves a model’s goodness-of-fit. The LRT is more 

conservative than the permutation test as it more directly controls for collinearity in the 

mutations, i.e. for a mutation to demonstrate significance on the LRT it must improve the fit of 

the model when added to all other mutations in the model. This LRT statistic follows the chi-

squared distribution (Supplementary Figure 1c). 

 

E. Test for Mutation Neutrality 

We implemented a second permutation test that reverses the hypothesis test to 

determine if the evidence supports a lack of an association between a variant and drug 

resistance (i.e., test if a mutation is neutral with an OR ~1 on resistance). In the permutation test 

for mutation effect, if the proportion of permuted ORs that are more extreme than the estimated 

OR on the training dataset is less than α, then the variant has a significant OR on resistance 

(Supplementary Figure 1a). Conversely, for the test for mutation neutrality, if the proportion of 

permuted ORs that are less extreme (i.e., closer to 1) than the estimated OR is less than α, then 

the variant is not associated with the drug resistance phenotype (Supplementary Figure 1b). 

 

F. Mutation Classifications 

We used five grading groups as in the WHO catalog4, noting that these gradings were 

necessarily defined by different statistical criteria for regression. The flowchart in Figure 1 

details the grading for each variant in a single model (i.e., single drug, single phenotypic group). 

The gradings assigned in Figure 1 are interim, after which the gradings were integrated 

between the two phenotypic datasets to a final grading (Supplementary Table 5). 

To reduce grading of false associations among rare variants, regression-graded variants 

must be present in at least five isolates. For grading associations with R, we set the FDR q-
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value cutoff at 0.05 for non-silent variants (including pooled LoF variants), as this constituted the 

primary analysis, and 0.01 for silent variants to be more conservative in the latter secondary 

analysis. We additionally required candidate R-associated variants to pass the LRT to mitigate 

false associations with R, but did not require this for candidate variants not associated with R. 

For consistency with the SOLO algorithm, we required the lower bound of the PPV to be at least 

0.25 for candidate variants associated (OR > 1, PPVR) and not associated with R (OR < 1, 

PPVS). PPVR = P(resistant | variant present), PPVS = P(susceptible | variant present), NPV = 

P(susceptible | variant absent).  

The SOLO method set an FDR q-value cutoff of 0.05 for all significance testing, except 

the Neutral masking algorithm. For consistency with the Neutral masking algorithm of SOLO, we 

used raw p-values and a cutoff of 0.05 for silent variants in the neutral permutation test. 

Like the SOLO algorithm, we integrated associations identified using the WHO dataset 

(a more select data subset with higher confidence phenotypes) with those from the ALL dataset, 

which includes the WHO dataset plus additional isolates tested for resistance using phenotypic 

approaches not endorsed by the WHO. We note that due to differences in the underlying 

statistical methods, some of the rules for resolving category differences between the two 

phenotypic groups differ between regression and SOLO4. 

Importantly, no variants had discrepant associations between the WHO and ALL 

datasets (i.e. graded Assoc w R in one dataset and Not assoc w R or Neutral in the other). 

2,388 variants (11%) were not tested in either model due to absence or co-occurrence with low-

frequency or missing variant calls, so they were graded Uncertain. Of the 19,201 variants tested 

in the regression models, 6,710 (35%) were found only in the ALL dataset. Because the WHO 

dataset is a strict subset of the ALL dataset, no variant was found only in the WHO dataset. 

Among the 12,491 variants found in both the WHO and ALL datasets, 12,173 (98%) 

have the same grading in both datasets. The combined grading across the WHO and ALL 

datasets reflected the prioritization of resistance calls from the WHO phenotypic testing and 
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associations, but the ability of the ALL dataset to add uncertainty to or upgrade variants that 

would benefit from higher power or wider sampling (Supplementary Table 5). We upgraded 

variants that were Uncertain in the WHO dataset to Group 2 if the ALL evidence suggested an 

association with R (Supplementary Table 5, row 7). However, in the reverse scenario, the 

variant was downgraded to Uncertain (Supplementary Table 5, row 5) due to the potential for 

overcalling R-associated variants in the WHO dataset. The SOLO algorithm graded Neutral 

variants only from the WHO dataset. We therefore prioritized calling Neutrals from the WHO 

dataset (Supplementary Table 5, row 3) by grading them into Group 5, but we additionally 

upgraded variants that were Neutral in the ALL dataset to Group 4 if they were also present in 

the WHO dataset (Supplementary Table 5, row 4). 

