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Abstract: Background: Circulating biomarkers play a pivotal role in personalized medicine, o16 

ing potential for disease screening, prevention, and treatment. Despite established associa17 

between numerous biomarkers and diseases, elucidating their causal relationships is challen18 

Mendelian Randomization (MR) can address this issue by employing genetic instruments to19 

cern causal links. Additionally, using multiple MR methods with overlapping results enhance20 

reliability of discovered relationships. Methods: Here we report an MR study using mu21 

methods, including inverse variance weighted, simple mode, weighted mode, weighted me22 

and MR Egger. We use the MR-base resource (v0.5.6)1 to evaluate causal relationships betwee23 

circulating biomarkers (curated from UK Biobank analyses by Neale lab and from Shin et al. 24 

Roederer et al. 2015, and Kettunen et al. 2016)2-4 and 99 complex diseases (curated from se25 

consortia by MRC IEU and Biobank Japan). Results: We report novel causal relationships foun26 

4 or more MR methods between glucose and bipolar disorder (Mean Effect Size estimate a27 

methods: 0.39) and between cystatin C and bipolar disorder (Mean Effect Size: -0.31). Base28 

agreement in 4 or more methods, we also identify previously known links between urate with29 

and creatine with chronic kidney disease, as well as biomarkers that may be causal of cardi30 

cular conditions: apolipoprotein B, cholesterol, LDL, lipoprotein A, and triglycerides in coro31 

heart disease, as well as lipoprotein A, LDL, cholesterol, and apolipoprotein B in myocardi32 

farction. Conclusions: This Mendelian Randomization study not only corroborates known c33 

relationships between circulating biomarkers and diseases but also uncovers two novel bioma34 

associated with bipolar disorder that warrant further investigation. Our findings provide in35 

into understanding how biological processes reflecting circulating biomarkers and their assoc36 

effects may contribute to disease etiology, which can eventually help improve precision diagno37 

and intervention. 38 

Keywords: Biomarkers; Metabolome; Proteome; Mendelian Randomization; Human Disease 39 

 40 

1. Introduction 41 

Molecular abnormalities detected in the blood that cause complex diseases repre42 

an opportunity to identify biomarkers for both preventive and therapeutic intervent43 

These circulating biomolecules include proteins (enzymes and hormones), lipids,44 

metabolites that reflect physiological states of organ functions, immune response,45 
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metabolism. Despite substantial observational evidence linking systemic biomarker lev-46 

els with diverse health conditions, their causal relationships to complex diseases remain 47 

to be established, especially for diseases for which no reliable biomarkers exist. Previous 48 

studies that identify correlations often do not delineate cause and effect, thereby limiting 49 

the translational value of the findings. For example, while an increased incidence of im-50 

paired glucose metabolism has been demonstrated in patients with bipolar disorder 51 

across multiple studies, a causal relationship between the two has yet to be established.5-7 52 

The application of Mendelian Randomization (MR) represents an approach in ad-53 

dressing this critical gap. By utilizing genetic instruments as proxies for biomarker levels, 54 

MR, under specific assumptions, can control for confounding factors and reverse causa-55 

tion, offering insights into the causal effects of biomarkers on disease risks. Lipids have 56 

been particularly well studied in MR, where previous studies have demonstrated the 57 

causal relationships between LDL-c and coronary artery disease, and HDL-c and breast 58 

cancer.8-11 Other studies have also identified likely causal relationships between 59 

homocysteine and stroke,12  metabolic syndrome,13 as well as tyrosine and Type 2 Dia-60 

betes.14 However, the effects of many other biomarkers remain unclear, and existing MR 61 

studies have often been limited to specific biomarkers or disease categories. 62 

The power of MR has been boosted by the availability of large genome-wide asso-63 

ciation studies (GWAS), published in more than 379 studies including those conducted 64 

using the UK Biobank dataset that has recently released a resource of plasma biomarker 65 

data measured by nuclear magnetic resonance (NMR) in addition to other lab markers.15 66 

