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ABSTRACT 

Chronic kidney disease (CKD) is a complex condition with diverse underlying causes that lead to 

a progressive decline in kidney function. Genome-wide association studies (GWASs) have 

identified numerous genetic loci associated with CKD, yet much of the genetic basis remains 

unexplained. Part of the reason is that most GWASs have only assessed kidney function via 

single biomarkers such as estimated glomerular filtration rate (eGFR). This study employs a 

novel multi-phenotype approach, combinatorial Principal Component Analysis (cPCA), to better 

understand the genetic architecture of CKD. Utilizing a discovery cohort of white British 

individuals from the UK Biobank (n=337,112), we analyzed 21 CKD-related phenotypes using 

cPCA to generate over 2 million composite phenotypes (CPs). More than 46,000 CPs 

demonstrated superior performance in classifying clinical CKD compared to any single 

biomarker, and those CPs were most frequently comprised of eGFR, cystatin C, HbA1c, 

microalbuminuria, albumin, and LDL. GWASs of the top 1,000 CPs revealed seven novel 

genetic loci, with CST3 and SH2B3 successfully replicated in an independent Irish cohort 

(n=11,106). Notably, the index SNP of the SH2B3 gene, which encodes a regulator in immune 

responses and cytokine signaling, is a loss-of-function variant with a combined beta of -0.046 

and a p-value of 3.1E-56. These results highlight the effectiveness of a multi-phenotype 

approach in GWASs and implicate a novel functional variant in SH2B3 in CKD phenotypes. 

KEYWORDS 

Chronic kidney disease, genome-wide association study, multi-phenotype, UK Biobank 

TRANSLATIONAL STATEMENT 

The application of combinatorial Principal Component Analysis (cPCA) in our study has 

identified SH2B3 as a novel genetic locus associated with chronic kidney disease (CKD). This 
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discovery advances our understanding of CKD's genetic architecture beyond single biomarker 

analyses, potentially leading to more precise diagnostic tools and personalized treatment 

strategies. Future research should focus on validating these findings in diverse populations and 

integrating cPCA-derived biomarkers into clinical practice to enhance CKD prediction and 

management, ultimately improving patient outcomes. 

INTRODUCTION 

Chronic kidney disease (CKD) is a collective term encompassing a range of heterogeneous 

diseases characterized by persistent structural or functional kidney abnormalities. CKD is 

stratified into five stages, culminating in kidney failure, which necessitates consideration of 

interventions such as kidney transplantation or dialysis. This condition has a high prevalence, 

affecting approximately 10-15% of the global population, resulting in significant burden on both 

public health and the economy.1 

Genome-wide association studies (GWAS) investigating CKD have traditionally focused on 

evaluating kidney function using single biomarkers, such as estimated glomerular filtration rate 

(eGFR), microalbuminuria, or blood urea nitrogen.2-5 For example, a robust GWAS analysis of 

eGFR in a cohort of over 1.2 million individuals identified 634 independent genetic signals, 

collectively accounting for 9.8% of the eGFR variance.4 However, a portion of the heritability of 

CKD remains unexplained. This gap in understanding can be attributed, in part, to the fact that 

eGFR and other individual biomarkers do not fully capture the underlying causes of CKD nor 

accurately predict an individual's risk of CKD or progression to kidney failure.6 For a 

comprehensive diagnosis and prognosis of systemic CKD, it is recommended to employ a 

combination of various markers that collectively reflect the diverse alterations occurring during 

the course of CKD.7 
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Previously, we employed principal component analysis (PCA) on multiple quantitative 

phenotypes associated with CKD, uncovering a novel susceptibility gene for kidney function that 

remained undetected in single-phenotype GWASs.8 In this study, we introduce and implement a 

new approach termed combinatorial PCA to further investigate the genetic basis of CKD within 

the UK Biobank dataset. As a result, we identified a new locus, SH2B3 (SH2B adaptor protein 

3), to be associated with CKD. 

METHODS  

Research cohort 

The UK Biobank (UKB) is a longitudinal cohort study examining the interplay between genes, 

the environment, and health. It encompasses over 500,000 participants aged 40-69 years, 

recruited between 2006 and 2010 from 22 assessment centers across England, Scotland, and 

Wales. Approval for the UKB study was obtained from the North West Multi-Centre Research 

Ethics Committee, and all participants provided written informed consent. This research has been 

conducted utilizing the UK Biobank Resource under Application Number 60111.  