Finally, we applied grading rules to the regression output to measure agreement 

between regression and SOLO + GR, which is the grading of the final published catalog (World 

Health Organization, 2023). To apply grading rules to the regression catalog, we upgraded 

variants that were graded Uncertain in both regression and SOLO but not Uncertain in SOLO + 

GR to the SOLO + GR grading. 

   

G. Resistance prediction and assessing sensitivity and specificity 

Both in this work and the published catalogs3,4, resistance predictions were made for the 

same dataset from which the gradings were derived. Gradings were used to predict isolates in 

the ALL dataset as resistant or susceptible with a presence cutoff of AF > 75%. All isolates were 

included; no isolates were excluded due to the presence of low-quality or intermediate 

frequency variants. An isolate containing any variant in Groups 1-2 is predicted resistant, and an 

isolate lacking all such variants is predicted susceptible. If a pooled LoF variant was graded in 

Groups 1-2, then all isolates containing any component frameshift, start_lost, stop_gained, or 

feature_ablation variant in that gene were predicted resistant. We compared metrics between 

regression, regression + GR, SOLO, and SOLO + GR (Table 2) for each drug. 
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H. MIC Models 

We built genotypic models on MIC data to investigate and validate associations 

identified in the binary models. These models did not influence the regression-based grading. 

For some isolates, multiple MICs measurements were available in different media. We 

prioritized MICs measured in solid media over liquid media over plate-based assays as detailed 

in the hierarchy in Supplementary Table 6 when deduplicating isolates with multiple measured 

MICs. 

All MICs were then normalized to the most common medium for a given drug, which was 

typically UKMYC due to the large proportion of isolates from the CRyPTIC study9. Normalization 

was done by multiplying the measured MIC by the ratio of the critical concentrations in the most 

common medium and the medium of the measurement as was previously done6. An L2-

penalized linear regression model was built regressing the log2-transformed MICs on the same 

genotypic inputs as for the logistic regression models. The same nested models were fit as for 

the binary phenotypes, and the regularization parameters were selected by minimizing the root 

mean squared error. MIC coefficient significance was determined using a permutation test with 

1,000 reshufflings and FDR thresholds of 0.05 for non-silent variants and 0.01 for silent variants. 

All computation was done in Python 3 using the numpy, pandas, scikit-learn, and 

statsmodels packages. All code and figures are available at https://github.com/farhat-lab/who-

analysis. 
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Results: 

A. Overview of Regression gradings 

After exclusions due to sequencing quality control, the remaining 560 to 48,236 isolates 

and 31 to 4,086 variants per drug were used to train regression models for 15 drugs 

(Supplementary Table 3). Phenotypic resistance frequency varied from 2% to 43% across the 

15 drugs and differed between the WHO and ALL datasets especially for BDQ (32 percentage 

points, pp) (Figure 2a). A large fraction of the Bedaquiline (BDQ) pDST data in the WHO 

dataset came from a single national reference laboratory that received isolates for testing after 

suspicion of BDQ resistance in source laboratories with limited to no concurrent sampling of 

BDQ-S isolates4. About 80% of all isolates belonged to the Euro-American (L4) and East Asian 

(L2) genetic lineages (Figure 2b). 

Regression was applied to 21,589 unique (drug, variant) pairs (Table 2, Supplementary 

Table 7, Figure 3a). The resultant catalog was benchmarked against the SOLO data-derived 

associations without application of additional grading rules (GR). We observe high agreement 

between the two methods for R-associated variants, with 452/457 (98.9%) of SOLO R-

associated variants also detected as such by regression (Figure 3b). When GR are applied to 

regression, it detects 1,380/1,383 (99.8%) of SOLO + GR R-associated variants (Figure 3c). 

Specifically, 804 individual LoF variants are upgraded to Group 2 because the pooled LoF 

variants for those genes are R-associated, and 5,050 variants (146 non-silent) are upgraded by 

other GR. 

 

B. Sampling and variant co-occurrence affects grading 

To understand discrepancies between the gradings, we first examined variants that may 

have been graded differently due to data or sampling differences between the WHO and ALL 

datasets. 15 variants were Uncertain in the ALL dataset and Assoc w R in the WHO dataset, 

resulting in a final grading of Uncertain. In SOLO, 10 of these are graded Uncertain, one Group 
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1, two Group 2, and two Group 5. The Group 1 variant is Rv0678_p.Met146Thr (BDQ), which is 

noted to have a potentially inflated PPV due to sampling bias4. 