Herein, we conducted a comprehensive MR analysis encompassing a broad spectrum of 67 

212 biomarkers—including 115 circulating biomolecules measured through NMR4—and 68 

99 human diseases to unveil previously obscured relationships of the circulating bi-69 

omarkers’ role in disease etiology that may be leveraged for personalized prevention. 70 

2. Results 71 

Based on the final 212 exposures (circulating biomarkers) and 99 outcomes (diseas-72 

es) from the MRC IEU OpenGWAS database1,16 (Methods, STROBE-MR checklist), we 73 

analyzed exposure-outcome relationships using 5 different MR analysis methods: inverse 74 

variance weighted, MR Egger, simple mode, weighted median, and weighted mode. To 75 

ensure our results were robust, we focused on findings that had a significant (Bonferroni 76 

p-value < 0.05) association by MR-Egger and matched in 4 or more methods (with same 77 

effect direction and raw p-value < 0.05) based on MR-Egger’s robustness to directional 78 

pleiotropy relevant to circulating biomarkers. We identified a total 21 significant bi-79 

omarker exposure vs. disease outcome associations (Figure 1). A list of all significant re-80 

lations, including IEU GWAS study IDs for each exposure/outcomes, and the summary 81 

statistics from the MR analyses are included in Supplementary Table 1.  82 

We provide validation for our analysis by demonstrating agreement using 4 or more 83 

analysis methods that have been previously demonstrated in MR studies such as urate 84 

with gout17 and LDL,18 triglycerides,10 lipoprotein A,19 and apolipoprotein B20 with coro-85 

nary heart disease. We also found previously demonstrated relationships shown in MR 86 

studies between lipoprotein A21 and LDL22 with myocardial infarction. Additionally, we 87 

did not find any relationships that showed conflicting directionality to the previous lit-88 

erature. While many identified relationships are only maintained in a few methods, pre-89 

viously supported relationships show strong alignment in multiple MR analysis meth-90 

ods, demonstrating the robustness of associations found using multiple approaches. 91 

For cardiometabolic traits, we demonstrated a causal relationship between total 92 

cholesterol and coronary heart disease, and this association has previously been shown in 93 

a meta-analysis and systematic review.23 We also showed a causal relationship between 94 

total cholesterol and myocardial infarction as well as apolipoprotein B and myocardial 95 

infarction, both of which has been previously demonstrated by non-MR studies.24,25 96 

We also found a causal relationship between serum creatinine and chronic kidney 97 

disease (CKD). However, serum creatinine is an important biomarker for measuring 98 
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kidney function, as it is used to clinically estimate glomerular filtration rate to help di-99 

agnose CKD.26,27 While this connection could explain this result, there may be 100 

creatinine-specific effects that may cause or exacerbate CKD which remain to be charac-101 

terized. We also identified a trend for alanine transferase with liver cell carcinoma that 102 

agreed for 4+ methods when using raw p-value cut-offs of < 0.05.  103 

Of note, we discovered a strong, direct relationship between glucose and bipolar 104 

disorder and a strong, inverse relationship between cystatin C levels and bipolar disorder 105 

which, to the best of our knowledge, has never been directly reported before. Previous 106 

studies have demonstrated an association between impaired glucose metabolism and 107 

bipolar disorder in addition to increased prevalence of pre-diabetes and type 2 diabetes 108 

mellitus.7,28,29 Table 1 lists the identified exposure-outcome relationships along with pre-109 

vious supporting literature and evidence type.   110 

 111 

Figure 1. Heatmap summarizing the key findings of this study, including the most significant 112 

findings from the MR Egger analysis. MR analyses were conducted using 5 methods: Inverse var-113 

iance weighted, MR Egger, Simple mode, Weighted Median, and Weighted Mode. Larger arrow 114 

sizes correspond to more significant results and the directionality of the arrow indicates a posi-115 
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tively-correlated relationship, i.e., higher biomarkers associated with increased risk (upward ar-116 