We selected White-British samples, constituting the largest ethnic group within the UKB dataset, 

for the discovery cohort based on both the 'Ethnic background' and 'Genetic ethnic grouping' data. 

This approach allowed us to accurately identify individuals who self-identified as 'White British' 

and exhibited very similar genetic ancestry profiles, as determined by a principal components 

analysis of their genotypic data. Additionally, we excluded individuals whose genetic sex 

differed from their self-identified sex, those with sex chromosome aneuploidy, or those who 

were not included in the genetic principal components analysis conducted by the UKB research 

team. The final sample size was 337,112. Finally, we included individuals from the Irish 
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ethnicity within the UKB dataset for the replication analyses (n=11,106). The data processing 

steps were performed similarly to those used for the discovery cohort. 

Phenotype data 

In total, 21 biomarkers relevant to chronic kidney disease (CKD) were included in this study 

(Table 1). These phenotypes were assessed based on the correlations of the measurements with 

prevalence of CKD, CKD stages, kidney function, and an increased risk of adverse outcomes in 

individuals with CKD. All measurements were collected at baseline for all participants. Details 

of the assay manufacturers, analytical platforms, and analysis methodologies can be found at 

https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data. Quantitative 

measures outside their respective analytical ranges were treated as missing data. Estimated GFR 

(eGFR) was calculated using the creatinine-based CKD-EPI-2021 equation without race 

coefficient.9 Samples with more than 30% missing data points were excluded. Remaining 

missing phenotypic values were imputed to obtain a complete dataset using the R package 

missMDA v1.11,10 ensuring that the imputed values had no effect on the principal component 

analysis (PCA) results. PCA was performed using the R package FactoMineR v1.34.11 
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Table 1. 21 kidney function related phenotypes selected from the UK Biobank dataset. 

No. Phenotypes Abbr. Relation to kidney function References 

1 Albumin ALB 

Associated with reduced 

kidney functions in HIV-

infected individuals and 

elders 

Lang et al
12,13

 

2 Apolipoprotein A APOA1 

Higher APOA1 associated 

with lower CKD prevalence 

Goek et al
14

 

3 Apolipoprotein B APOB 

Higher APOB associated with 

lower eGFR, increased ESRD 

risk 

Zhao et al
15,

Zhao et al
16,

Kwon et al
17

 

4 Body mass index  BMI 

Higher BMI associated with 

increased risk of CKD 

Ejerblad et al
18,

Lu et al
19,

Herrington et 

al
20

 

5 Calcium CALC 

Lower CALC associated with 

rapid CKD progression 

Janmaat et al
21

 

6 C-reactive protein CRP 

Higher CRP associated with 

CKD incidence  

Fox et al
22

 

7 Cystatin C CYSC 

CYSC levels associated with 

kidney function  

Benoit et al
23

 

8 

Diastolic blood 

pressure DBP 

Lower DBP associated with 

increased mortality in CKD 

patients 

Agarwal
24,

Mitka
25

 

9 

Creatinine-based 

eGFR (CKD-EPI 

Creatinine Equation 

- 2021) eGFR 

Marker of kidney function Inker et al
9
 

10 

Gamma 

glutamyltransferase GGT 

Higher GGT associated with 

increased risk of ESRD 

Lee et al
26

 

11 

Glycated 

haemoglobin HbA1c 

Higher HbA1c associated with 

increased risk of CKD or CVD  

Hernandez et al
27

 

12 

Haematocrit 

percentage HCT 

Lower HCT associated with 

declined kidney function and 

increased risk of ESRD 

Iseki et al
28,

Chen et al
29

 

13 HDL cholesterol HDL 

Both low and high HDL 

associated with adverse 

outcomes in patients with 

CKD 

Nam et al
30

 

14 LDL direct LDL 

Higher LDL associated with 

increased risk of CVD in non-

dialysis CKD patients 

De Nicola et al
31

 

15 
Microalbuminuria MA 

Biomarker for kidney 

injury 

Glassock
32

 

16 Phosphate PHOS 

High PHOS associated with 

increased CVD risk and 

mortality in patients with or 

without CKD 

Vervloet et al
33

 

17 

Systolic blood 

pressure SBP 

Lower SBP associated with 

ESRD and increased mortality 

in CKD patients  

Agarwal
24

 