Downgrading variants that are Assoc w R in the WHO dataset but Uncertain in the ALL 

dataset to a final Uncertain grading is exemplified by the variant mmpS5_c.-74G>T (alias 

Rv0678_c.-11C>A), which has been experimentally associated with BDQ hypersusceptibility in 

previous work17,18. In the binary models, mmpS5_c.-74G>T was measured to have a significant 

positive association with BDQ resistance in both the WHO and ALL datasets. In the WHO 

dataset, the PPV LB was also high at 0.77. In the ALL dataset, the PPV LB was less than the 

Assoc w R threshold (0.25) at 0.19, and this resulted in an uncertain grading. Given the larger 

size of the ALL dataset, the observed discrepancy raised the possibility of biased sampling in 

the WHO data, inflating the association with R. The WHO dataset is significantly enriched for 

BDQ-R with limited to no sampling of BDQ-S isolates from the same communities4. This bias is 

less pronounced in the ALL dataset as evidenced by the lower PPV, but as the WHO dataset is 

a subset of the ALL dataset, the bias was likely still present (Figure 2a, Supplementary Figure 

3a). The MIC model, however, reproduced the variant’s known association with S (coef. = -

0.043, p-value = 0.008) (Supplementary Table 10, Supplementary Figure 3b). Notably, in the 

BDQ MIC dataset, only 4.4% of isolates are also in the BDQ WHO dataset (Supplementary 

Table 2).  This assessment confirms that biased sampling can skew associations especially for 

the novel drugs to which resistance remains of limited prevalence globally and is potentially 

amplified by transmission19.  

A related methodologically informative observation was that variants causal of resistance 

can be more diverse and individually rarer than linked polymorphism or mutations associated 

with hypersusceptibility such as mmpS5_c.-74G>T in the available data. Further, a subset of 

resistant isolates with the polymorphism may lack potential resistance-causing variants. This 

results in the regression models assigning a positive effect on drug resistance to the 

polymorphism or hypersusceptibility variant. Specifically, 11 of 31 BDQ-R isolates with 
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mmpS5_c.-74G>T in the ALL dataset carry one of five Group 1 or 2 BDQ resistance variants 

graded as such by both SOLO and regression. In addition to mmpS5_c.-74G>T, all 31 isolates 

share the same three variants in mmpL5: Asp767Asn, which is an L2.2.1 marker, Thr794Ile, and 

Ile948Val, which have been described to be neutral polymorphisms20. Only four of 20 isolates 

without Group 1 or 2 BDQ resistance variants have other variants, all of which were graded 

Uncertain by SOLO and regression prior to GR. The high proportion of BDQ-R without a 

potential causal variant suggests the need to look for low-frequency variants below an AF 

threshold of 0.25 or for variants outside of the evaluated genes for BDQ. 

 

C. Discrepancies between SOLO and Regression Grading 

We next compare gradings across the two methods, identifying no major downward 

discrepancies, one major upward discrepancy, five minor downward discrepancies, and 233 

minor upward discrepancies of regression compared with SOLO (Figure 3b). There are two 

major discrepancies between regression and SOLO after grading rules are applied (Figure 3c). 

 

Major downward discrepancies (i.e., Group 4-5 by regression and Group 1-2 by SOLO): None 

 

Major upward discrepancies (i.e., Group 1-2 by regression and Group 4-5 by SOLO): One 

variant, rrs_n.514A>C (Capreomycin, CAP). rrs_n.514A>C is a known marker of Streptomycin 

(STM) resistance21; After adding a control for STM resistance in the CAP regression model (by 

including an additional binary phenotypic STM resistance covariate), rrs_n.514A>C was not 

significantly associated with CAP resistance, indicating confounding due to a high correlation 

between CAP and STM resistance as the cause of this discrepancy. 

 

Minor downward discrepancies (i.e. Uncertain by regression and Group 1-2 by SOLO): Five 

variants: Rv0678_p.Met146Thr (BDQ), pncA_p.Ala161fs, pncA_p.Arg154fs, pncA_p.Thr22fs, 
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and pncA_p.Val155Ala (Pyrazinamide, PZA). The first three variants are significant in the 

permutation test and LRT with OR > 1 but have low PPVs in the ALL dataset. PncA_p.Thr22fs 

is significant by these tests in the WHO dataset only, and pncA_p.Val155Ala has a permutation 

p-value of 0.051 in the ALL dataset, putting it slightly over the threshold for significance. As a 

result, all five variants are graded Uncertain in the ALL dataset and Uncertain overall 

(Supplementary Table 5, Methods). 