row) or inverse (downward arrow) relationship. We displayed all exposures and outcomes that 117 

demonstrated at least one significant (Bonferroni p-value < 0.05) relationship by at least one MR 118 

method. 119 

Table 1. Significant exposure-outcomes relationships consistently identified across 4 or more MR 120 

methods. Previous literature demonstrating these relationships and the type of evidence support-121 

ing each relationship are also detailed. In evidence type, retrospective, prospective, and 122 

cross-sectional indicates cohort studies that demonstrate associations of the biomarker with the 123 

disease outcome, whereas meta-analysis and systematic review represent syntheses of such studies 124 

that do not suggest causality. 125 

Exposure Outcome Previous Evidence Evidence Type 

LDL 
Coronary Heart 

Disease 
18 MR 

Triglycerides 
Coronary Heart 

Disease 
10 MR 

Lipoprotein A 
Coronary Heart 

Disease 
19 MR 

Apolipoprotein 

B 

Coronary Heart 

Disease 
20 MR 

Cholesterol 
Coronary Heart 

Disease 
23,30 

Meta-Analysis, Systematic 

Review, MR 

Urate Gout 17 MR 

Lipoprotein A Myocardial Infarction 21 MR 

LDL Myocardial Infarction 22 MR 

Cholesterol Myocardial Infarction 24 Retrospective 

Apolipoprotein 

B 
Myocardial Infarction 25,31 Prospective, MR 

Serum 

Creatinine 

Chronic Kidney 

Disease 
26,27 MR, Meta-Analysis 

Glucose Bipolar Disorder 28,29 

Cross Sectional, 

Meta-Analysis, Systematic 

Review 

Cystatin C Bipolar Disorder N/A N/A 

 126 

Figure 2 illustrates the top-16 significant (Bonferroni p-value < 0.05) biomarker ex-127 

posure-disease outcome associations with agreement in effect directionality in 4 or more 128 

methods (effect size > |0.1|).  129 

Several biomarkers are associated with an increased risk of disease. The average ef-130 

fect size of total cholesterol and coronary heart disease is 0.66, ranging from 0.90 ± 0.22 131 

(MR Egger) to 0.47 ± 0.13 (IVW). The association of total cholesterol and myocardial in-132 

farction has the average effect size of 0.61 with a range of (0.26, 1.13). For the 133 

apolipoprotein B and myocardial infarction, the average effect size is estimated as 0.59 134 

with a range of (0.39, 0.90). For the glucose on bipolar disorder the average effect estimate 135 

is 0.39 with a range of (0.29, 0.55), while cystatin C has an inverse relationship on bipolar 136 

disorder with the average effect size of -0.31 ranging from -0.107 to -1 (Supplementary 137 

Table 1).  138 
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 139 

Figure 2. Forest Plot of Mendelian Randomization Analysis Results Assessing the Causal Effects of 140 

Circulating Biomarkers on Diseases. The forest plot illustrates the estimated causal effects of top-16 141 

significantly associated (Bonferroni p-value < 0.05) biomarkers on the risk of various diseases based 142 

on Mendelian randomization (MR) analysis consistent across 4 or more methods. Each row repre-143 

sents a different MR association, with the biomarker as the exposure and the disease as the out-144 

come. The points represent different effect size estimates from different MR methods and the 95% 145 

confidence intervals (based on standard errors of the effect size estimates) are displayed by the 146 

horizontal lines forming around the average effect sizes of different methods. 147 

3. Methods 148 

3.1. Datasets 149 

This study is a two-sample MR study based on publicly available GWAS summary 150 

statistics data from MR-base resource (v0.5.6).1 The study design follows the Strength-151 

ening the Reporting of Observational Studies in Epidemiology using Mendelian Ran-152 

domisation (STROBE-MR) checklist, which is included in Supplementary information.  153 