18 Triglycerides TRIG Associated with CKD stages Zubovic et al
34

 

19 Urate UA 

Higher UA associated with 

new and progressive CKD 

Oluwo and Scialla
35

 

20 Urea UREA 

Higher UREA levels 

associated with adverse renal 

Seki et al
36
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outcomes 

21 Vitamin D VITD 

Lower VITD associated with 

adverse outcomes and 

mortality in CKD patients 

Kim and Kim
37

 

 

Genotype data 

Genome-wide genotyping was conducted on all UKB participants using the UK Biobank Axiom 

Array. Approximately 850,000 variants were directly measured, while over 90 million variants 

were imputed using the Haplotype Reference Consortium and UK10K + 1000 Genomes 

reference panels. Imputation data were stored in the compressed and indexed BGENv1.2 format. 

We converted the data from BGEN format into binary PGEN files and performed quality control 

procedures within PLINK2.0.38 The criteria for selecting variants were: (1) autosomal variants; 

(2) missing rate of less than 5%; (3) not significantly deviated from Hardy-Weinberg equilibrium 

(p-value=10E-10); (4) minor allele frequency (MAF) of at least 0.001; and (5) imputation score 

of more than 0.8. After quality control, we retained 12.7 million SNPs for subsequent analysis. 

CKD clinical outcome data 

Health-related outcome data are available in death, hospital, and primary care records. Using the 

ICD-10 and ICD-9 codes (International Classification of Diseases, tenth and ninth editions), we 

categorized individuals diagnosed with chronic kidney disease, renal failure, renal sclerosis, 

chronic glomerulonephritis, nephritis, nephropathy, hypertensive chronic kidney disease, 

hypertensive heart and kidney disease, diabetes with renal complications, kidney replaced by 

transplant, disorders resulting from impaired renal function, or unspecified disorders of the 

kidney and ureter as CKD cases. 

Combinatorial principal component analysis (cPCA) 

Principles: We developed an approach called combinatorial PCA (cPCA) to identify 

combinations of biomarkers that collectively offer improved discriminatory power in disease 
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classification compared to individual biomarkers alone. In cPCA, various combinations with 

varying numbers of biomarkers are generated from a fixed set of input biomarkers. The number 

of possible combinations generated can be calculated as ∑ C�
��

���  .The first principal component, 

denoted as CP, is then extracted to represent each combination. CP serves as a comprehensive 

biomarker signature, representing the maximum variance direction within the biomarker 

combination. Finally, the performance of each CP in disease classification is evaluated and 

compared to that of single biomarkers. 

Implementation Details: To systematically explore and identify potential superior components 

for CKD classification beyond conventional biomarkers, we applied cPCA to a set of 21 CKD-

related phenotypes. Initially, we generated 2,097,130 unique combinations out of the 21 

phenotypes. These combinations encompassed all possible subsets of the 21 phenotypes with 

varying numbers, ranging from 2 to the complete set of 21. For each combination, we extracted 

CP, resulting in 2 million CPs. Subsequently, we evaluated the performance of each CP in CKD 

classification and compared it to that of CYSC, which served as the best single marker for CKD 

classification. 

To validate the efficacy of the identified combinations, we partitioned the dataset into a training 

set (70%) and a test set (30%). Notably, cPCA was exclusively performed on the training set, 

encompassing the 2 million combinations. The performance evaluation involved comparing the 

ROC curves (Receiver Operating Characteristic curves) of each CP against those of individual 

phenotypes. Confidence intervals for the calculated AUCs (Area Under the Curve) were 

computed using bootstrap methods with 2000 stratified bootstrap replicates, implemented within 

the R package pROC.  
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Combinations exhibiting significantly higher AUCs compared to CYSC were further validated 

using the independent test set. The final AUCs were calculated based on the entire dataset.  

Genome-wide analyses 

Genome-wide association studies (GWAS) were performed by fitting linear models (for 

quantitative traits) or logistic models (for binary traits) implemented in PLINK2.0.38 All the 

input phenotypes were inverse-normal transformed prior to GWAS. Age, sex, and the first 20 

genetic principal components were integrated into the models as covariates. SNP-based 

heritability and genetic correlation were estimated based on the GWAS summary statistics using 

linkage disequilibrium score regression (LDSC) v1.0.139  

 

RESULTS 

Best single-markers for CKD classification 

In this study, our objective was to identify novel genetic loci associated with CKD through a 

comprehensive multi-phenotype analysis. Prior to conducting the multi-phenotype analysis, we 

examined the 21 phenotypes previously linked to CKD (Table 1) in terms of their performance in 

classifying clinical CKD. This was evaluated by the area under the curve (AUC) of receiver 

operating characteristic (ROC) curves using the ICD codes for CKD as clinical outcomes (Figure 

1). The biomarkers encompassed a range of physiological indicators of CKD risk, including 

markers of renal function, metabolic parameters, inflammation, lipid profile, and blood pressure. 