 

Minor upward discrepancies (i.e., Uncertain by regression and Group 4-5 by SOLO): There are 

233 such variants. Of these, 54 variants are in rrs (16S) and were excluded from the regression 

testing because of higher rates of missing variant calls. This was due to heterozygosity in the 

sequencing read data and is an issue recognized to arise for ribosomal genes due to homology 

with other species. Due to rarity (observed in <5 isolates), 26 variants are graded Uncertain by 

regression, and of these, 16 (all in rrs for AMK, CAP, and KAN) have significant FDR≤0.05 in 

the neutral permutation test. 14 silent variants have OR < 1 with an FDR p-value in the range 

(0.01, 0.05] but are graded Uncertain because we apply a stricter cut-off of 0.01 for silent 

variants. The remaining 139 variants meet the SOLO Neutral criterion of PPVR upper bound < 

10%4 but were not significant in either the regression permutation test or the neutral permutation 

test.  

 

Major discrepancies between regression + GR and SOLO + GR: 

katG_c.12A>G is graded Group 4 by grading rules because it is a silent variant. It is 

found in 13 INH-R isolates and 0 INH-S isolates, none of which is a SOLO isolate. Ten isolates 

have inhA_c.-777C>T, and one has katG_p.Ser315Thr, which are both correctly graded Group 

1 by regression. Despite being highly correlated with other INH R-associated variants, 

katG_c.12A>G is found to be significantly associated with R by regression. This result is similar 

to that of mmpS5_c.-74G>T and suggests that additional statistical corrections may be required 
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for very high correlations between rare variants. We note that the application of GR corrects this 

discrepancy for regression.  

A single variant is classified as Group 4-5 by regression and Group 2 by SOLO + GR: 

ethA_p.Pro209fs. This variant only occurs in 26 ETO-S isolates from one lineage (L4.3.4.2), but 

it is upgraded to Group 2 on grading rules based on the prediction of a frameshift in ethA 

(Supplementary Table 1). Given that ethA_p.Pro209fs is not observed in ETO-R isolates, it 

either does not have the expected disruption of ethA, or there is an alternative mechanism of 

activating ETO than the ethA-encoded enzyme in these isolates. 

 

D. Regression grades 296 (+65%) more R-associated variants than SOLO, 

superseding the need to use additional grading rules for 78 variants.  

Regression grades 753 R-associated variants and 219 (160 non-silent) Not Assoc with R 

variants, compared to SOLO’s 457 and 297 (230 non- silent), respectively and leaves 218 fewer 

uncertain mutations than SOLO. The use of grading rules is superseded by regression for 78 R-

associated variants and 46 Not Assoc with R variants (Supplementary Table 9). The 78 

variants graded R-associated by regression or by grading rules but not by SOLO are most 

commonly missed due to a frequency of <5 in isolates without other potential candidate 

mutations (N=27, 35%) or due to a non-significant association (FDR>0.05 in Fisher’s exact test, 

N=49, 63%). 

The MIC models (Supplementary Table 10) were built on largely non-overlapping data 

with the WHO binary model (up to 15% overlap) (Supplementary Table 2) and so allow for 

partial validation of the binary regression results. Further, as MIC measures resistance more 

quantitatively, the MIC models can more finely measure the direction and size of effects on 

resistance, which may more directly link to biological effect7,22. We tested 303 (82%) of the 372 

variants graded as Assoc of any type by regression and Uncertain by SOLO in the MIC models 

(Figure 4); the remainder could not be tested due to rarity or the presence of missing or low 
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frequency calls in available isolates with MIC data (MIC dataset set size ranged N=1,007-

12,613 across the 15 drugs). 233 variants have a significant regression OR in the WHO dataset, 

and of these, 79 (34%) are also significantly associated with MIC (73 with resistance, 6 with 

susceptibility), with all significant associations reproducing the direction of effect measured in 

the binary WHO models. 

 The six drug-variant pairs with significant associations with drug susceptibility in the 

WHO and MIC datasets (Figure 4a) are eis_c.-9T>C (AMK), eis_p.Met1? (loss of start codon) 

(AMK, KAN), eis_p.His150fs (AMK, KAN), and mmpL5_LoF (BDQ). The literature supports a 

causal relationship between drug hypersusceptibility and loss-of-function of these two genes. 

Eis is an enzyme that inactivates AMK and KAN, and mmpL5 is a component of a Bedaquiline 

efflux pump23. 

To further probe the newly graded R-associated variants by regression, we inspected 

RIF R-associated variants by regression that lack a measurable association with MIC and are 

graded Uncertain by SOLO + GR. There are 5 such variants – F424V, I491L, I491M, I491T, and 

S493L are missense variants in rpoB outside of the Rifampicin resistance determining region 

(RRDR). They are predominantly found in RIF-R isolates, but all frequently co-occur with Group 

1 variants, most frequently H445N, L430P, and D435Y. Due to the high rates of co-occurrence 

with known R-associated variants, they have small estimated ORs in the ALL dataset, ranging 

from 1.06-1.11. They are close to RRDR residues S428 (4.5 Å from F424) and R447-L449 

(within 4.6 Å of S493) (PDB ID: 5ZX2, Supplementary File 1). For the three variants observed 

in codon 491, given the diversity of alleles at this site and the known association between I491F 

and RIF resistance24, these associations may be causal. 