The MR-base platform, developed by the MRC Integrative Epidemiology Unit at the 154 

University of Bristol, serves both as a database and an analytical framework accessed 155 

through the TwoSampleMR R package (v0.5.7). MR-base offers access to multiple GWAS 156 

data including the MRC Integrative Epidemiology Unit (IEU) OpenGWAS database 157 

consisting of 26k GWAS reported in at least 379 different studies, covering ~40k indi-158 

viduals (in median) per study.1,16 Based on MRbase, we utilized all accessible exposure 159 

traits grouped under "Metabolites" category as well as other circulating biomarkers, and 160 

all available outcomes categorized as "Disease". All diseases we used are from datasets 161 

with IDs beginning with “ieu” (GWAS summary datasets generated by many consortia 162 

curated by IEU) and “bbj” (Biobank Japan), and the biomarkers are from “ukb” (UK 163 

Biobank analyses by IEU or Neale lab covering 28 biomarkers) and “met” (human blood 164 

biomarkers, immune markers, and circulating biomarkers analyzed by Shin et al. 2014 165 

covering 76 biomarkers and Kettunen et al. 2016 covering 115 biomarkers).2,4 In instances 166 

where there are multiple summary datasets for the same trait (i.e., from different GWAS 167 

cohorts), we selected the top one from them based on the largest "sample size," "year," 168 

"number of SNPs," or "number of cases and controls," prioritizing the information avail-169 

able in this specified order. A list of all biomarkers used as exposures and information for 170 

their corresponding GWAS studies are available in Supplementary Table 2. Overall, we 171 

retained a total of 212 exposures (biomarkers) and 99 outcomes (diseases) for MR anal-172 

yses.  173 
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Given that this is a two-sample MR study, we provide two major justifications: (1) 174 

Similarity of the Genetic Variant-Exposure Associations Between the Exposure and 175 

Outcome Samples: Genetic instruments for the exposure were primarily derived from 176 

GWAS of circulating biomarkers conducted using data from the UK Biobank in addition 177 

to Shin and Kettunen et al., all of which predominantly consists of individuals of Euro-178 

pean ancestry. The outcome data were mainly sourced from case-control GWAS of Eu-179 

ropean populations that likely share genetic architectures similar to those of the exposure 180 

study participants. (2) Number of Individuals Who Overlap Between the Exposure and 181 

Outcome Studies: Given the separate sources of the genetic data for exposures and out-182 

comes (various case-control studies), and the timing of data availability and publication, 183 

it is reasonable to assume minimal overlap in the individual participants across these 184 

studies. Particularly, all significant results were found based on exposure (biomarker) 185 

GWAS from UK Biobank, which has its first genetic data published in 2018. The signifi-186 

cant outcome GWAS for bipolar disorder, cardiovascular disease (CVD), myocardial in-187 

farction (MI), gout, and chronic kidney disease, all predated 2018. This temporal dis-188 

crepancy between the data collection phases further supports the assumption of negligi-189 

ble overlap bias in our MR estimates. 190 

3.2. MR Methods 191 

The three core assumptions for Mendelian Randomization (MR) analysis are:  192 

Relevance: The genetic instruments (e.g., single nucleotide polymorphisms, SNPs) 193 

used as instrumental variables (IVs) should be associated with the exposure (circulating 194 

biomarkers in this case). This assumption ensures that the IVs are strong enough to in-195 

fluence the exposure. Herein, 2685 SNPs were found associated with 198 circulating bi-196 

omarker exposures subject to the IV assumptions that were imposed by the standard 197 

two-sample MR approach (association threshold, P<5e-8; LD clumping cutoff r2>0.001 198 

within 10Mb window) and were used for further analyses (Supplementary Table 3). 199 