Notably, cystatin C (CYSC) exhibited the highest discriminatory power among the biomarkers, 

with an AUC range of 0.832-0.842, closely followed by estimated glomerular filtration rate 

(eGFR) with an AUC range of 0.825-0.835. Other biomarkers, such as blood urea nitrogen 

(BUN), uric acid (UA), and glycated hemoglobin (HbA1c), demonstrated moderate 
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discriminatory performance, with AUCs ranging from 0.658 to 0.742. Conversely, other 

biomarkers such as vitamin D (VITD), calcium (CALC), and diastolic blood pressure (DBP) 

exhibited low AUC values, ranging from 0.489 to 0.525. 

 

Figure 1. ROC curves for CKD classification of the 21 CKD-related phenotypes. 
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Composite phenotypes better than single markers in CKD classification 

 

Figure 2. Combinatorial Principal Component Analysis (cPCA). A. Flowchart of the cPCA 

method. B. The ROC curve of the top CP extracted from eGFR, CYSC, MA, HbA1c, LDL, ALB, 

and GGT in comparison to the ROC curves of the 21 biomarkers in terms of CKD classification. 
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C. Top 10 of the phentoypes that appeared most frequently in the 46,000 CPs. D. Top 10 of the 

phenoyptes pairs or triples that appeared most frequently in the 46,000 CPs. 

 

Table 2. Top 10 CPs with the highest AUCs. P-values were of the tests comparing the CPs’ 

ROC curves to the CYSC’s ROC curve. 

No. Combination which CP extracted from AUC 95% CI P-values  

1 {ALB, CYSC, eGFR, GGT, HbA1c, LDL, MA} 0.878 0.873-0.882 3.84E-163 

2 {ALB, CYSC, eGFR, GGT, HbA1c, LDL, MA, PHOS} 0.878 0.873-0.882 2.43E-161 

3 
{ALB, CYSC, eGFR, GGT, HbA1c, LDL, MA, PHOS, 

VITD} 
0.877 0.873-0.882 1.26E-160 

4 {ALB, CYSC, eGFR, GGT, HbA1c, LDL, MA, VITD} 0.877 0.873-0.882 1.01E-155 

5 
{ALB, CALC, CYSC, DBP, eGFR, GGT, HbA1c, LDL, 

MA} 
0.876 0.872-0.881 4.28E-154 

6 {ALB, CYSC, eGFR, HbA1c, LDL, MA, PHOS, SBP} 0.876 0.872-0.881 4.52E-154 

7 
{ALB, CALC, CYSC, eGFR, HbA1c, LDL, MA, PHOS, 

SBP} 
0.876 0.872-0.881 1.69E-153 

8 {ALB, CALC, CYSC, eGFR, HbA1c, LDL, MA, SBP} 0.876 0.872-0.88 2.18E-145 

9 {ALB, APOB, CYSC, eGFR, GGT, HbA1c, MA} 0.876 0.872-0.88 1.07E-144 

10 
{ALB, CALC, CYSC, DBP, eGFR, GGT, HbA1c, LDL, 

MA, VITD} 
0.876 0.872-0.88 1.64E-136 

 

In this multi-phenotype analysis, we developed and applied a method called combinatorial PCA 

(cPCA) to identify combinations of biomarkers that outperformed single markers. General steps 

of the cPCA method are illustrated in Figure 2A. Through cPCA application, a total of 2,097,130 

composite phenotypes (CPs) were extracted from all unique combinations of 21 CKD-related 

biomarkers, and then evaluated for performance in CKD classification. As a result, we identified 

46,562 CPs with significantly better disease classification compared to CYSC (p<2.5e-8), as 

assessed using ROC curves and AUC. The top ten CPs with the highest performance are listed in 

Table 2.  
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We analyzed the phenotypic components of the 46,562 CPs that exhibited statistically 

significantly better performance in CKD classification compared to CYSC (Figure 2B, 2C and 