Some of the newly R-associated variants identified by regression are known INH 

resistance compensatory mutations. These co-occur with resistance-causing mutations to 

mitigate their fitness cost relative to wild-type. katG detoxifies reactive oxygen species (ROS) 

and activates the pro-drug Isoniazid. To compensate for the loss of function of katG caused by 
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INH-resistance causing mutations, promoter mutations that increase the expression of ahpC, 

another enzyme with antioxidant functions, are commonly acquired, restoring the bacterium’s 

resistance to ROS. Regression grades six ahpC promoter mutations as R-associated. All are in 

the region 47-92 base pairs upstream of ahpC that is targeted by the Xpert MTB/XDR test25, 

and four have experimental evidence of ahpC overexpression26-29 (Table 3). 

Variants acquired in members of two or more independent lineages are more likely to be 

causal or compensatory for resistance30,31. The majority (177 out of 221) of the variants graded 

R-associated by regression and Uncertain by SOLO + GR were observed in at least 2 lineages 

(Supplementary Table 11, Supplementary Figure 5). The remaining 44 variants were 

observed to be lineage restricted, but of these, 18 are rare and found in fewer than 10 isolates, 

making it less likely to observe acquisition in multiple lineages. (Supplementary Table 11). 

 

E. Sensitivity, specificity, and PPV of the regression-based catalog 

We computed sensitivity, specificity and PPV of resistance diagnosis using the catalogs 

built using SOLO, SOLO + GR, regression, and regression + GR (Figure 5). We expect these 

performance metrics to be optimistic because they are estimated on the same data from which 

the catalogs were derived but this derivation is less likely to invalidate the comparison between 

catalogues. The sensitivity of the regression-derived list is higher for 13/15 drugs than the 

SOLO-derived list (difference 0.081 to 10.2 percentage points (pp)). SOLO specificity and PPV 

are higher than regression for 12/15 drugs (specificity difference range: 0.011 to 3.70 pp, PPV 

difference range: 0.10 to 12.7 pp). For Delamanid, the statistics are the same because both 

SOLO and regression graded the same two variants as R-associated. The average difference in 

sensitivity (+3.2 pp) between regression and SOLO is larger than the average differences in 

specificity (-1.0 pp) and PPV (-1.8 pp), and the F1 scores (harmonic mean of sensitivity and 

PPV) averaged across the 15 drugs are 69.2% for SOLO, 69.9% for SOLO + GR, and 70.1% for 

regression.  
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The largest gains in sensitivity for regression are for Ethambutol (Δ = +10.2 pp), Clofazimine 

(+9.6), Streptomycin (+9.6), Ethionamide (+9.4), Rifampicin (+2.6), and Isoniazid (+2.1). For 

four drugs, regression specificity is more than 1 percentage point lower than SOLO specificity: 

Ethionamide (Δ = -3.7 pp), Streptomycin (-3.5), Ethambutol (-2.6), and Capreomycin (-2.2). The 

drop in Capreomycin specificity is due to the rrs_n.514A>C false positive. If this variant is 

removed from the regression list, the Capreomycin model metrics are the same for both SOLO 

and regression, and the average F1 score for regression is 70.5% (Supplementary Table 13).  

When grading rules are applied to the regression results, sensitivity increases for eight 

drugs, four of which have increases greater than 1 pp. The largest increase is 4 pp for Amikacin 

due to eis_c.-14C>T and rrs_n.1402C>T, which are upgraded due to WHO approval as 

resistance markers. Sensitivity increases for Delamanid (+2.8 pp), Clofazimine (+1.9 pp), and 

Bedaquiline (+1.3 pp), either because of in vitro selection evidence (atpE, BDQ) or due to LoF 

mutations (pepQ, CFZ) presumed to cause resistance.  

The WHO has set minimum target product profiles (TPPs) for genetic drug susceptibility 

testing – ≥98% specificity for all drugs, and for sensitivity, >95% (RIF), >90% (INH, LFX, MXF), 

and >80% (BDQ, LZD, CFZ, DLM, AMK, PZA)32. For RIF and INH, SOLO specificity is ≥98%, 

but specificities for SOLO + GR, regression, and regression + GR are <98%. For Clofazimine, 

the specificity of regression + GR falls below the specificity minimum. For all other drugs, the 

four methods don’t differ in whether they meet the sensitivity and specificity TPPs. 