Independence: The genetic instruments should be independent of any confounding 200 

factors that may affect both the exposure and the outcome (disease). This assumption is 201 

justified by the random allocation of genetic variants. Further, each of the GWAS studies 202 

carefully control for covariates that may confound genetic associations. For example, in 203 

the UK Biobank biomarker GWAS conducted by the Neale lab, covariates include age, 204 

sex, age2, age*sex, age*sex2, and the first 20 PCs, making the final genetic instruments 205 

less prone to confounding. Additionally, the prior knowledge of demographic con-206 

sistency can likely minimize the impact of unmeasured confounders due to similar de-207 

mographic and genetic backgrounds. 208 

Exclusion restriction: The genetic instruments should affect the outcome (disease) 209 

only through their effects on the exposure (circulating biomarkers) and not through any 210 

other direct or indirect pathways. This assumption ensures that the IVs influence the 211 

outcome solely via the exposure of interest. Critically, MR Egger was employed as a 212 

primary MR method in this study to detect and adjust for pleiotropy, where genetic 213 

variants may influence the outcome via pathways other than through the exposure.  214 

To enhance robustness, we inferred causality using multiple MR methods, specifi-215 

cally inverse variance weighted, simple mode, weighted mode, weighted median, and 216 

MR Egger. The inverse variance weighted (IVW) method conducts regression analysis 217 

between the SNP-exposure effect size and the SNP-outcome effect size, giving more im-218 

portance to SNPs with the lowest standard error in SNP-outcome association. The IVW 219 

method relies on either all variants being valid instruments or the presence of balanced 220 

horizontal pleiotropy, where the combined horizontal pleiotropic effects of individual 221 

instruments cancel out. Additionally, it assumes that such pleiotropic effects are not de-222 

pendent on instrument strength across all variants, a concept known as the Instrument 223 

Strength Independent of Direct Effects (InSIDE) assumption.32 The simple mode method 224 

operates under the assumption that the most common value (i.e., mode) for horizontal 225 

pleiotropy is zero, known as the ZEro Modal Pleiotropy Assumption (ZEMPA), regard-226 
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less of the specific type of horizontal pleiotropy.33 Likewise, the weighted MBE method 227 

operates under the supposition that the most substantial weights in the k subsets origi-228 

nate from valid instruments, adhering to ZEMPA assumption, irrespective of the partic-229 

ular form of horizontal pleiotropy. The weighted median method relies on the assump-230 

tion that over half of the weight comes from reliable instruments, irrespective of the na-231 

ture of horizontal pleiotropy.34 MR-Egger permits all genetic variants to exhibit plei-232 

otropic effects, but it necessitates that these effects are independent of the SNP–exposure 233 

associations, following the InSIDE principle.35 Notably, the method can correct for the 234 

average horizontal pleiotropy observed across all variants considered in the study. Con-235 

sidering the recognized pleiotropic effects commonly seen in biomarkers and their rele-236 

vance to health and disease,36 we used MR-Egger as the primary method for determining 237 

important exposure-outcome associations in our analyses and employed other sensitivity 238 

methods for validation. 239 

For each method, the associations are reported with effect size and corresponding 240 

p-value statistics. The raw p-values are multi-testing corrected using the Bonferroni 241 

method. The confidence intervals (95%) are also calculated from standard errors of the 242 

test statistics. Overall, robustness of the results is ensured based on the use of MR-Egger 243 

as discovery method, agreement across at least 4 MR methods, and Bonferroni correction. 244 

4. Discussion 245 

We analyzed exposure-outcome relationships using 5 MR analysis methods to 246 

identify causal relationships between circulating biomarkers and diseases. In this study, 247 

significant results are defined as agreement between 4 or more analysis methods. Many 248 

of our demonstrated results replicated results from previous MR studies and other liter-249 

ature and none of our findings run contrary to previous literature. Additionally, our 250 

analysis also discovered two relationships of note: a direct relationship between glucose 251 

and bipolar disorder and an inverse relationship between cystatin C and bipolar disor-252 

der. 253 

Bipolar disorder is a neuropsychiatric disorder with multifactorial causes (genetic, 254 

trauma, exposure to certain medications, etc.)  Our findings demonstrate two potential 255 

circulating markers that may contribute to development of bipolar disorder, high glucose 256 

and low cystatin C. In our study, the effect size for glucose and bipolar disorder is 0.39 257 

and for cystatin C and bipolar disorder is -0.31 which is comparable to the average effect 258 

size for triglycerides and coronary heart disease (a8) of 0.42 and greater than those of 259 

triglycerides and myocardial infarction (0.20), lipoprotein A and coronary heart disease 260 