2D). The top ranked CP was represented by albumin (ALB), CYSC, eGFR, gamma 

glutamintransferase (GGT), HbA1c, low density lipoprotein (LDL), and microalbuminuria (MA) 

(AUC=0.878, 95%CI=0.873-0.882).  Among the other combinations, CYSC and eGFR were 

consistently present, with HbA1c appearing in nearly all instances. Other notable phenotypes 

included MA, ALB, and LDL, with appearances ranging from 75% to 55% across the 

combinations. Regarding pairs or triples of phenotypes, as expected, the most frequent 

combinations included CYSC, eGFR, and HbA1c: CYSC-eGFR pairs were present in all 

combinations, while CYSC-HbA1c, eGFR-HbA1c, and CYSC-eGFR-HbA1c were found in 99% 

of combinations. 

 

Genetic associations of the top 1000 CPs 

 

Figure 3. The 82 genetic loci identified in all the top 1000 CPs. Among these loci, 75 were 

found to overlap with those identified in the GWAS of eGFR, while 7 loci were not. Instead, 
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these 8 loci were discovered in GWASs of other individual phenotypes, each represented by a 

distinct color. 

 

The cPCA analysis identified a total of 46,562 CPs with significantly higher AUCs than that of 

CYSC. To uncover genetic loci associated with kidney function, we conducted a genome-wide 

analysis of the top 1000 CPs with the highest AUCs, as well as all 21 individual phenotypes. 

This analysis yielded 82 loci consistently identified in the GWASs of the top 1000 CPs (p=5e-8, 

Figure 3). Most of these loci were also observed in the eGFR GWAS. However, seven loci – 

CST3, SH2B3, FTO, SEMA3F-AS1, AL359852.2, AC128707.1, and AL049757.1 - were not 

identified in the eGFR GWAS and were instead found in GWASs of other individual phenotypes. 

SH2B3 was found in 12 out of the 21 individual-phenotype GWASs, FTO was found in 7 and 

SEMA3F-AS1 in 5. These 7 loci represented potentially novel genetic associations with kidney 

function, discovered through the multi-phenotype approach.  
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Replication analysis 

 

Figure 4. ROC curves for CKD classification of the CP and the 21 CKD-related phenotypes in 

the replication Irish cohort. The CP was extracted from the combinations of phenotypes {eGFR, 

CYSC, ALB, HbA1c, GGT, LDL, and MA}. 

 

Table 3. Association results of the potentially novel kidney-function loci in the discovery British 

group and the replication Irish group. The phenotypic outcomes were CP extracted from {eGFR, 

CYSC, ALB, HbA1c, GGT, LDL, and MA} for both the British group and the Irish group, 

respectively.  

No. Gene Chr. Position rsID A1 A2 
British (n=296,372) Irish (n=11,206) 

Beta SE P Beta SE P 

1 CST3 20 23,569,186 rs2405392 T C 0.190 0.003 0 0.223 0.018 1.90E-35* 

2 SH2B3 12 111,884,608 rs3184504 T C -0.045 0.003 7.15.E-53 -0.061 0.015 5.74E-05* 

3 FTO 16 53,818,834 rs56313538 G A -0.026 0.003 2.30.E-18 -0.037 0.016 0.017 
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4 SEMA3F-AS1 3 50,174,197 rs2624847 G T -0.024 0.003 6.76.E-13 0.011 0.017 0.505 

5 AL359852.2 6 2,530,997 rs1122748 C T -0.022 0.003 7.55.E-11 -0.025 0.017 0.150 

6 AC128707.1 12 78,807,411 rs7311712 T C 0.019 0.003 1.22.E-10 -0.004 0.015 0.800 

7 AL049757.1 22 43,189,832 rs9607949 A C -0.019 0.003 2.06.E-10 -0.002 0.015 0.877 

* p-values < 0.007 as accounted for multiple corrections. 

 

 

We utilised the independent cohort of Irish ethnicity in the UKB dataset for our replication 

analysis. In the discovery group, i.e. the British cohort, the CP extracted from the combination of 

{eGFR, CYSC, ALB, HbA1c, GGT, LDL, and MA} was among those that had the highest 

AUCs for CKD classification and at the same time had the least number of phenotypes (Table 2). 