 

F. Lowering AF Threshold to 25% Improves Sensitivities for Bedaquiline, 

Clofazimine, and Fluoroquinolones 

For eight drugs, lowering the AF cutoff to 25% (i.e., variant is considered present if AF > 

25%) increased the sensitivity of these mutations for predicting resistant phenotypes by at least 

2 pp (Supplementary Figure 6, Supplementary Table 14). The largest increases are 10.3 pp 

for Bedaquiline to 58.9% (95% CI, 55.9-61.9%), 4.7 pp for Moxifloxacin to 90.3% (95% CI, 89.4-
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91.2%), 4.5 pp for Levofloxacin to 90.0% (95% CI, 89.2-90.7%), and 3.8 pp for Clofazimine to 

27.8% (95% CI, 24.4-31.3%). The corresponding decreases in specificity are 0.29, 0.36, 0.27, 

and 0.30 pp, respectively. This confirms the importance of heteroresistance for fluoroquinolones 

and demonstrates that it is also relevant for Bedaquiline and Clofazimine. These results are 

consistent with SOLO, for which the largest increase in sensitivity is 10.2 pp for Bedaquiline4. 

 

Discussion: 

In this work, we demonstrate that logistic regression models can reproduce the results of 

SOLO, the current WHO catalog resistance-association method in identifying R-associated 

variants from WGS and resistance phenotype data. Of the 457 R-associated variants graded by 

SOLO, 453 (99%) are also identified by regression. Regression graded 218 more variants and 

achieved higher sensitivity on average across 15 drugs than SOLO. Most importantly, 

regression does not require defining neutral variants before starting grading of mutations. 

Further, because regression is trained on all high-quality variant data and considers variant co-

occurrence, it can reduce the need to use grading rules for variants that do not pass the SOLO 

algorithm’s inclusion criteria – 124 variants graded by regression required grading rules to be 

upgraded – or provide evidence against applying grading rules broadly, e.g. ethA_p.Pro209fs.  

Using the regression pipeline, we identify LoF variants in eis and mmpL5 as associated 

with aminoglycoside and Bedaquiline hypersusceptibility, respectively, which agrees with 

recently published work associating genotype with MICs (CRyPTIC Consortium, Nat Commun, 

2024). We reproduce these associations in MIC models. Overall, we find the MIC models useful 

as adjunct evidence supporting the gradings derived from the more abundant binary resistance 

data. The use of MIC and lineage/homoplasy could in the future further reduce the need for 

grading rules. 

The regression grading approach is not without its limitations. Fitting a regression model 

requires the missing data to be imputed or dropped. Because imputation can introduce bias, we 
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removed isolates containing unfixed variants or variants that could not be called. For the same 

reasons, variants that were absent from the remaining isolates were also excluded. 2,388 

variants (11%) were not fit by the regression models and were automatically graded Uncertain. 

64 are putative LoF mutations that were upgraded to Group 2 or 4. Of the remaining 2,324 

variants, most (2,270; 98%) are also graded uncertain by SOLO, and 54 (all rrs: aminoglycoside 

pairs) are graded Group 5. Future work in which regression is rerun on subsets of the rrs 

variants and isolates with complete data can address this limitation. Despite the improved ability 

to grade mutations without the need of additional grading rules, a large proportion of variants 

(>800 variants) classified in the WHO catalog still require some adjunct evidence to be 

interpreted. 

It is important to note that associations determined by regression do not imply causality. 

Regression can make false positive associations in the setting of biased sampling, linkage 

disequilibrium, and high correlation between resistances to different related drugs. Uncovering 

these limitations informs the application of regression for phenotype association and prediction 

across a range of systems including in human genetics. That regression can make some false 

positive relationship may underly its catalogue’s lower specificity and PPV compared with 

SOLO. However, we also note that the drops in specificity are very small and occur for drugs 

where phenotypic DST is known to have limited accuracy or reproducibility and where mutations 

can have intermediate effects on resistance (e.g. ethambutol and ethionamide). Like the 

approach taken to correct the CAP resistance model for STM resistance (Results Section B), 

future models can correct for resistance to other drugs to reduce these false positives.  