(0.22), and lipoprotein A and myocardial infarction (0.21) (Supplementary Table 1). These 261 

results suggest that these relationships are likely to be of clinical significance and war-262 

rants further study. Although high cystatin C levels have been linked with major de-263 

pressive disorder,37 no studies, to the best of our knowledge, have demonstrated an as-264 

sociation between cystatin C and bipolar disorder. Levels of Cystatin C, a natural inhib-265 

itor of cysteine proteases, are typically used clinically to assess kidney function. A com-266 

mon treatment for bipolar disorder is lithium, which has been shown to decrease renal 267 

function and can lead to elevated cystatin C levels,38 which may lend further insight to 268 

the mechanism behind lithium’s use as a treatment, however this remains to be con-269 

firmed.  270 

A connection between impaired glucose metabolism and bipolar disorder has been 271 

well documented in the literature, with over half of patients diagnosed with bipolar dis-272 

order also having insulin resistance, impaired glucose tolerance, or type 2 diabetes.7 273 

Furthermore, it has been shown that modulating the PI3K/Akt insulin signaling pathway 274 

may be a mechanism of lithium for the treatment of bipolar disorder.39 The PI3K/Akt 275 

pathway helps regulate glucose metabolism in the hippocampus, cerebellum, and olfac-276 

tory bulb40 which are vulnerable sites of gray matter loss in bipolar disorder.41 It has been 277 

speculated that long-term disruption of this pathway can lead to mitochondrial dysfunc-278 

tion and energy dysregulation which may affect brain processes contributing to bipolar 279 
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disorder.39 Therefore, our identification of a causal relationship between high glucose 280 

levels and bipolar disorder further supports the current body of evidence, and our find-281 

ings for cystatin C highlight a novel finding that warrants investigation in subsequent 282 

studies. Our findings suggest that future studies aiming to reduce the risk of bipolar 283 

disorder could explore the lifestyle and clinical interventions that reduce blood glucose 284 

and maintain kidney function.  285 

Although our study focused on links that were aligned with 4 or more MR methods, 286 

other notable relationships were identified that were aligned with 2-3 MR methods 287 

(Figure 1). For example, C-reactive protein (CRP) and Alzheimer’s disease were causally 288 

linked in 2 methods (MR Egger and IVW) which has been previously noted in previous 289 

non-MR studies.42  290 

A limitation of this study is that much of the exposure GWAS data comes from the 291 

UK biobank, a large-scale volunteer databank, which has a biased representation of Eu-292 

ropeans and results may not generalize outside UK.43,44 However, UK biobank provides 293 

the largest GWAS datasets of most biomarkers studied herein and adequate statistical 294 

power; this bias may be overcome as other biobanks with diverse populations continue to 295 

expand. MR studies have their own limitations, including but not limited to:  potential 296 

confounding factors, limitations of estimating associations for binary outcomes, plei-297 

otropic effects which should be mitigated by our use of MR Egger, and population strat-298 

ification.45-47 299 

Overall, by utilizing several MR methods as cross-validation, our study successfully 300 

reaffirmed several established connections in cardiovascular diseases, gout, and kidney 301 

diseases, while uncovering intriguing novel biomarkers that may be causal for bipolar 302 

disorder. These findings highlight the underappreciated roles that circulating biomarkers 303 

may play in disease mechanisms, which should open new avenues for targeted research 304 

and motivate development of precise diagnostic tools and therapeutic interventions. 305 
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