Therefore, we selected this combination of phenotypes to generate a new CP for the replication 

cohort. As a result, the new CP in the replication cohort also had significantly better performance 

in CKD classification compared to those of individual phenotypes (Figure 4). Out of the 7 

potentially novel loci associated with kidney function, CST3 and SH2B3 were replicated in the 

Irish cohort as outlined in Table 3.  

DISCUSSION 

CKD is a common term to describe a range of diseases characterized by impaired kidney 

structure, or reduced kidney function over time. Because there is an incomplete understanding of 

the genetics for different CKD subtypes, the identification of effective drug targets has been 

hindered. Research has tended to focus on eGFR or other single CKD-related biomarkers, yet 

this approach could be inadequate for capturing the underlying CKD etiology or 

pathophysiology. Since CKD is associated with many individual phenotypes we reasoned that a 

multi-phenotype analytical approach may identify novel genetic loci relevant to CKD. 

Specifically we designed a combinatorial PCA algorithm (cPCA), the aim of which was to 

extract relevant composite phenotypes for accurate CKD classification. This involved iteratively 
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exploring all possible combinations of the 21 input phenotypes to identify composite phenotypes 

that outperformed individual biomarkers in CKD classification. Over 2 million phenotypic 

combinations were analyzed, resulting in the identification of over 46,000 composite phenotypes 

with significantly higher AUCs than CYSC or any individual phenotype. 

CYSC, eGFR, HbA1c, MA, ALB, LDL, and GGT were the most frequently observed 

phenotypes, appearing in 75% to 48% of those combinations. The frequent presence of HbA1c, 

ALB, LDL, and GGT alongside well-established CKD phenotypes such as CYSC, eGFR, and 

MA highlighted the overlap between kidney function and other aspects of human health, 

including blood glucose levels, cardiovascular health, and liver function. 

Furthermore, we observed that although BUN and UA, which are highly correlated with eGFR, 

exhibited higher performance in CKD classification than HbA1c, MA, and others, they appeared 

less frequently in the 46,000 combinations (BUN: 22.4% and UA: 0%). This suggested that 

cPCA could mitigate multicollinearity by ensuring the inclusion of independent phenotypes that 

are not highly correlated. 

Consequently, we performed GWAS of the top 1000 composite phenotypes with the highest 

performance in CKD classification and identified 82 loci that were consistently found in all the 

1000 GWASs. As expected, most of these were also found in eGFR GWAS, including well-

known CKD loci such as UMOD/PDILT, SHROOM3, and PRKAG2. Noteworthy was that there 

were 7 loci that were not identified in eGFR. They were CST3, SH2B3, FTO, SEMA3F-AS1, 

AL359852.2, AC128707.1, and AL049757.1. Finally, CST3 and SH2B3 were successfully 

replicated in an independent cohort. As noted, CST3 was, in fact, already an established kidney 

function gene. 
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On the other hand, SH2B3, which encoded for a cytokin-signalling regulator, was less recognized 

for its involvement in kidney function. The index SNP rs3184504 mapped to the SH2B3 locus is 

a loss-of-function variant and has been found to be associated with multiple phenotypes and 

diseases relating to blood pressure, blood cells, cholesterol levels, as well as cardiovascular 

diseases and type-1 diabetes (https://www.ebi.ac.uk/gwas/variants/rs3184504). Notably, murine 

animal models that were modified to be homozygous for the minor allele at rs3184504 using 

CRISPR-Cas9 exhibited higher blood pressure and exacerbated kidney dysfunction compared to 

control mice following angiotensin II infusion.40 This study marks the first time this missense 

SNP has been linked to human kidney function. 

Another noteworthy finding was the identification of the FTO locus among the top 1000 CPs. 

Although the locus only reached a nominal significance level in the replication analysis, this was 

potentially attributed to the much lower power of replication analysis. The FTO gene has been 

associated with CKD in case-control studies,41. Interstingly, the identified FTO SNP rs17817449 

in Hubacek et al41 was within 5.5kbp of the index SNP in our discovery GWAS  and, more 

importantly, also reached the genome-wide significane threshold (p= 8.13E-18).  

In conclusion, The cPCA method developed and applied in this study successfully identified a 

novel CKD locus, SH2B3. Moreover, this study highlighted the effectiveness of multi-phenotype 

approaches in uncovering novel genetic loci associated with complex diseases such as CKD, 

which exhibit substantial overlap with multiple other physiological components. 
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