To take a completely data-driven approach to classify variants, it is critical to have 

datasets that are representative of circulating MTBC strains across the spectrum of the 

resistance phenotype. We observe a considerable range in the percentage of isolates with 

resistance across the drugs the WHO and ALL datasets with heavy oversampling of resistance 

compared with its known population prevalence (Figure 2a, Supplementary Figure 3a). This 
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was especially the case for bedaquiline. Oversampling is intended to sufficiently sample 

resistant isolates, but when oversampling is biased, this can result in confounding. In the case 

of BDQ we observed linkage between neutral polymorphisms indicative of genetic lineage and a 

diverse set of individually rare resistance variants. Furthermore, several isolates with BDQ 

resistance are still unexplained by candidate resistance markers (Results Section B). We used 

principal components (PC) to account for lineage effects limiting to the first 50 PCs as there is 

an expected trade-off between adding additional PCs and statistical power of grading. This PC 

correction will need to be re-evaluated as more data is available and is expected to be less 

impactful on power as more representative data becomes available. In the meantime, further 

analysis of variant lineage distributions and/or phylogenetic inference can help identify the 

potential false positives arising due to biased sampling and linkage disequilibrium. 

In summary, we developed a regression-based pipeline to grade more than 21,000 

genetic variants in the MTBC based on their association with resistance to 15 antitubercular 

drugs. The pipeline is flexible and can be adapted quickly as more data is collected. Although 

the results we present here are specific to MTBC, this approach provides a model for grading 

associations between genotype and phenotype for other organisms to use in diagnostic 

applications. 
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Figure Legends and Tables. 

 

Figure 1. Single-model grading flowchart. Grading steps for a single model. LB = lower 

bound in a binomial exact confidence interval. *: Relaxed thresholds for pncA are the same as in 

the SOLO algorithm -- Present in ≥ 2 PZA-resistant or susceptible isolates (depending on the 

sign of the OR) and PPV ≥ 0.5. +: Raw p-values and a cutoff of 0.05 for silent variants in the 

neutral permutation test. Significance testing in all other cases was performed using FDR-

corrected p-values. 

 

Figure 2. Overview of isolates included in the regression models. a: Percentages of 

phenotypically resistant and susceptible isolates in the base models for the WHO and ALL 

datasets, across 15 drugs. b: Lineage distribution for isolates in the base model for the ALL 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.01.24309598doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.01.24309598
http://creativecommons.org/licenses/by/4.0/


   

 

  23 

 

dataset only. Other category = M. bovis and L5-L7. The percentages for the "Other” category 

are not shown for readability. Only isolates with a single primary lineage according to the Coll 

2014 scheme are shown in panel b. In both panels, isolate counts for each bar are shown in 

parentheses. 

 

Figure 3. Summary of regression classifications and comparison to SOLO results for 

21,589 (drug, variant) pairs. a: Regression variant gradings for 15 drugs, colored by number of 

variants in each cell. Group 3) Uncertain significance variants are not shown in panel a. Grading 

comparison tables for regression vs. SOLO (b) and regression with GR vs. SOLO with GR (c). 

Variant coloring: Dark blue = variants graded Uncertain by SOLO, not Uncertain by regression; 

light blue = variants graded Uncertain by regression, not Uncertain by SOLO; red = major up-

/down-grade discrepancies by regression; gray = group agreement; black = Group 1 or 2 by 

both regression and SOLO but not perfect agreement.  

 

Figure 4. WHO dataset ORs vs. MIC coefficients for 233 variants graded Group 3 by SOLO and 

Groups 1-2 (b, N = 207) or 4-5 (a, N = 26) by regression, were tested in MIC models, and have 

significant OR in the WHO dataset. Neutral variants were excluded. Point color reflects the 

direction of association in the MIC model and significance at FDR ≤ 0.05 for non-silent variants 

and FDR ≤ 0.01 for silent variants. 

 

Figure 5. Sensitivity (a), specificity (b), and PPV (c) between SOLO, SOLO + GR, 

regression, and regression + GR mutation lists. Error bars are 95% exact binomial confidence 

intervals. Source data are in Supplementary Table 12. 

 

Tables. 
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Isolate Single MTBC whole genome sequencing (WGS) sample. May 

have one or multiple drug resistance phenotypes associated with 

it.  

Variant / Mutation Genetic change relative to the H37Rv reference genome for 

MTBC 

AF Allele frequency of a genetic variant 

frameshift Insertion or deletion variant that changes the reading frame 

start_lost Loss of a start codon for a given gene 

stop_gained Early stop codon in a gene 

feature_ablation Assigned to a gene if the entire gene is contained within a large 

deletion called by delly (Rausch et al., Bioinformatics, 2012). 

LoF Variants expected to cause loss-of-function of a protein: 

frameshift, start_lost, stop_gained, and feature_ablation, 

according to the Human Genome Variation Society (HGVS)-

inspired Sequence Ontology (Eilbeck et al., Genom Biol, 2005) 

synonymous Nucleotide change that does not alter the protein sequence 

stop_retained_variant Nucleotide change on the terminal codon of a gene that preserves 

the stop codon.  

initiator_codon_variant Nucleotide change that causes an alternative start codon in 

bacteria (i.e. not encoding Methionine). Defined as start_lost + 

start_retained_variant according to the Sequence Ontology. 

Silent variant Variants in coding regions that do not alter the protein sequence: 

synonymous, stop_retained_variant, or initiator_codon_variant 

according to the HGVS-inspired Sequence Ontology (Eilbeck et 

al., Genom Biol, 2005). 

OR Odds ratio 
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R Resistant 

S Susceptible 

Associated (Assoc) 

with R 

Associated with resistance, i.e. graded in Groups 1 or 2 by 

regression or SOLO. 

Not associated (Assoc) 

with R 

Not associated with resistance (either neutral or associated with 

susceptibility), i.e. graded in Groups 4 or 5 by regression or 

SOLO. 

SOLO isolate A SOLO isolate with respect to a given putative resistance-

associated variant contains no other candidate resistance variants 

for a given drug.  

SOLO Method Univariate association method for identifying genetic variants 

associated with resistance using SOLO isolates, contingency 

tables for each variant, and the Fisher’s exact test. 

SOLO + Grading Rules 

(GR) 

SOLO method combined with additional grading rules external to 

the genotype-phenotype database. Grading rules are informed by 

published literature, WHO guidance, and expert opinion.  

PPV Positive predictive value 

PPVR PPV with respect to R-associated variants. P(drug-resistant | 

variant present) 

PPVS PPV with respect to R-associated variants. P(drug-susceptible | 

variant present). Equivalent to 1 - PPVR 

LB Lower bound of a 95% binomial exact confidence interval 

UB Upper bound of a 95% binomial exact confidence interval 

pDST Phenotypic drug susceptibility testing 

MIC Minimum inhibitory concentration, i.e. the lowest concentration of 

drug required to inhibit the growth of a given MTBC isolate. 
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PC Principal Component (i.e. left eigenvector in principal component 

analysis) 

pp Percentage points (i.e., the difference between two percentages) 

Table 1. Definitions and abbreviations used throughout the manuscript. These are the 

same definitions and abbreviations as in the 2nd edition of the MTBC resistance mutation 

catalog. Variant effect names are according to the Sequence Ontology33. 

 

Group Regression Regression + 

Grading Rules 

SOLO SOLO + 

Grading Rules 

1) Assoc w R 589 589 311 253 

2) Assoc w R - Interim 164 1,050 146 1,130 

3) Uncertain 20,617 14,763 20,835 14,958 

4) Not assoc w R - Interim 130 5,098 19 4,998 

5) Not assoc w R 89 89 278 250 

Table 2. Counts of gradings for 21,589 unique (drug, variant) pairs, including pooled LoF 

variants and silent variants, across regression and SOLO, with and without grading rules. The 

grading group names and interpretations are the same for both SOLO and regression. 

 

Variant  WHO OR  ALL OR  MIC Coef.  Regression Grading  References  

ahpC_c.-57C>T  1.16   1.17   0.05*  1) Assoc w R  GeneXpert  

ahpC_c.-48G>A  1.17   1.16   0.02*  1) Assoc w R  ahpC Expression  

ahpC_c.-52C>T  1.14   1.14   0.04*  1) Assoc w R  ahpC Expression  

ahpC_c.-54C>T  1.13   1.13   0.03*  1) Assoc w R  ahpC Expression  

ahpC_c.-76T>A  1.14   1.10   0.06*  1) Assoc w R  GeneXpert  

ahpC_c.-72C>T  1.05   1.08   0.11   2) Assoc w R - Interim  ahpC Expression 

Table 3. Six isoniazid resistance compensatory mutations derived from ahpC expression data 

and GeneXpert graded resistance-associated by regression. Variants are ordered by regression 
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grading, then odds ratio in the ALL dataset, in decreasing order. *: ORs or coefficients NOT 

significant by the corresponding permutation tests. All six variants are graded Uncertain by 

SOLO and SOLO + GR. The small ORs of these mutations are consistent with indirect effects 

on INH resistance. 
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YES NO

Neutral

Uncertain
Significant in 
permutation 
neutral test+

NO

Present in ≥ 5 Isolates*

Significant in
permutation test

UncertainNO

YES

Assoc w R

1. OR > 1
2. PPVR LB ≥ 0.25*
3. Significant in LRT

YES

Not assoc w R

1. OR < 1
2. PPVS LB ≥ 0.25*

YES

NO NO

YES

Variant
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